
HAL Id: hal-01411066
https://hal.science/hal-01411066

Submitted on 6 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Model-based Engineering for the Integration of
Manufacturing Systems with Advanced Analytics

David Lechevalier, Anantha Narayanan, Sudarsan Rachuri, Sebti Foufou, y
Tina Lee

To cite this version:
David Lechevalier, Anantha Narayanan, Sudarsan Rachuri, Sebti Foufou, y Tina Lee. Model-based
Engineering for the Integration of Manufacturing Systems with Advanced Analytics. 13th IFIP In-
ternational Conference on Product Lifecycle Management (PLM), Jul 2016, Columbia, SC, United
States. pp.146-157, �10.1007/978-3-319-54660-5_14�. �hal-01411066�

https://hal.science/hal-01411066
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Model-based Engineering for the Integration of

Manufacturing Systems with Advanced Analytics

David Lechevalier1, Anantha Narayanan2, Sudarsan Rachuri3, Sebti Foufou4,

Y. Tina Lee5

1Le2i, Université de Bourgogne,

Dijon, France

david_lechevalier@etu.u-bourgogne.fr

2University of Maryland,

College Park, MD, USA

anantha@umd.edu

3Office of Energy Efficiency and

Renewable Energy, Advanced

Manufacturing Office, Department of

Energy, Washington, DC, USA

sudarsan.rachuri@hq.doe.gov

sudarsan.rachuri@ee.doe.gov

4CSE Department, College of

Engineering,

Qatar University, Qatar

sfoufou@qu.edu.qa

5Systems Integration Division, National

Institute of Standards and Technology,

Gaithersburg, MD, USA

yung-tsun.lee@nist.gov

Abstract. To employ data analytics effectively and efficiently on manufacturing

systems, engineers and data scientists need to collaborate closely to bring their

domain knowledge together. In this paper, we introduce a domain-specific

modeling approach to integrate a manufacturing system model with advanced

analytics, in particular neural networks, to model predictions. Our approach

combines a set of meta-models and transformation rules based on the domain

knowledge of manufacturing engineers and data scientists. Our approach uses a

model of a manufacturing process and its associated data as inputs, and generates

a trained neural network model as an output to predict a quantity of interest. This

paper presents the domain-specific knowledge that the approach should employ,

the formal workflow of the approach, and a milling process use case to illustrate

the proposed approach. We also discuss potential extensions of the approach.

Keywords: Data analytics, meta-model, neural network, manufacturing process,

predictive modeling

1 Introduction

The manufacturing industry generates large amounts of data on products, processes,

and resources, among other things. Data analytics provide the capabilities needed to

extract insights and make predictions from these data. The potential impacts of data

analytics on manufacturing-systems efficiency include a reduction of production cost

and time across all manufacturing levels [1, 2]. Data scientists and manufacturing

engineers often collaborate when using data analytics to solve process-specific

problems to improve product quality [3, 4], equipment efficiency [5, 6], and resource

efficiency [7, 8]. However, these collaborations require a significant amount of time

and effort to merge the expertise from these two domains. In [9], the authors present a

domain-specific framework to address this challenge. The framework 1) identifies the

main components and interfaces that must be implemented to improve communication

between these domains and 2) facilitates the application of data analytics in

manufacturing. In this paper, we introduce an implementation of some of the

components and interfaces that will be a part of this framework.

Our approach focuses on using data analytics – specifically neural networks (NNs)

– for predicting a set of manufacturing-process-related performance metrics. There are

three main contributions of this paper. First, we provide meta-models to represent

manufacturing processes and NNs. Second, we describe an algorithm to generate a

trained NN automatically from a manufacturing process model and data. Third, we

discuss a tool to export the NN in two standard formats: the Predictive Model Markup

Language (PMML) [10] and the Portable Format for Analytics (PFA) [11].

The paper is organized as follows. Section 2 presents the domain-specific knowledge

required from the manufacturing and data-science domains to generate NNs for

manufacturing processes. It also introduces the approach to generate NNs

automatically. Section 3 describes, in more detail, two components of the proposed

approach: a manufacturing meta-model and transformation rules to generate an NN.

Section 4 presents a process-level manufacturing use case to illustrate the capabilities

of the approach.

