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Abstract. Asian rice is a staple food in Indonesia and worldwide, and its
production is essential to food security. Cataloging and linking genetic
variation in Asian rice to important traits, such as quality and yield,
is needed in developing superior varieties of rice. We develop a bioinfor-
matics workflow for quality control and data analysis of genetic and trait
data for a diversity panel of 467 rice varieties found in Indonesia. The
bioinformatics workflow operates using a back-end relational database for
data storage and retrieval. Quality control and data analysis procedures
are implemented and automated using the whole genome data analysis
toolset, PLINK, and the [R] statistical computing language. The 467
rice varieties were genotyped using a custom array (717,312 genotypes
total) and phenotyped for 12 traits in four locations in Indonesia across
multiple seasons. We applied our bioinformatics workflow to these data
and present prototype genome-wide association results for a continuous
trait - days to flowering. Two genetic variants, located on chromosome 4
and 12 of the rice genome, showed evidence for association in these data.
We conclude by outlining extensions to the workflow and plans for more
sophisticated statistical analyses.

Keywords: data analysis, workflow, agriculture genetics, genome-wide
association study, bioinformatics, statistical genetics

1 Introduction

Indonesia is located in one of the most biodiverse regions in the world. Studying
the biodiversity unique to this region for agriculturally important species can
lead to crop and animal improvements. Oryza saliva or Asian rice is a staple
food in Indonesia and worldwide, and its production is essential to food security.
Cataloging and linking genetic variation in Asian rice to important traits, such
as quality and yield, is needed to develop new varieties of rice with superior
properties.

The 389 Megabase (Mb) Asian rice genome consist of 12 chromosomes [1].
Throughout the genome, sequence variations called single-nucleotide polymor-
phism (SNP) are common. At these locations (or loci), the alternative nucleotides



are called alleles, and the two alleles from the paired chromosomes are called
SNP genotypes. High-throughput genotyping and sequencing technologies have
revolutionized agriculture genetics, allowing for genome-wide interrogation of
thousands of SNPs. Recent research using these technologies, have focused on
genome-wide genotyping of a rice diversity panel consisting of 413 varieties from
82 countries [2]. While this research has identified genetic regions associated
with many complex traits, there is still much to learn about the genetics of rice
varieties specific to Indonesia.

The Indonesian Center for Agricultural Biotechnology and Genetic Research
and Development (ICABIOGRAD) has developed an unique rice diversity panel
of 467 rice varieties found in Indonesia. The panel was planted in a greenhouse
(BG) with controlled environment and three fields at different elevations, located
in the cities of Citayam, Subang, and Kuningan. The rice was planted in multiple
seasons. The diversity panel was genotyped with two panels of 384 and 1,536
SNPs on the GoldenGate platform (Illumina, Inc). The rice was also extensively
phenotyped at each location (see Table 1). Given the complexity and volume
of the data collected, center researchers needed an efficient and easy system to
manage these data and perform numerous genetic association analyses by traits
and location.

We designed and implemented a custom bioinformatics workflow for the ge-
netic association study of these traits in Indonesian rice. In the next sections, we
present the workflow design, the specifics of the implementation, and prototype
results.

Trait Units Description

Days to flowering days after planting when 50% of the plants have flowers

Days to harvest days after planting until physiological maturity

Total tiller number of tillers per hill

Productive tiller number of tillers that produce panicles

Plant height cm measured from the ground to the base of the panicle, at
the time of flowering

Total panicle panicles in a square meter

Panicle length cm main stem panicle length, measured from the base to the
tip of the panicle, 7 days after anthesis.

Filled grain average number of filled grain clumps per panicle

Unfilled grain average number of empty grain clumps per panicle

Grain per panicle total number of grain per panicle

1000 grain weight gr weight of 1000 full grain

Yield t/ha tons of rice per hectare

Table 1. Rice complex traits measured on 467 rice varieties in 4 locations



2 Methods

2.1 Bioinformatics Workflow

We constructed a workflow that captures the bioinformatics needed for data
quality control and analysis for both genotypes and phenotypes (trait) (Figure
2.1). Quality control procedures were designed to process the panel of 467 rice
varieties captured across the four locations and the genetic data generated from
the 384 and 1,536 genotyping arrays. The output of the quality control steps
were cleaned data ready for downstream statistical modeling. These datasets
were inputs to multi-step analyses pipelines. The output were summary tables
and figures of statistical association (Figure 2.1). The workflow was implemented
using a combination of software tools and custom programming that included
a relational database, the whole genome association analysis toolset PLINK [3],
and the [R] statistical language [4].
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Fig. 1. Bioinformatics workflow of rice genetic and phenotypic data

