N

N

Cross-Platform Parallel Programming in Parray: A Case
Study
Xiang Cui, Xiaowen Li, Yifeng Chen

» To cite this version:

Xiang Cui, Xiaowen Li, Yifeng Chen. Cross-Platform Parallel Programming in Parray: A Case
Study. 11th IFIP International Conference on Network and Parallel Computing (NPC), Sep 2014,
Ilan, Taiwan. pp.579-582, 10.1007/978-3-662-44917-2_ 57 . hal-01403150

HAL Id: hal-01403150
https://inria.hal.science/hal-01403150
Submitted on 25 Nov 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01403150
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Cross-Platform Parallel Programming in
PARRAY: A Case Study

Xiang Cui?4, Xiaowen Li%, and Yifeng Chen'?

! HCST Key Lab at School of EECS, Peking University, Beijing, China
2 State Key Laboratory of Mathematical Engineering and Advanced Computing,
Wuxi, China
3 Air Defense Forces Academy, Zhengzhou, China
4 College of Computer & Information Engineering, Henan University, Kaifeng, China

Abstract. PARRAY (or Parallelizing ARRAYS) is an extension of C lan-
guage that supports system-level succinct programming for heteroge-
neous parallel systems. PARRAY extends mainstream C programming with
novel array types. This leads to shorter, more portable and maintainable
parallel codes, while the programmer still has control over performance-
related features necessary for deep manual optimization. This paper uses
the case study on stepwise program refinement of matrix transposition
to illustrate the basic techniques of PARRAY programming.

1 Introduction

PARRAY (or Parallelizing ARRAYSs) is an extension of C language that support-
s system-level succinct programming for heterogeneous parallel systems [1,2].
PARRAY extends mainstream C programming with novel array types, which are
then compiled to C code with machine-generated macros and vender-specific
library calls. The programming style is unified for all forms of parallelism.
Matrix transposition, as a basic linear algebra algorithm, is implemented
in PARRAY to demonstrate its cross-platform programming features. A unified
PARRAY matrix-transposition code can run on hardware platforms like CPU,
MIC and GPU with only memory types modified and achieve high performance.

2 Array Types of PARRAY

The following array type A in paged main memory has three dimensions:
$parray paged float[[n][n]][m] A

and consists of n*n*m elements. PARRAY supports various other memory types
such as dmem for GPU device memory, micmem for MIC memory and so on. The
following commands declare two type-A array objects x and y as pointers and
allocate memory to the pointers using the corresponding library calls of the
memory type. Note that the commands are the same as $create A(x,y) in
shorthand.

II

float *x,*y; $malloc A(x,y)

Unlike C language, type A nests its first two dimensions together, and is also
a two-dimensional type. The size $size(A_0) of the column dimension A_O is
n*n, which is split into two sub-dimensions A_0_0 and A_0_1 of size n.

PARRAY allows array dimensions to refer to existing types. The following type
B also consists of n*n*m elements:

$parray dmem float[[#A_0_-1] [#A_0_0]]1[#A_1] B

but is allocated in GPU’s device memory. Its row dimension B_1 has the same
offsets as A_1 (according to dimensional reference #A_1), but the sub-dimensions
of the column dimension are swapped. The following PARRAY command $copy
performed by a CPU thread duplicates n*n*m floats at address x in main memory
to address y in GPU device memory :

$copy A(x) to B(y).

If we consider every m adjacent elements as a unit, the layout of y is exactly
a matrix transposition of x. A simple way to map the elements of an array is to
use for command like the following code of array initialization where the pointer
y is moved to the address of each element for processing, and (*y) obtains the
element:

$for B(y) {(*y)=0;}.

3 Case Study

The performance of matrix transposition on different hardware platforms highly
depends on the underlying architecture and requires system-level programming.
Unified cross-platform programming to achieve high performance is challenging.
In this case study, we illustrate a simple algorithm, a cache-friendly block-wise
algorithm and a tile-buffered algorithm with different levels of performance opti-
mization. The programming style remains tidy and unified for these algorithms.

3.1 Simple Matrix Transposition
The following code performs a square matrix transposition in memory by CPU:

$parray {paged double [n][n]} C
$parray {paged double [#C_1][#C_0]} D
$main{......