2 Domain Specific Knowledge from Neural Networks and

Manufacturing Processes

In this section, we discuss the knowledge required from manufacturing engineers

and data scientists to apply NNs to manufacturing processes. We review applications

of NNs in manufacturing processes, and devise a methodology based on the common

practice of data scientists.

2.1 Manufacturing Domain Knowledge

To identify the required manufacturing-domain knowledge, we studied several

research efforts on the applications of data analytics (DA) to manufacturing processes.

In [12], the authors apply analytics to detect faults in the alignment of a cap to the base

part of a product. In [13], [14], and [15], the authors predict product quality using three

DA algorithms: Bayesian networks (BNs), linear regression, and NNs. In [16], the

authors describe a way to predict the need for equipment repair using BNs. In [15], the

authors used NNs to study surface roughness in a milling process. They identified

surface roughness as the performance metric of interest. They also identified spindle

speed, feed rate, depth of cut, and the vibration average per revolution as the process

variables that have the most impact on surface roughness. They collected 492 data

samples to train and validate the NN. Each application followed a similar workflow: 1)

identify the performance metric to be studied, 2) identify the variables that impact this

target quantity, and 3) use test data to build an analytical model to predict the

performance metric from the process variables. We used this same workflow in our

work.

2.2 Data Science Domain

Knowledge

 To understand the knowledge required

from a data scientist to apply data

analytics techniques to build an NN, it is

important to understand how an NN is

built. Figure 1 presents the main

elements and the structure of an NN. An

NN is composed of an input layer, zero

or more hidden layers, and an output layer. Each layer contains at least one neuron. All

layers except the output layer contain a bias neuron (shown in black). Weighted edges

fully connect neurons in different layers. From a mathematical viewpoint, NNs can be

viewed as a set of nonlinear basis functions (the activation functions), with free

parameters (the adjustable weights). Training the NN is about adjusting the weights to

minimize the error between the output value of the NN and the known, real, output

value for a given data sample [17].

As noted above, the first step in building the NN involves selecting the input

variables relevant to the performance metric. This step is called feature selection and

defines the number of input neurons of the NN. There is one input neuron for each

input variable. The second step is to determine the number of hidden layers and the

number of neurons in each layer. In general, one hidden layer is sufficient [18] for the

class of problems related to manufacturing processes. The number of hidden neurons

has an impact on the NN accuracy, thus data scientists define this number very

carefully. Finally, the output neuron represents the variable that we are trying to predict,

which we call the quantity of interest. For example, a performance metric such as

energy consumption may be the quantity of interest in a manufacturing scenario.

Based on these reviews, our approach needs to define the input neurons based on the

process variables, define the optimal number of hidden neurons for an NN with one

hidden layer, and finally define the output neuron for the quantity of interest.

2.3 Integration of Manufacturing and Data Science Domain Models

After identifying the required knowledge from manufacturing engineers and data

scientists, we describe our approach and how it contributes to the framework defined

in [9]. Figure 2 summarizes the workflow of our approach. In this figure, meta-models

(Ⓐ and Ⓑ) are in gray, models (,  and ) are in yellow, and software solutions

(,  and ) are in blue. The dashed arrows represent actions defined in the related

label. The solid arrows show the use of models as input or output of the software

solutions.

Figure 1. Structure of a Neural Network

Box Ⓐ represents our manufacturing meta-model that captures the manufacturing

knowledge. This meta-model defines the concepts, rules and constraints needed to

represent a manufacturing process. Using the meta-model, a manufacturing engineer is

able to build a manufacturing process model  to define the quantities of interest and

the variables involved in the manufacturing process. Note, we provide an interface to

collect data related to the manufacturing process.

Taking the manufacturing process model and data as inputs, an NN model builder

 embeds a set of algorithms to run a feature selection that 1) optimizes the number of

input neurons, 2) computes the optimal number of hidden neurons, and 3) builds the

optimal structure of the NN . This NN structure is recorded using an NN meta-model

contained in the meta-model repository. The NN meta-model and NN model interpreter

are presented in [19]. The NN model interpreter  generates a trained NN. This NN is

exported as a PMML or PFA file  that is ready to use for prediction with new data. A

scoring engine  provides predictions  using the PMML file and new data. Scoring

is the process of using a model to make predictions about the behavior of a quantity of

interest. A manufacturing engineer makes decisions based on these predictions to

control the manufacturing process under investigation.

