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Abstract. The security of the Multiple-Key Blom’s (MKB) key agree-
ment scheme is analysed. We considered how the scheme may be broken
by a very powerful and well resourced adversary who is able to capture
any number of nodes to extract all the sensitive keying material. We
showed that by choosing suitable keying parameters, the captured pri-
vate keys cannot be used directly to break the scheme. Each captured
key must first be correctly associated with the public key and master key
used to compute it. The chances of finding this private-public-master-key
association (PPMka) can be made extremely small and would require the
attacker to capture a very large number of nodes, or try an extremely
large number of possible solutions. This allows the scheme to be se-
cure for use in large networks, overcoming the limitations in the original
Blom’s scheme. We obtained some analytical results and compared them
to those from computer simulated attacks on the scheme.

1 Introduction

In our previous works [1] [2], we presented the Multiple-Key Blom’s (MKB) key
agreement scheme for sensor networks. This scheme is fast, efficient and frugal,
making it specially attractive for low power devices in ad hoc mobile networks. In
this paper we show that it is also resilient against a powerful and well resourced
adversary who is able capture a large number of nodes and extract all keying
material.

For ad hoc mobile networks, an identity-based cryptographic (IBC) key es-
tablishment protocol would be very useful for pairs of node to derive their pair-
wise keys when needed. As defined in [3] an IBC key establishment protocol
uses an entity’s identity (ID) information (e.g. name and address, identifying
index, etc.) as its public key. While its origin is usually attributed to Shamir
[4] where the ID can be the node’s name and address, according to Menezes,
Oorschot & Vanstone [3], Blom was first to propose the identity-based (or more
accurately, index-based) key establishment scheme in [5][6]. The Blom’s scheme
is unconditionally-secure in the information-theoretic sense if less than a certain
number of nodes are compromised. Once this threshold is exceeded, the scheme
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can be completely broken. Recognising this limitation, Blom [5] said “It would be
nice to have systems that degrade more gracefully but more research is needed”.
We believe that our scheme is able to fulfil this requirement.

This Contribution We considered the security of the Multiple-Key Blom’s
scheme in the three aspects – the strength of the keys, the security of the un-
derlying Blom’s scheme as it applies to our scheme, and the probabilities of the
scheme being completely broken by a very powerful adversary. We presented
analytical results to compute the probability of success in breaking the scheme
and compared it with computer simulated attacks on some implementations.

The paper is structured as follows: In Section 2, we described briefly some
related works and the necessary background material. Section 3 dealt with the
security of the keys and how our scheme would improve the security of the
original Blom’s scheme. In Section 4 we presented some analytical results on
the effort required and the probabilities of breaking the scheme. We gave our
conclusions in Section 5.

Notations and terms used

K – private key, a secret (1×m) row vector unique to the node
M– master key, an (m×m) secret symmetric matrix
N – number of master keys
R – pairwise key-set, the set of numbers used to form the pairwise key
V – public key, a (m× 1) column vector unique to the node
m – the size of the master key matrix
η – number of public keys assigned to each node
p – prime modulus for key operations
q – prime modulus for public key operations only
s – public key seed, an integer ∈ [0, q − 1]

2 Related Works

The original Blom’s scheme has limitations in that to be secure, it would require
substantial memory for storage of keying material when used in large networks.
The work in [7], improved on its scalability by using a clustered topology where
only the cluster-heads implemented the Blom’s scheme. The probabilistic scheme
in [8] used multiple key-spaces where nodes would first discover their shared key
space to implement the scheme. A recent work in [9] added some constrained
random perturbations to the private keys to break its direct relationship with
the master key, thereby increasing the resilience against the master key being
computed from sufficient number of stolen private keys. All these works did not
address the issue of the pairwise key sizes which would be same as the data size
used for the master key elements.
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The BYka scheme

The basic concepts of our Multiple-key Blom’s key agreement scheme, now called
the Blom-Yang key agreement (BYka) scheme, has been presented in [1] [2]. Due
to space constraint only a brief description suffice for this paper is given here.

