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Abstract. Time sequence data relating to users, such as medical his-
tories and mobility data, are good candidates for data mining, but of-
ten contain highly sensitive information. Different methods in privacy-
preserving data publishing are utilised to release such private data so
that individual records in the released data cannot be re-linked to spe-
cific users with a high degree of certainty. These methods provide the-
oretical worst-case privacy risks as measures of the privacy protection
that they offer. However, often with many real-world data the worst-
case scenario is too pessimistic and does not provide a realistic view of
the privacy risks: the real probability of re-identification is often much
lower than the theoretical worst-case risk. In this paper we propose a
novel empirical risk model for privacy which, in relation to the cost of
privacy attacks, demonstrates better the practical risks associated with
a privacy preserving data release. We show detailed evaluation of the
proposed risk model by using k-anonymised real-world mobility data.

Keywords: privacy, risk, utility, model, anonymisation, sequential data

1 Introduction

The big data originating from the digital breadcrumbs of human activities,
sensed as a by-product of the ICT systems, record different dimensions of human
social life. These data describing human activities are valuable assets for data
mining and big data analytics and their availability enables a new generation of
personalised intelligent services. Most of these data are of sequential nature, such
as time-stamped transactions, users’ medical histories and trajectories. They de-
scribe sequences of events or users’ actions where the timestamps make the tem-
poral sequentiality of the events powerful sources of information. Unfortunately,
such information often contain sensitive information that are protected under the



legal frameworks for user data protection. Thus, when such data has to be re-
leased to any third party for analysis, privacy-preserving mechanisms are utilised
to de-link individual records from their associated users. Privacy-preserving data
publishing (PPDP) aims at preserving statistical properties of the data while re-
moving the details that can help the re-identification of users. Any PPDP method
provides a worst-case probabilistic risk of user re-identification as a measure for
how safe the anonymised data is.

One such well-known anonymisation model typically used for PPDP is the
k-anonymity model [1,2]. It states that in the worst case, there are at least
k (and no less) users that can be re-identified given a k-anonymised dataset.
Thus, the re-identification probability for any single user, in the worst case, is
equal to 1/k. The higher the value of k, the lower the probability of any attack
succeeding. However, at the same time the higher the value of k, the lower
the utility of the data where the utility relates how well the anonymised data
represents the original one. This worst case scenario hardly gives us the view of
the realistic re-identification probabilities, which are often much lower than 1/k.
We envisage that the worst case guarantee, by itself, is not sufficient to help the
user understand the risks; and it is also not enough to communicate in a legal
language the risks associated with any of these anonymisation methods.

In this paper, we propose an empirical risk model for privacy based on k-
anonymous data release. We also discuss the relation of risk to the cost of any
attack on privacy as well as the utility of the data. We validate our model
against experimental car trajectory data gathered in the Italian cities of Pisa
and Florence.

The rest of the paper is organised as follows. In §2, §3 and §4, we propose our
empirical risk model with a running example based on k-anonymous sequence
data the inadequacy of worst-case risk evaluation. We validate our empirical
model by tests on real world trajectory data in §5 followed by the state-of-
the-art related to the information privacy and its measurements in §6 before
concluding the paper in §7.

2 From theoretical guarantees to an empirical risk model

2.1 Preliminaries: Trajectory Data

A trajectory dataset is a collection of trajectories Dp = {t1,ta,...,tm}. A tra-
jectory t = (x1,y1,t81), - -, (Tn, Yn, tSn), is a sequence of spatio-temporal points,
i.e., triples (z;,v;,ts;), where (z;,y;) are points in R?, i.e., spatial coordinates,
and ts; (¢ = 1...n) denotes a timestamp such that V1 < i < n ts; < ts;41.
Intuitively, each triple (x;,y;,ts;) indicates that the object is in the position
(x;,9;) at time ts;. A trajectory t' = (af, v}, ts)), ..., (al, y.. tsh,) is a sub-
trajectory of t (t' =< t) if there exist integers 1 < iy < ... < iy, < n such
that V1 < j < m (2},y},ts}) = (@i;,yi;,tsi;). We refer to the number of tra-
jectories in Dy containing a sub-trajectory t' as support of ' and denote it by
Np,(¢') = |{t € Dr|t' 2 t}].