3 Manufacturing Meta-Models and Transformation Rules of the

Neural Network Builder

In this section, we describe the components, Ⓐ, Ⓑ and  in Figure 2, to generate

NNs from manufacturing process descriptions automatically. We also describe our

implementations of these components.

Figure 2. Formal workflow of the approach

3.1 Meta-Model for Manufacturing Processes

A meta-model is a graphical description of concepts and their relationships, which

can be used to describe objects or instances of those concepts in a particular domain.

We developed a meta-model for describing manufacturing processes in a way that is

helpful to build an NN. A manufacturing engineer builds a manufacturing model using

the meta-model to provide the required knowledge identified in Section 2.1. Since the

purpose of the approach is to use data-driven techniques (in this case NNs), there are

no physics-based equations associated with the model. Figure 3 presents the main

concepts of the manufacturing meta-model. Please note that this is a simple but a

reasonable representation of the domain model. The notation in Figure 3 and Figure 4

is based on Unified Modeling Language Class Diagrams [20], where the rectangles

represent concepts occurring in the domain, and the lines represent relationships

between the concepts. A line with a solid diamond represents a containment

relationship, with a numerical range at one end denoting the number of allowed

instances. For example, in Figure 3, a ManufacturingModel can contain 0 or more

instances of ManufacturingProcess.

The annotation <<Model>> is used to identify first class objects, while the

annotation <<Connection>> is used to represent edges, flows, or associations.

ManufacturingModel is a high level concept that allows the description of a

manufacturing model that is composed of Flows and ManufacturingProcess concepts.

The Flow concept represents connections between instances of the

ManufacturingProcess concept. A ManufacturingProcess is composed of Resource

and Equipment concepts, which allow the manufacturer to include resource or

equipment parameters as variables of the manufacturing process.

ManufacturingProcess also contains the concepts of Parameter and Metric. Metric is

used to define a quantity of interest in the manufacturing process. Parameters are the

variables that can impact the metric for a manufacturing process.

Figure 3. Manufacturing meta-model

In the UML notation, an empty triangle is used to denote specialization, where one

concept may be specialized into many sub-concepts. As shown in Figure 3, the

Resource concept is extended to define different types of resources: energy, water, and

material. The manufacturing meta-model can also be extended to define other kinds of

resources such as labor.

3.2 Meta-Model for Neural Networks

 Figure 4 shows the neural network meta-model (NNMM) presented in [19]. The
NNMM represents different types of NNs through various abstractions. A
NeuralNetworkModel concept is composed of Neuron and Edge concepts. A Neuron can
be one of four types: InputNeuron, HiddenNeuron, BiasNeuron, and OutputNeuron. An
Edge can be a VisibleEdge or a HiddenEdge. A VisibleEdge is used to represent an edge
between an input neuron and a hidden neuron, between a hidden neuron and an output
neuron, or between a bias neuron and an output neuron. Edges between two hidden
neurons, or between a bias neuron and a hidden neuron are represented using
HiddenEdge.

3.3 Transformation Rules to Generate an NN from a Manufacturing Model

We developed a set of transformation rules to generate an NN model from a

manufacturing model. Together, these rules represent a step-by-step process to build an

NN from the input model and the data provided by a manufacturing engineer. We

embedded these rules into the NN model builder, so that they can be applied to any type

of manufacturing process model. The result of applying these rules is an untrained NN

model, which is built based from the NN meta-model described above, and an input

Figure 4. Neural network meta-model [19]

data set for training. Figure 5 presents the workflow and the transformation rules of the

NN model builder, identified as  in Figure 2.

The NN model builder takes the manufacturing process model and data provided by

the manufacturing engineer as inputs. In the builder, Step 1 identifies those variables

that the manufacturer listed as impacting the quantity of interest in the manufacturing

model. The identified variables are compared with the variables present in the data set.

The variables that are not identified in the manufacturing model are then removed. Step

1 takes advantage of the manufacturing expertise that the manufacturing engineer

provides in the model.