$for C(x),D(y){ *y=*x;}

where type C is declared as a n*n double array in main memory. Type D also
has two dimensions referred from C but swaped. The for command makes sure
the pointer x is moved to the address of C’s each element which is copied to
corresponding pointer y whose offset is calculated according to type D. The
square matrix is transposed as a result. By changing the memory type of C and
D from paged to micmem or dmem, the code can be easily run on MIC or GPU.

111

3.2 Blocked Matrix Transposition

A more effective way to do the matrix transposition is the blocked transposi-
tion algorithm. The matrix is divided into a checkerboard of small blocks. Two
blocks that are symmetrically distributed with respect to the leading diagonal
are identified and their data is swapped with each other with the elements of
every block also in transposed form. Data distribution is defined as follows:

$parray {paged double [[ql[n/ql]l[[ql[n/qll} E
$parray {paged double [[#E_0_O][#E_1_O]1[[#E_O_11[#E_1_111} F
$parray {paged double [[#E_1_O][#E_O_O]1[[#E_1_1]1[#E_0_111} G

where type E partitions the initial square dimension of n*n into (gq*(n/q)) *
(g*(n/q)). F is declared by reordering E’s dimensions to represent the initial
array layout as gq*q blocks of (n/q)*(n/q) doubles. Compared with F, type G
represents the layout after transposition. The PARRAY code is as follows:

$for F_0(x),G_0(y){
$for F_1(x),G_1(y) { *y=*x; }}

where the outer for command moves the pointers x to the beginning addresses
of each block before transposition and y after transposition respectively; then
the inner for command handles each block.

3.3 Buffered Matrix Transposition

For different processors, data buffer could be used to further improve perfor-
mance when transposing each block. Elements in one block could be fetched
into a buffer and written back to memory in a more efficient way.

With MIC, in order to get higher memory bandwidth, array accesses should
be vectorized. MIC has 512-bit vector registers and every 64 doubles can be
fetched into one vector register. The data buffer is defined as follows:

$parray {vmem double [n/ql[n/ql} H

where vector memory type H has the same size with one block and is used to
describe the vector register buffer. The PARRAY code is as follows:

$for F_0(x),G_0(y){
$for F_1(x) itile H, G_1(y) otile H {
$for H(x,y) {*y=*x;}}}

where itile/otile clause of PARRAY is used to specify the data buffer used.
Actually, the above PARRAY code can be written in a more simply way:

v

$parray {paged double [n][nl]} F
$parray {paged double [#F_1][#F_0]} G
$parray {vmem double [n/ql[n/ql} H

$for G(x) itile H, H(y) otile H{
$for H(x,y) {xy=+*x;}}

where the matrix will be divided to tiles automatically when doing transposition.
Similarly, with GPU, shared memory can be used to avoid the large strides of
accessing device memory when doing matrix transposition.

This code is tested for various matrix sizes and achieves about 78 and 88
GB/s on MIC and Nvidia K20 GPU respectively (which are about 70% peak
bandwidths of contiguous data transfer on both accelerators).

Table 1. Matrix transposition v.s. peak bandwidth of contiguous data transfer.

Simple Block-wise Tile-buffered Peak bandwidth

CPU 3.49 10.45 N/A 32.89
MIC(60 cores) 4.98 6.53 78.73 101.13
Nvidia K20 GPU 7.68 12.38 87.75 150.34

4 Conclusion

This paper uses a case study on stepwise program refinement of matrix transpo-
sition to illustrate the basic techniques of PARRAY programming and its cross-
platform programming features. Layout patterns before and after transposition
can be defined using PARRAY’s array types easily and clearly. A unified PARRAY
matrix-transposition code can run on hardware platforms like CPU, MIC and
GPU with only memory types modified and achieve high performance.

5 Acknowledgement

This research is supported by the National HTRD 863 Plan of China under Grant
No. 2012AA010902, 2012A A010903; the National Natural Science Foundation of
China under Grant No. 61240045, 61170053, 61379048; the China Postdoctoral
Science Foundation under Grant No. 2013M540821; the State Key Laboratory of
Mathematical Engineering and Advanced Computing under Grant No. 2013A12;
the Science and Technology Key Project of Education Department of Henan
Province under Grant No. 13A520065.

References

1. Yifeng Chen and Xiang Cui and Hong Mei: ARRAY: A Unifying Array Represen-
tation for Heterogeneous Parallelism. PPoPP’12. (2012)

2. PekingUniversityManycoreSoftwareResearchGroup: http://code.google.com/p/parray-
programming/. (2014)