2.2 The k-anonymity framework for trajectory data

A well known method for anonymisation of data before release is k-anonymity
[2]. The k-anonymity model was also studied in the context of trajectory data
[3-5]. Given an input dataset Dy C T of trajectories, the objective of the data
release is to transform Dp into some k-anonymised form D/.. Without this trans-
formation, the publication of the original data can put at risk the privacy of
individuals represented in the data. Indeed, an intruder who gains access to the
anonymous dataset may possess some background knowledge allowing him/her
to conduct attacks that may enable inferences on the dataset. We refer to any
such intruders as an attacker. An attacker may know a sub-trajectory of the
trajectory of some specific person and could use this information to infer the
complete trajectory of the same person from the released dataset. Given the
attacker’s background knowledge of partial trajectories, a k-anonymous version
has to guarantee that the re-identification probability of the whole trajectory
within the released dataset has to be at most % If we denote the probability
of re-identification of the trajectories as Pr(re_id|t’) based on the trajectory t'
known to the attacker then the theoretical k-anonymity framework implies that
Vt' € T, Pr(re_id|t') < 1. The parameter k is a given threshold that reflects the
expected level of privacy.

Note that, given a trajectory dataset Dy and an anonymity threshold k& >
1 we can have trajectories with a support lower than k (Np, (') < k) and
trajectories that are frequent at least k times (Np,(t') > k). The first type of
trajectories are called k-harmful because their probabilities of re-identification
are greater than % In [5], the authors show that if a k-anonymisation method
returns a dataset D/, by guaranteeing that for each k-harmful trajectory t' in
the original dataset, t' € Dr, either Np, (t') = 0 or Np, (¥') > k, then we have
the property that for any trajectory ¢ known by an attacker (harmful or not),
Pr(re_id|t’) < +.

This fact is easy to verify. Indeed, given a k-anonymous version D/ of a
trajectory dataset D that satisfies the above condition, and a trajectory ¢ known
by the attacker two cases can arise:

- t is k-harmful in D7: in this case we can have either, Nop;, (t) = 0, which im-
plies Pr(re-id|t) = 0, or Np, (') > k, which implies Pr(re-id|t) = m <
T
1

-t ig not k-harmful in Dr: in this case we have Np,.(t) = F > k and ¢ can
have an arbitrary support in D%. If Np/,.(t) = 0 or Np/,.(t) > F, then the
same reasoning as in the previous case applies. If 0 < Np/..(t) < F then the
probability to re-identify a user to the trajectory ¢ is the probability that
that user is present in D’ times the probability of picking that user in D7,

ND/T(t) % 1 _ 1 < 1
I F ND/T(t) — F — k-

The aforementioned mathematical condition that any k-anonymous dataset
has to satisfy, is explained as follows. Given the attacker’s knowledge of partial
trajectories that are k-harmful, i.e., occurring only a few times in the dataset,



they can enable a few specific complete trajectories to be selected, and thus
the probability that the sequence linking attack succeeds is very high. There-
fore, there must be at least k trajectories in the anonymised dataset match-
ing the attacker’s knowledge. Alternatively, there can be no trajectories in the
anonymised dataset matching the attacker’s knowledge. If the attacker knows
a sub-trajectory occurring many times (at least k times) then this means that
it is compatible with too many subjects and this reduces the probability of a
successful attack. If the partially observed trajectories lead to no match then it
is equivalent to saying that the partially observed trajectories could be in any
other dataset except from the one under attack, thus leading to an infinitely
large search space. This is, somewhat, equivalent to k& — oo. Thus, in this case,
limg o Pr(re_id|t’) = 0.
This is the theoretical worst-case guarantee of the probability of re-identification

of a k-anonymised dataset. However, we shall see in the following sub-section that
this does not give us a complete picture of the probabilities of re-identification.