Step 2 uses the feature-selection algorithm and a real data set to identify those

variables that do not contribute to the quantity of interest based on a data set. This

algorithm takes the variables provided from Step 1 and removes the variables that do

not contribute from the list.

During Step 3, the builder runs an algorithm to optimize the number of hidden

neurons for the NN. Several reports document the studies associated with optimizing

the number of hidden neurons and putting them all into a single hidden layer. Sheela et

al. [21], for example, analyzes the performance of the different optimization methods

described in different reports – that is, their ability to predict the actual optimal number

of hidden neurons. Our algorithm applies these different methods and computes the

number that appeared most frequently. That number is the one selected for the NN. As

we mentioned previously, one hidden layer is sufficient for manufacturing process-

related problems, and the algorithm is implemented to build one hidden layer. This

algorithm, however, can easily be modified to build NNs with more than one hidden

layer.

In Step 4, the builder generates the NN instance model and a data set as outputs. The

NN instance model describes the structure of the NN, and must be trained in order to

predict the quantity of interest. The output data set is a subset of the input data set. The

input data set variables that do not impact the quantity of interest are not included in

the output data set.

Using the output data set, the NN model interpreter [19] performs the NN training

and updates the weights on the NN instance model. It also generates a PMML or PFA

file containing the trained NN model.

4 Use Case

In this section, we show how our implementation of the proposed approach is used

in a typical manufacturing scenario. For our approach, manufacturing engineers build

Figure 5. Workflow of the NN model builder

a model of the process they wish to study using the meta-model described earlier. Next,

they collect test data by conducting experiments or from other sources. Finally, they

use the automated tools described in Figure 2 to generate an NN for their process. This

NN can be used to make future decisions without having to conduct physical

experiments to determine target values.

4.1 Scenario Description

This case study focuses on predicting the energy consumed by a milling machine

tool. The data set used in this case study was generated in [22] from a total of 18 parts

machined with 196 face milling, 108 contouring, 54 slotting and pocketing, 16 spiraling

and 32 drilling operations. We focused on face milling in this use case. The series of

machining operations were performed. Data was collected using power meters and

different sensors, and then stored in a database. We use the collected data as test data

to build an NN model to predict power consumption for different combinations of

machining parameters.

The test data includes the timestamp, power demand, feed rate, spindle speed, depth

of cut, cutting direction, cutting strategy, cutting ratio, cutting volume, and length of

cut in the 3 axis, referred as cutX, cutY and cutZ. As described below, we first built a

manufacturing process model based on our case study, then identified the optimal

process parameters and the metric of interest.

4.2 Building the Manufacturing Process Model

Figure 6 shows the manufacturing process

model that we built for the milling process. This

model contains the parameters that the

manufacturing engineer has specified as

contributing to the quantity of interest. In this

model, we defined power as the quantity of

interest. We defined feed rate, spindle speed,

depth of cut, cutting ratio, cutting volume, cutX,

cutY, and cutZ as parameters that impact the

power consumption. During this step, the

manufacturers use their domain expertise to list

only those parameters that they think will have a significant impact on their power

consumption. The test data and the manufacturing model are the inputs to our next step,

which performs feature selection and generates the NN.

4.3 Generating the Neural Network for Prediction

 In the next step, the manufacturing engineer executes the NN model builder using

both the manufacturing model (in Figure 6) and the test data as inputs. Our algorithm,

Figure 6. Manufacturing model

takes those inputs and generates a trained NN. It does this using two pieces of software:

the NN model builder and the NN model interpreter.

The NN model builder identifies the quantity of interest (the selected performance

metric) from the manufacturing model. In this case, it is power. The NN model builder

prunes the data set by removing the data that were omitted in the manufacturing model.

In our case, it removes the cutting direction and cutting strategy variables from the data

set since these are not present in the manufacturing model in Figure 6. Next, the feature

selection algorithm is executed. It uses the test data to identify and remove parameters

that have an insignificant impact on the target variable. In our example, feed rate, depth

of cut, cutX, and cutY were found not to have a significant effect on power; therefore,

these parameters are not considered when building the NN.