Trusted Authority and Master keys The Trusted Authority (TA) is respon-
sible for all keying material. It generates N secret master keys M1,M2, · · · ,MN ,
each one being a random (m×m) symmetric matrix M over the prime field Fp.

Public key-tag (ID) The TA assigns each node one set of public keys called
the “public key-set” consisting of η column vectors over the prime field Fq, where
q � p. For example, for node A, the public key-set is {VA1

, · · · ,VAη}. These
vectors are columns of the Vandermonde matrix, i.e.,

VT
Ai =

[
1 sAi s

2
Ai
· · · sm−1Ai

]
(mod q), for i = 1, · · · , η

The values sAi are called the public key “seeds”. The seeds sA1 , · · · , sAη are
consecutive such that the smallest seed, sA1

is a multiple of η. In this way,
each node’s public key-set is unique and can be concisely represented by just
the smallest seed. This serves as the node’s identity ID, also called the “public
key-tag”. For example, node A’s public key-set can be represented by its public
key-tag IDA = sA1 .

Private keys The TA computes the private keys for each node using all per-
mutations of their η public keys with the N master keys. For node A, the private
keys are a set of ηN (1×m) row vectors, called the “private key-set” computed
as follows,

KAij = VT
AiMj (mod p), for i = 1, · · · , η, j = 1, · · · , N

Consider the uth element of the private key KAij ,

KAiju
=

m∑
n=1

sn−1Ai
(mod q) Mjnu (mod p)

= Mj1u + s1AiMj2u + · · ·+ sm−1Ai
Mjmu (mod p) (1)

The public key operations are modulo q, while all other key operations are
modulo p. It is possible for multiple public keys to map to the same key in Eqn.
(1), a phenomenon we call “key aliasing”.

To prevent key aliasing, a seed s is chosen such that at least one vector
element is > q and 6≡ 0 (mod p), i.e.,

for some w 6 m, sw−1 > q
i.e. sw−1 ≡ r (mod q)

and r 6≡
{

0 (mod p), or
s (mod p)

 (2)
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The TA installs into each node their keying material comprising the global
keying parameters {m,N, η, p, q}, the node’s individual public key-tag ID, and
its private key-set K

1,··· ,Nη . Crucially, the private keys in the key-set are stored
in a random order. All these are static and can be stored in the ROM or flash
memory.

Pairwise Key Derivation After deployment, any pair of nodes can derive their
common secret pairwise key after exchanging their IDs, a very small amount of
bits. For example, A and B have obtained each other’s IDs. Next, each node
generates their counterpart’s public keys. For example, node A generates B’s
public keys,

sBk = IDB + (k − 1),

VT
Bk

=
[

1 sBk s
2
Bk
· · · sm−1Bk

]
(mod q)

for k = 1, · · · , η

 (3)

Then, using all the permutations with its own private keys, the nodes computes
(modulo p), the “pairwise key-sets” RA and RB as follows,

Node A: RAijk = {KAijVBk} = {(VT
AiMj)VBk}

Node B: RBijk = {KBijVAk} = {(VT
BiMj)VAk}

for i, k = 1, · · · , η, and j = 1, · · · , N

Transposing all the elements in the set RB we have,

RBijk = {((VT
BiMj)VAk)T } = {(VT

Ak
MT

j )VBi}

Since Mj is symmetric, VT
AiMjVBk is scalar, and i, j, k are merely independent

counters, the sets RA and RB each contain Nη2 identical numbers, though not in
the same order. These numbers would be used by both nodes to form a pairwise
key using a preconfigured method.

In our scheme, the sequence formed from the number of occurrences of the
integers 0, 1, · · · , p − 1 is used as input to a hash function to obtain a 128-bit
pairwise key.