2.3 Why is the theoretical worst-case guarantee inadequate?

In order to explain the inadequacies of the theoretical worst-case guarantee, let
us consider a toy example of trajectories. Let D be the example dataset. We
can choose, as an example, a value of £k = 3 and obtain the 3-anonymous dataset
D/, for which the theoretical worst-case guarantee is that V¢, Pr(re_id|t’) < &.

ty, :A-B—-C—-D—-FE—F th tA—= B
to cA—B—-C—-D—E—F th :A— B
t3 :A—+B—+C—-D—-E—F th A= B
ts :A—-D—>FE—F ty :A—D
ts t:A—-D—E—F , te A= D
Dr = Dr=4 .

te :A—D—F te :A—D
t7 :B—K— S th A= D
ts :B— K ts :B— K
ty :B— K ty :B— K
tiw:D—-E—J—F tho: B— K

(a) Original (b) 3-anonymised

Fig.1: Converting Dr to k-anonymised D/, with k = 3.

However, we observe from figure 2 that the actual probability of re-identification
is often much lower than the theoretical worst-case scenario, but this fact is not
demonstrated by the theoretical guarantee.

2.4 Empirical risk model for anonymised trajectory data

In the last sub-section, we demonstrated that the theoretical worst-case guaran-
tee does not demonstrate the distribution of attack probabilities. The worst-case
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Pr(re_id|A) = 1/7
Pr(re_id|B) = 1/6
Pr(resd|C) = 0
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Probability of re-identification

100%
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(a) Re-identification probabilities (b) Probability density distribution

Fig. 2: Probability distribution of re-identification.

scenario also does not illustrate the fact that a large majority of the attacks have
far lower probabilities of success than the worst-case guarantee. Thus, we propose
an empirical risk model for anonymised sequence data. If ' represents attacker’s
knowledge; h = |t/| denotes the number of observations in the attacker’s knowl-
edge then the intent is to approximate a probability density and a cumulative
distribution of Pr(re_id|t") for each value of h. This can be achieved by iterating
over every value of h = 1, ..., M where M is the length of the longest trajectory
in Dr. For each value of h, we consider all the sub-trajectories ' € Dr of length
h and compute the probability of re-identification Pr(re_id|t’) as described in
Algorithm 1. In particular, for each value of h a further iteration can be run
over each value of t' of length h, in which we compute Np, ('), Np, (') and the
probability of re-identification by following the reasoning described in Section
2.2 for the computation of this probability. Algorithm 1 presents the pseudocode
of the attack simulation.

The advantages of this approach is that this model supports arguments such
as: (a) “98% of the attacks have at most 1075 probability of success”; and
(b) “only 0.001% of the attacks have a probability close to %”. The disadvantages
of this model are: (a) a separate distribution plot is necessary for each value of
h; and (b) the probability of re-identification increases with the increase in h.
The illustration in Figure 3 demonstrates the aforementioned advantages and
disadvantages of the risk model.

For the simulation of the attack we need to select a set of trajectories BKp
from the original dataset of trajectories. The optimal solution would be to take
the all possible sub-trajectories in the original dataset and compute the proba-
bility of re-identification. Since the set of attack trajectories can be quite large,



Algorithm 1 Attack Simulation.

Require: The k-anonymised dataset D/, the original dataset Dr, the set of trajecto-
ries for the attacks BKr and anonymity threshold k.

1: for h=1, ..., M where M is the length of the longest trajectory in Dr do

2 for ¢ of length h in BKr do

3 N(t')p, < |{t € Dr|t' <t}

4: N(t’)D% — {t € DLt <t}

5: if N(t,)DT > k and N(t/)D’T < N(t/)'DT then
6.

7
8

Pr(re_id|t’) < 1/N(t')p,.
else
: Pr(re_id|t') <~ 1/N(t')pr...
9: end if
10:  end for
11: end for
12: return Cumulative Distribution of Pr(re_id|t') for all h.