The NN model builder then displays which variables were removed 1) based on the

manufacturing model and 2) using the feature selection algorithm. Then the builder

saves the new data set in a location identified by the manufacturing engineer. Figure 7

shows the resulting NN model, an automatically generated instance of the NNMM

which is shown in Figure 4.

In this NN model, the NN model

builder keeps four variables: spindle

speed, cutting ratio, cutting volume and

cutZ. They are defined as input neurons

in the NN. The algorithm computes that

two hidden neurons are optimal in this

model. Power is defined as the output

neuron in the NN. Finally, the builder

adds a bias neuron for every layer except

the output layer to build a correct NN.

The NN model builder generates the

structure model the NN. It still needs

to be trained (i.e. weights must be

assigned to the edges to make correct

predictions). To generate the weights, the structural NN must be trained with the test

data. The NN model and the test data are inputs to the NN model interpreter. The

interpreter generates a trained NN based on the structure described in the NN model

and the test data. The NN is generated as a standard PMML file. Several off-the-shelf

data analytics tools can read this PMML file.

The manufacturer can now use this NN to predict the energy consumption of the

milling machine under different conditions. This allows the manufacturer to perform

different tests and make decisions, without having to physically execute experiments

on the machine.

5 Summary and Future Work

In this paper, we proposed an approach to generate an NN to predict performance

metrics for manufacturing processes. This approach provides capabilities to collect the

required manufacturing knowledge and to use that knowledge to build NN models to

Figure 7. Neural network model

predict the performance metrics for different values of the process parameters. This can

be used to optimize performance by finding the best values for the process parameters.

We first reviewed the applications of data analytics to manufacturing processes for

identifying the steps taken by data scientists to create NNs. We then developed and

implemented the components needed to provide the capabilities required by this

approach. Part of that approach is developing a manufacturing meta-model. The meta-

model allows manufacturing engineers to provide a set of the most important process

parameters – those have the most impact on performance – in a manufacturing model.

In addition to this meta-model, we implemented an NN model builder to automatically

build an NN model from a manufacturing model and data provided by manufacturing

engineers. The NN model builder provides 1) a feature-selection algorithm based on

the test data and 2) an NN model generator that generates the structure of the NN. From

the generated NN structure, an NN model interpreter produces a trained NN in a

standard format. Using a scoring engine, the trained NN can then be used to predict the

quantity of interest.

We illustrated the capabilities of our implementation using a realistic manufacturing

scenario. In this scenario, an NN is trained to predict energy use during a particular

milling process. A manufacturing engineer provides a manufacturing model used as

input to the NN builder. The implemented algorithms finally generate a trained NN that

can be used with new data for predicting energy consumption.

This paper presented an initial description and implementation of an approach to

generate predictive models for manufacturing applications. We implemented a

translator (the NN model builder) to generate neural networks automatically. More

translators will be implemented in future work to generate other types of predictive

models. In practice, manufacturing processes and their interactions with their

surrounding environment are complex. In order to generate reliable prediction models

for practical scenarios, our meta-models and translators must be extended to account

for other parameters and constraints that affect manufacturing processes. Future work

lies in four directions. The first is to extend the manufacturing meta-model to enable

the representation of problems in greater detail, and at different manufacturing levels

such as assembly. Next, add new steps to the NN model builder to improve its accuracy.

Third, include a scoring engine. Fourth, extend the framework to include different

analytical techniques such as Bayesian networks. Capabilities to build BN models could

enable the application of uncertainty quantification in manufacturing [23].

Acknowledgement

The research in this paper was supported by National Institute of Standards and

Technology’s Foreign Guest Researcher Program, and Cooperative Agreement No.

70NANB14H250.

References

1. Manyika, James, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles

Roxburgh, and Angela H. Byers. "Big data: The next frontier for innovation, competition,

and productivity." (2011).

2. Brown, Brad, Michael Chui, and James Manyika. "Are you ready for the era of ‘big data’."

McKinsey Quarterly 4, no. 2011 (2011): 24-35.

3. Erzurumlu, Tuncay, and Hasan Oktem. "Comparison of response surface model with neural

network in determining the surface quality of moulded parts." Materials & design 28, no. 2

(2007): 459-465.