3 Security of the BYka scheme

3.1 Security Model

System Model The system comprises nodes belonging to one administrative
unit under the TA. The TA has access to a good random number generator for
generating the master key matrices. Before deployment, each node uses a secure
connection with the TA to obtain its keying material.

The nodes have very limited computing power, memory, and battery life.
They have access to strong cryptographic services such as hash functions, pseudo
random number generators, and strong symmetric encryption techniques such as
the AES algorithm. They are highly mobile, are deployed in an ad hoc manner,
and communicate with each other using low power radio with a limited range.



The BYka Scheme 5

Adversary model The adversary is a very powerful agent capable of moving
about freely in the deployment space to monitor and insert messages. In addition,
it is capable of capturing any number of nodes to extract all the keying material
including the public and private keys from ROM and RAM. It also has access
to unlimited computing resources. It cannot compromise the TA.

System breakdown The scheme is consider broken if the adversary is able to,
by monitoring messages and/or obtaining sensitive information from captured
nodes, compute the pairwise keys of any pair of un-compromised nodes, fabricate
new valid public and private keys, or compute the master keys of the TA. Identity
theft attacks are not considered in this paper.

3.2 Vulnerabilities

The vulnerabilities of the BYka scheme can be studied in three main aspects:

1. Resistance of the keys against brute force attacks,
2. Security of the Blom’s scheme on which is is based, and
3. Resilience against node capture

3.3 Security of keys against brute force

Master keys Each master key is an m ×m symmetric matrix. It has m(m+1)
2

unique elements, each one being a random number ∈ [0, p− 1]. The brute force

attacker would have to try all the p
m(m+1)

2 possible keys. For example, even with
small values of m = 12, p = 13, there are 7.72 × 1086 possible keys, equivalent
to 288 bits.

Private keys In Eqn. (1), the elements of the private keys, being products and
sums of random numbers, are also random. Hence, each private key is just a row
vector of random numbers and is indistinguishable from each other.

There are ηNm elements in each private key-set. Even with small values of
m = 12, N = 6, η = 6 and p = 13, there are about 1.673×10481 possible keys, or
equivalent to 1, 599 bits. This is large enough to defeat the brute force attempt
to fabricate a node’s private key-set.

Pairwise key The BYka scheme can be viewed as a mechanism for two nodes
to derive identical (unordered) key-sets RA and RB which contains Nη2 integers
∈ [0, p − 1]. The numbers in the key-set, for example, RAijk = KAijVBk =∑m
n=1KAijs

n−1
Bk

(mod p), where sBk satisfy Eqn. (2), are also random numbers
∈ [0, p − 1]. Hence the number of occurrences of the integers 1, 2, · · · , p − 1 in
the key-set RA is also random.
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Pairwise key size The pairwise-key set contains Nη2 integers ∈ [0, p− 1]. These
can be combined together to form a pairwise key of up to Nη2b bits, where b is
the data size of p. For example with N, η = 6, and p = 31, the key size can be
up to 1080 bits.

Pairwise keyspace The number of possible pairwise keys, or the keyspace size,
must be at least as large as the desired key size. It is however, limited by the
number of possible combinations of the Nη2 integers in the key-sets R. The
keyspace size can be determined by considering the number of possible combina-
tions of the integers 1, 2, · · · , p−1, such that the total number of integers in each
combination is exactly Nη2. This can be obtained by considering the following
partitioning problem.

Given a row of Nη2 items, we wish to partition them such that there are p
groups, g0, g1, · · · , gp−1, each containing the integers 0, 1, · · · , p− 1 respectively.
To create the partitions, we first insert (p− 1) items into the row so that there
are now (Nη2 + p − 1) items. If any (p − 1) items are now removed, it would
leave (p− 1) gaps separating the remaining items into p groups as desired. The
number of ways to remove (p− 1) items from (Nη2 + p− 1) gives the keyspace
size as follows,

Kspace =

(
Nη2 + p− 1

p− 1

)
(4)

Using suitable values of N , η, and p, keyspace sizes of 64, 80, 96, and 128 bits
are possible, as shown in Table (1).