Fraction of attacker's knowledge (f)
A

100% y
i
i

h=5

Theoretical worst-case
50% guarantee

Any point (p, f) indicates a fraction f
of possible attacks that have at most
a success probability p.

0%

0 0.0001 1k
Probability of re-identification (p)

Fig. 3: Representative cumulative density distribution for attacks in the toy ex-
ample.

in order to avoid a combinatorial explosion, two strategies can be adopted. First,
we can extract from the original dataset of trajectories a random subset of tra-
jectories that we can use as background knowledge for the attacks to estimate
the distributions. Secondly, we can use a prefix tree to represent in a compact
way the original dataset and then, by incrementally visiting the tree we can enu-
merate all the distinct sequences for using them as an adversary’s background
knowledge.

Risk versus cost One of the most important open problems that makes the
communication between the experts in law and in computer science hard is how



to evaluate whether an individual is identifiable or not, i.e., the evaluation of
privacy risks for an individual. Usually, the main legal references to this problem
suggests to measure the difficulty in re-identifying the data subject in terms of
“time and manpower”. This definition is surely suitable for traditional computer
security problems. As an example, we can measure the difficulty to decrypt a
message without the proper key in terms of how much time we need to try all
possible keys i.e., the time and resources required by the so-called brute force
attack. In the field of privacy the computer science literature shows that the key
factor affecting the difficulty to re-identify an anonymous data is the background
knowledge available to the adversary. Thus, we should consider the difficulty to
acquire the knowledge that enables the attack to infer some sensitive information.
If we are able to measure the cost of the acquisition of the background knowledge
then we can provide a single risk indicator that takes into consideration both the
probability of success of an attack and its cost. Combining the two factors and
providing one single value could help the communication of a specific privacy
risk in the legal language.

We propose three methods for measuring the cost of an attack and a way
to combine it with the probability of re-identification. We also propose to nor-
malise the probability of re-identification Pr(re_id|t') with the cost of gaining
the knowledge of ¢ by the attacker. The longer the ¢/, the higher the cost to ac-
quire such knowledge. Thus, Pr(¢') = Pr(re_id|t')/C(t') where C(t') is the cost
function proportional to the length of . We can then estimate the distribution
of Pr(t') over all ¢ to obtain a unique combined measurement of risk over all
possible attacks.

The cost function C(¢') can be derived from various alternatives. (1) One op-
tion would be to use a sub-linear cost function akin to that incurred in machine-
operated sensing. The initial costs of setting up the sensing equipment are high
but subsequent observations are cheaper and cheaper. Thus, C(t') = 1+log(|t'|)
is a good approximation. (2) Another option is a linear cost where a spying
service is paid a fixed fee per observation, leading to C(¢') = «aft'|. (3) A third
alternative is a super-linear cost where the attacker directly invests time and
resources to sensing, thus making the cost function C(t') = eIt

3 Data Utility Measures: Coverage and Precision

Alongside the risk versus cost estimations, it is also important to identify the
usability of the anonymised data and show the relation between usability and
privacy risk. In this context, we introduce two usability measures: coverage and
precision. While a trajectory can consist of multiple hops, it can also be seen as
a chain of smaller trajectories, each of which just contain the start point (the
origin) and the end point (the destination). We call these smaller trajectories as
ODpairs (or, origin-destination pairs). Given a k-anonymisation function that
maps Dp into D, we define coverage:

coverage = |ODpairs(Dr) N ODpairs(Dy)|/|Dr| (1)
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Fig. 4: Diagrammatic representation of coverage and precision.

and precision as:
precision = |ODpairs(Dr) N ODpairs(Dr)|/|ODpairs(Dry| (2)

The coverage versus risk for a given risk threshold can be estimated as follows.
Given an anonymised dataset D/. and a specified probability threshold p where
0<p< %7 all trips ¢ containing attack based on ¢ with Pr(re_id|t') > p can be
retrieved as:

RiskyTrips(p) = {t € Dip|3t' : Pr(resd|t’) > pand t’ < t} (3)

Thus, the coverage of the dataset Dy with respect to the risk threshold p is
defined as follows

coverage = |ODpairs(D7y) \ ODpairs(RiskyTrips(p))|/| Dy | (4)

The characteristics of the mobility data that are preserved with high fidelity
if we measure a high coverage rate are: (a) presence (of users in locations),
(b) flows (i.e., the number of trips between any origin-destination pair), and
(¢) overall distance travelled in all trips.