4. Zhai, Lian-Yin, Li-Pheng Khoo, and Sai-Cheong Fok. "Feature extraction using rough set

theory and genetic algorithms—an application for the simplification of product quality

evaluation." Computers & Industrial Engineering 43, no. 4 (2002): 661-676.

5. Dabbas, Russ M., and Hung-Nan Chen. "Mining semiconductor manufacturing data for

productivity improvement—an integrated relational database approach." Computers in

Industry 45, no. 1 (2001): 29-44.

6. Chien, Chen-Fu, Alejandra C. Diaz, and Yu-Bin Lan. "A data mining approach for analyzing

semiconductor MES and FDC data to enhance overall usage effectiveness (OUE)."

International Journal of Computational Intelligence Systems 7, no. sup2 (2014): 52-65.

7. Shin, Seung-Jun, Jungyub Woo, and Sudarsan Rachuri. "Predictive analytics model for

power consumption in manufacturing." Procedia CIRP 15 (2014): 153-158.

8. Gupta, D., and B. Gopalakrishnan. "Energy sensitive machining parameter optimisation."

International Journal of Industrial and Systems Engineering 5, no. 4 (2010): 405-423.

9. Lechevalier, David, Anantha Narayanan, and Sudarsan Rachuri. "Towards a domain-

specific framework for predictive analytics in manufacturing." In Big Data (Big Data), 2014

IEEE International Conference on, pp. 987-995. IEEE, 2014.

10. PMML v4.2.1, 2016. [Online]. Available: http://dmg.org/pmml/pmml-v4-2-1.html

[Accessed: May 1st, 2016].

11. PFA v0.8.1, 2016. [Online]. http://dmg.org/pfa/index.html [Accessed: May 1st, 2016].

12. Wolbrecht, Eric, Bruce D'ambrosio, Robert Paasch, and Doug Kirby. "Monitoring and

diagnosis of a multistage manufacturing process using Bayesian networks." Ai Edam 14,

no. 01 (2000): 53-67.

13. Correa, M., C. Bielza, M. de J. Ramirez, and J. R. Alique. "A Bayesian network model for

surface roughness prediction in the machining process." International Journal of Systems

Science 39, no. 12 (2008): 1181-1192.

14. Abouelatta, O. B., and J. Madl. "Surface roughness prediction based on cutting parameters

and tool vibrations in turning operations." Journal of materials processing technology 118,

no. 1 (2001): 269-277.

15. Tsai, Yu-Hsuan, Joseph C. Chen, and Shi-Jer Lou. "An in-process surface recognition

system based on neural networks in end milling cutting operations." International Journal

of Machine Tools and Manufacture 39, no. 4 (1999): 583-605.

16. Kurz, Daniel, Johannes Kaspar, and Jürgen Pilz. "Dynamic maintenance in semiconductor

manufacturing using Bayesian networks." In Automation Science and Engineering (CASE),

2011 IEEE Conference on, pp. 238-243. IEEE, 2011.

17. Haykin, S. "Neural Network A comprehensive foundation." Neural Networks 2, no. 2004.

18. Heaton, Jeff. “Introduction to neural networks with Java.” Heaton Research, Inc., 2008.

19. Lechevalier, David, Steven Hudak, Ronay Ak, Y. Tina Lee, and Sebti Foufou. "A neural

network meta-model and its application for manufacturing." In Big Data (Big Data), 2015

IEEE International Conference on, pp. 1428-1435. IEEE, 2015.

20. Unified Modeling Language [Online]. http://www.uml.org [Accessed: May 1st, 2016].
21. Sheela, K. Gnana, and S. N. Deepa. "Review on methods to fix number of hidden neurons

in neural networks." Mathematical Problems in Engineering 2013 (2013).

22. Park, Jinkyoo, et al. “A generalized data-driven energy prediction model with uncertainty
for a milling machine tool using Gaussian Process.” ASME 2015 International
Manufacturing Science and Engineering Conference, 2015.

23. Nannapaneni, Saideep, and Sankaran Mahadevan. "Uncertainty quantification in
performance evaluation of manufacturing processes." Big Data (Big Data), 2014 IEEE
International Conference on. IEEE, 2014.