2.2 Rice Relational Database

The bioinformatics workflow operates on a backend relational database for data
storage and retrieval. We selected PostgreSQL as a database management system
(DBMS) because it is open source and well known for its security, scalability,
and active developer community. The entity-relationship diagram for the rice
database is presented in Figure 2.2.

The database consists of three schemas containing the plant genotypes and
trait characteristics. This included genotypes from the 1,536 and 384 SNP arrays



from ICABIOGRAD and comparative data from the International Rice Research
Institute (IRRI). The snp_map table describe the SNPs contained on the array,
such as where (chromosome and position); the polymorphic nucleotides - adenine
(A), cytosine (C), thymine (T), and guanine (G); and attributes of the array
design. The sample_map table contains data on the DNA samples and links to
the trait data. The final report contains the genotypes for all the samples as well
as information on the quality of the genotype calling. Trait data is stored in the
phenotype table and linked to the sample_map by a one-to-many relationship.

The primary key for final report is the combination of sample_index and
snp_index and dramatically improves the speed of sample based data retrieval
(i.e., queries by sample). A second index for final report with the order of the
columuns reversed allows for quick retrieval of SNP-based queries (e.g., genotypes
for particular SNPs). Once the genotype data is imported into the database, the
data can be extracted (in whole or by subsets) using Structured Query Language
(SQL). This allows for sophisticated filtering and quality control.

final_report

snp_name(PK, FK)
sample_id(PK, FK)

phenotype

‘Phenotype_id(PK)
sample_id(FK)

icabiograd_386_final_report

snp_name(PK, FK)
sample_id(PK, FK)

icabiograd_386_sample_map icabiograd_386_snp_map
Name(PK) Name(PK)

icabiograd_386_phenotype

Pphenotype_id(PK)
sample_id(FK)

irr_386_final_report_g

irri_386_final_report_v

irmi_386_snp_map_v

Name(PK)

irri_386_phenotype
phenotype_id(PK)
sample_id(FK)

Fig. 2. Rice genetic and phenotypic database



2.3 Quality control

For phenotypes, the database is queried using the RPostgreSQL package in [R].
Various [R] scripts and functions are then called to summarize the distribution
of each trait by location. Histograms and box plots are used to visually compare
the distributions and assess normality. Summaries of each variable are created
(i.e., minimum, quartiles, maximum) and outliers are reported for verification.

For the array data, the genotypes are exported from the database into PLINK
and converted to binary format for improved performance. The genotype call rate
(i.e., the rate of non-missing genotypes) for SNPs and samples are computed and
removed if less than 75%. The minor allele frequency (MAF), the frequency of the
least common allele, are computed and SNPs with a MAF < 0.05 are flagged as
rare variants. When samples were duplicated, genotype concordance is computed
to identify SNPs that were not consistently called by clustering algorithms.

Plots are created to evaluate if the clustering algorithm was correctly assign-
ing genotypes. A database query retrieves the r, theta, allelel ab, and allele2 ab
columns from the final report table for particular SNPs. The polar intensities
(r, theta) are plotted and compared to the called genotypes AA, AB, BB. When
there are genotype misclassifications or missingness, further investigation into
the clustering algorithm and assumptions are needed. The quality control steps
yield cleaned datasets ready for statistical analyses.

2.4 Data Analysis

Descriptive statistics for each trait are generated in [R] and stratified by location
and season/year. Descriptive statistics for continuous variables are expressed as
mean, median, standard deviation, and ranges. Analyses of continuous variables
are performed using t-test or an analysis of variance (ANOVA), as appropriate.
Discrete variables are expressed as frequencies and percentages. The analyses of
discrete variables are performed using the appropriate chi-squared test. Fishers
exact test are used for small cell sizes (< 5). For the phenotypes, all tests of
significance are two-tailed, with statistical significance set at p < 0.05.