The characteristics that are not necessarily preserved include the properties
of sequences of individual trips, e.g., distribution of trip length and routine trips.

4 Privacy-by-design for data-driven services

The privacy-by-design model for privacy and data protection has been recog-
nised in legislation in the last few years years. Privacy-by-design is an approach
to protect privacy by inscribing it into the design specifications of information
technologies, accountable business practices, and networked infrastructures, from
the very start. It was developed by Ontario’s Information and Privacy Commis-
sioner, Dr. Ann Cavoukian, in the 1990s.

Privacy officials in Europe and the United States are embracing this paradigm
as never before. In Europe, in the comprehensive reform of the data protection



rules, proposed on January 25, 2012 by the EC, the new data protection legal
framework introduces, with respect to the Directive 95/46/EC, the reference
to data protection by design and by default (Article 23 of the Proposal for a
Regulation and Article 19 of the Proposal for a Directive). These articles compel
the controller to “émplement appropriate technical and organizational measures
and procedures in such a way that the processing will meet the requirements of
this Regulation and ensure the protection of the rights of the data subject.” and to
“implement mechanisms for ensuring that, by default, only those personal data
are processed which are necessary for each specific purpose of the processing ...”.

In [6] Monreale at al. define a methodology for applying the privacy-by-
design principle in the context of data analytics. This work states that one of
the most important points to take into consideration for releasing technological
frameworks that offer by-design the privacy protection is the trade-off between
privacy guarantees and the data quality.

The model presented in above sections provides a methodology for the eval-
uation of this trade-off. Indeed, the availability of this model allows us to define

start

Repeated until the risk is minimal for
a certain utility of the data

Data Data Risk
preparation anonymisation evaluation

®-

Fig. 5: Refining privacy and risk until the risk is minimal for a certain utility of
the data.

a methodology of risk evaluation of datasets that have to be used for specific
services; and this methodology allows us to establish a well-defined relation be-
tween the risks of re-identification of any individual represented in the data and
the usability of the anonymous data for the specified services.

In Figure 5 we depict this methodology that is composed of three phases:
(a) data preparation, (b) data anonymisation, and (c) risk evaluation.

The cycle, illustrated in figure 5 needs to be repeated with respect to the
different dimensions (e.g., spatial and temporal granularity, refresh window) ob-
taining a collection of anonymised datasets D with associated risks R’. Given a
class of services that are to be facilitated by the published data, the anonymised
dataset D will be chosen for which the associated risk R’ is minimal with
acceptable utility of the published data.
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5 Experimental validation

In this section we present a detailed evaluation of the proposed risk model by
using real-world mobility data. We used a large dataset of real GPS traces from
vehicles, collected during the period between May 1 and May 31, 2011, donated
by an Italian company called OctoTelematics. The dataset contains the GPS
traces collected in the geographical areas around Pisa and Florence, in central
Italy, for around 18,800 vehicles making up around 46,000 trips. For our sim-
ulations, we extracted from the whole dataset the data on May 10, 2011 that
contained 8,330 participating users and 15,345 trajectories.

To begin with, the privacy-sensitive locations captured through GPS readings
were obfuscated using Voronoi tessellation [7]. The trajectory data containing
tessellated locations (signifying vertices in a trajectory graph) was further sub-
jected to k-anonymisation for k = 3, £ = 5, and k = 10 by using the method
proposed in [5]. Before applying this anonymisation, we subjected the sequence
data to two further steps: generalisation of temporal information and transforma-
tion of trajectories. The first step — generalisation of the temporal information
associated with each location visited by the user — consisted of two levels of
generalisations: one that contains sequences of Voronoi areas where the time as-
sociated with each location is generalized at an hour-level (hour-level data) and
another one where the time is at a day-level (day-level data). Figure 6 illustrates
an example of a user trajectory observed at an hour-level and at the day-level.

2011-05-10

2011-05-10

2011-05-10

(a) Hour-level (b) Day-level

Fig.6: An example of user trajectory through the different tessellated areas ob-
served at an hour-level and at a day-level.

The second step consisted of the transformation of the generalised trajectories
into sequences of ODpairs; in particular, we divided the whole user sequence
into smaller sequences and for each small sequence we extracted its origin and
its destination.

In our evaluation we performed two different analyses. First, we applied our
risk model showing the evaluation of the privacy risks obtained from the two
anonymised datasets described above, and then, we measured the data utility in
terms of precision and coverage described in §3.
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Fig. 7: Cumulative distribution of the re-identification probability

5.1 Risk Analysis

In order to evaluate the privacy risks on the two anonymised sequence datasets
we applied the methodology described in §2.4. Therefore, we estimated the cumu-
lative distribution of the probability of re-identification for each value of h = |¢/|,
which denotes the number of observations in the attacker’s knowledge. We sim-
ulated a set of attacks by randomly selecting from the original database a subset
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of trajectories and using them as background knowledge. In particular, in our
experiment for each h, we drew from the original database, 10,000 sub-sequences
with length h. We considered h = 1,...,5 because the longest sequence in the
original data has length 5. Figure 7 shows the results obtained with this attack
simulation. The first column of images contains the plots related to the cumu-
lative distributions related to the hour-level dataset while the second column
contains the results obtained from the day-level dataset.

Our analyses highlight that the empirical protection guaranteed by the al-
gorithm of anonymisation is much higher than the theoretical protection. Only
few attacks have a protection very close to % We observe as an example that
when the day-level dataset is anonymised with & = 5 our empirical risk anal-
ysis shows that 90% of the attacks have at most a risk of re-identification of
%. The findings are similar in the other anonymised datasets. Moreover, we
note that when the number of observations increases too much the probability
of re-identification becomes very low and often zero because these sequences are
infrequent in the original database. These long sequences no longer exist in the
published database since the process of anonymisation tends to eliminate the
outliers (i.e., sequences with a very low frequency). This effect is more evident
in the case of the hour-level data.

We also estimated the cumulative distribution of the re-identification prob-
ability normalised with the cost of obtaining the background knowledge (see
Section 2.4). Figure 8 depics the cumulative distribution of our single risk indi-
cator obtained considering a sub-linear cost for the acquisition of the attacker’s
knowledge. We observe that if we assign a cost to the attack then the protec-
tion guaranteed is higher; thus allowing us to express in a very simple way the
risk to the individuals if the whole dataset is published. Indeed, as an example
figure 8(b) shows that when the day-level dataset is anonymised with k = 5 the
probability of re-identification considering also the attack cost is at most about
0.025 (%) for 90% of the attacks.

‘u':“&.. © ealos D0 00 o . R
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Fig. 8: Risk analysis with Background Knowledge Cost
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5.2 Data Quality Evaluation

In our experiment we also evaluated the data quality by measuring the precision
and the coverage defined above. Table 1(a) shows these two measures for the
k-anonymous versions of the hour-level dataset while table 1(b) shows the same
information for the day-level dataset.

k |Precision|Coverage| | k |Precision|Coverage

3 1.00 0.27 3 0.98 0.87

5 1.00 0.15 5 0.97 0.83

10 1.00 0.04 10 0.96 0.72
(a) Time: hour-level (b) Time: day-level

Table 1: Precision versus coverage of the k-anonymised experimental data.