Principal components analysis (PCA) was implemented in [R] to correct for
stratification in the rice diversity panel [5]. The top principal components are
used as covariates in regression modeling.

The workflow uses generalized linear models (GLM) to model the relationship
between traits and each of the 1,536 genotypes. This analysis is stratified by
location and season/year. The data D contain the trait variable Y and a matrix
of P explanatory variables X (which included each SNP and the top principal
components as covariates). The expected value of Y;, the trait variable for rice
variant 4, depends on the linear predictors through the link function g such that,

P
g(pi) = Bo + ZﬁpXipIp (1)

where p; = E(Y;), B, is the regression coefficient of variable p, and I, is a variable
indicating if X, is included in the model M. The genotypes are coded additively



0, 1, or 2 for the number of minor alleles. For continuous traits, the identity link
function (i.e., linear regression) is used. For binary traits, the logit link function
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is used, g(m;) = log ( (i.e., logistic regression).

The workflow concludes with summarizes of the results obtained from previ-
ous steps. Quantile-quantile (QQ) plots are generated for each trait to compare
the observed p-value distribution to the expected uniform distribution. Addi-
tionally, Manhatten plots are generated to show the p-value results of each
association scan by rice chromosome, with p-values less than the user-defined

genome-wide threshold for statistical significance highlighted.

3 Prototype Results

The rice database consists of 17 tables in three schemas, the 1,536 and 384 SNP
arrays from ICABIOGRAD and the IRRI 384 SNP array as an standard for
assessment. The size of database is 280 Megabytes (Mb). The bioinformatics
workflow (Figure 2.1) was run on the largest genotyping array (1,536 SNPs).
With the entire diversity panel genotyped, there were 717,312 genotypes in the
final_report.

A PLINK file was generated and quality control was performed. 16 rice sam-
ples and 139 SNPs were removed with poor call rates (< 75%). 451 samples and
1397 SNPs were available for statistical analysis. Principle components (PC)
analysis was performed using all SNPs, and the first four PCs were included in
model 1 as covariates.

The days to flowering trait was used for prototyping. A summary of the
distribution for this trait by location is presented in Figure 3. The box plot
shows that there is variation in this trait by location.
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Fig. 3. Boxplot for days to flowering by location (n=467)

A genome-wide association analysis was performed on days to flowering for
the rice planted in the greenhouse (BG). The resulting Manhattan plot for the



association scan is presented in Figure 3. The —logigp are presented along the
y-axis and the position of the SNP along the 12 rice chromosomes are presented
on the x-axis. Two SNPs showed evidence for association with days to flowering
in the greenhouse rice (colored red). These SNPs were located on chromosome
4 and 12 of the rice genome (Figure 3).
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Fig. 4. Genome-wide association results for days to flowering, greenhouse

For the top associated SNP, the polar intensities were plotted versus the
called genotypes. Intensities with the homozygous genotypes AA and BB were
colored in red and green respectively. Heterozygous genotypes AB were plotted
in blue. Uncalled genotypes were plotted in black. The graphic illustrates that
for this SNP there was a distinct cluster for homozygous genotypes (AA and BB)
and a large cluster for heterozygous genotypes (AB). There were 12 samples with
no genotype for this SNP.

4 Conclusions

We developed a custom bioinformatics workflow for a genome-wide association
study of traits in Indonesian rice. The workflow consisted of a relational database
and multi-step quality control and data analysis procedures automated in PLINK
and [R]. The prototype results demonstrated that the workflow is useful for
summarizing and visualizing the complex data from this study.
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Fig. 5. Clustering for top associated SNP

Future work includes configuring the workflow to run for all traits, locations,
and seasons. Additionally, improvements to the clustering algorithm and statisti-
cal modeling framework may be made. Given the small sample sizes in this study
and that rice is highly homozygous, an alternative algorithm such as ALCHEMY
may improve genotype calling [6]. Model 1 may be extended to account for the
relatedness among the rice varieties using a mixed model [7]. Environmental
factors include the habitat, location, season, and year are possible modifiers of
the relationship between genetics and traits. The statistical framework can be
modified to consider gene-environment interactions (GxE).

This bioinformatics workflow gives researchers the tools needed to easily and
consistently quality control and analyze complex data. This research will help
locate genes that are important for developing new rice varieties that ensure
future food security in Indonesia.
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