As expected the anonymisation preserves very well the precision of the ODpairs;
this means that the data transformation does not introduce noise, while it tends
to suppress some ODpairs and this affects the data coverage. This behaviour is
more evident in the hour-level dataset. Lastly, we also analysed how the coverage
changes by varying the risk in the dataset. Figure 9 outlines the results. In line
with our expectations, the coverage increases with the privacy risk. However,
we observe that with a risk of re-identification of 0.1 we can have a coverage
of about 90% in the hour-level dataset anonymized with k& = 5. The situation
improves a lot in the day-level dataset. Thus, this is a good tool for managing
the trade-off between privacy and data utility.
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6 The state-of-the-art

Research in information privacy consists of a vast corpus of multi-disciplinary
work combining results from the fields of psychology, law, computer science
amongst others. Privacy in information systems has been often governed by a
set, of fair practices that help organisations manage users’ information in respon-
sible manners [8]. There often exists a disconnection between the interpretation
of privacy needs from the perspective of the user and the prescribed privacy
preserving mechanisms offered by devices and systems. Hong et al. [9] presented
privacy risk models for ubiquitious systems in order to convert privacy from an
abstract concept into specific issues relating to concrete applications. Kosa et
al. [10], in an attempt to represent and measure privacy, presented an interest-
ing finite state machine based representation of at most nine privacy states for
any individual in a computer system. A recent work by Kiyomoto et al. [11]
proposes a privacy policy management mechanism whereby a match is made be-
tween user’s personal privacy requirements and organisational privacy policies.
PrivAware [12] was presented as a tool to detect and report unintended loss
of privacy in a social network. Krishnamurthy et al. [13] measured the loss of
privacy and the impact of privacy protection in web browsing both at a browser
level as well as a HTTP proxy level. Tao et al. [14] put forward a model for
quality of service (QoS) for web services that quantified users’ privacy risks in
order to make the service selection process manageable. Banescu et al. [15] came
up with a privacy compliance technique for detecting and measuring the severity
of privacy infringements.

With richer user data available for data mining, work in privacy preserv-
ing data mining and privacy preserving data publishing have gained momentum
in the recent years. Techniques such as adding random noise and perturbing
outputs while preserving certain statistical aggregates are often used [16-19].
Some notable work data anonymisation work include k-anonymity [2], I-diversity
[20], t-closeness [21], p-sensitive k-anonymity [22], («,k)-anonymity [23] and
e-differential privacy [24]. The k-anonymity model has been also studied and
adapted in the context of movements data in different works: [3] exploits the in-
herent uncertainty of the moving object’s whereabouts; [4] proposes a technique
based on suppression of the dangerous observations from each trajectory; and [5]
proposes a data-driven spatial generalization approach to achieve k-anonymity.
A critique by Domingo-Ferrer and Torra [25] analyses the drawbacks of some
of those anonymisation methods. The trade-off between the privacy guarantees
of anonymisation models and the data mining utility have been considered by
authors in [26, 27]. Sramka et al. [28] compared data utility versus privacy based
on two well known privacy models — k-anonymity and e-differential privacy.

Our proposed empirical risk model draws inspirations from the existing re-
search in the privacy preserving data publishing domain. We envision that our
model provides a clear understanding of privacy (or the lack of it) in released but
anonymised data with relation to risk, privacy, cost of attacks and data utility.
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7 Conclusions

In this paper we have proposed an empirical risk model that provides a complete
and realistic view on the privacy risks, which can be derived from the release
of trajectory data. Our model is able to empirically evaluate the real risks of
re-identification taking into account also the cost of any attack on privacy as
well as the relation between the risk and the utility of the data. With legislature
becoming increasingly detailed about data protection, it is essential to be able
to communicate well how privacy, risk and cost of attacks are associated when
applying mathematical models for privacy preserving data release. We have pre-
sented promising evaluations of our model for the well-known k-anonymisation
applied to real trajectory data from the Italian cities of Pisa and Florence. In
the future, we plan to evaluate our model with different types of real data of
sequential nature. Furthermore, we intend to investigate risk models suitable for
other types of data.
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