η N
Values of p

13 17 19 23 31

6
6 64 80 88 102 127
7 67 84 92 106 134
8 69 87 95 111 139

7
6 69 87 95 111 140
7 72 91 99 116 146
8 74 94 103 120 152

8
6 74 93 102 119 151
7 77 97 106 124 157
8 79 100 109 128 163

Table 1. Key space sizes in bits

3.4 Security of the underlying Blom’s scheme

In our previous work [2], we showed how the Blom’s scheme would be completely
broken if the number of nodes compromised is m, the “capture threshold”. The
scheme is said to be unconditionally secure if no more than (m − 1) nodes are
compromised, and all the public key vectors are linearly independent of each



The BYka Scheme 7

other [3]. Otherwise, using the captured private keys from m or more nodes, the
attacker would be able to either mount the Sybil attack by fabricating new public
and private keys using linear combinations of the m captured keys, or attack the
master key M by solving the system of m×m linear equations, KX = VT

XM.
The security of the BYka scheme would appear to be similar to the original

Blom’s scheme. Apparently, the capture threshold is lower at dmη e since each
node has η private keys associated with each master key. However, the attacker
would first have to associate each private key with the public key and master
key used to compute it, i.e. discover the private-public-master-key associations
(PPMka).

Each private key computed in Eqn. (1) is a row vector of random integers
∈ [0, p− 1] and has no information about the public key and master key used to
compute it. Without the PPMka information each key can be correctly associated
with the public key and master key with a probability of 1

Nη . To mount the Sybil
or master key attack, all the m private keys must be used together. This will
result in a very large number of possible solutions as shown later.

4 Attacks to discover the PPMka

4.1 Using brute force

Using one captured node Consider that the attacker has obtained the public
and private keys from one captured node. The attacker generates an arbitrary
master key, and using one of the public keys, computes a trial private key using
Eqn. (1). This is then compared with each of the captured keys to find a match.
After trying all the possible master keys, there will be N matches and eventually
all the master keys will be found. The number of possible master keys to try is

p
m(m+1)

2 which is a very large number with typical keying parameters.

Using sufficient captured nodes Consider that m
η nodes have been captured.

Each node has Nη private keys. There is enough information to construct the N
systems of m×m equations to solve for all the master keys, using for example,
the following procedure.

From each node, the Nη keys are grouped into
(
Nη
η

)
possible groups each

associated with one of the master keys. Within each group, each private key can
be associated with the η public keys in η! ways. Therefore for each node there
are

(
Nη
η

)
η! ways to obtain the set of ηm equations for solving one master key, say

M1. Using a total of m
n nodes, it is possible to obtain a set of m×m equations

to solve for M1.
After obtaining the first master key, the η private keys associate with M1

is removed and the process is repeated for M2, and so on. Overall, the total
number of attempts required to obtain all the master keys is

Φ =

N−1∑
i=0

[(
Nη − iη

η

)
η!

]m
η
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The number of iterations required, even with small parameter values is very
large. For example with m = 12, N = 6, η = 6, there are 2.16 × 1018 possible
master keys solutions.

4.2 Pairing Attack to discover the PPMka

A better approach would be to get pairs of nodes, e.g. nodes A and B, to compute
their pairwise key-sets RA and RB using each other’s public keys. The Nη2

numbers in the two key-sets will be identical, and if they are unique, the attacker
would be able to, by matching them, associate the related private keys to the
same master key. We call this the “pairing attack”.

A more efficient pairing attack would use only one of each other’s public
keys to compute the partial key-sets RrA and RrB which now contains only Nη
elements. This is illustrated in Fig. (1) for the simple case using N, η = 2. Here,
since KA1

VB2
= KB3

VA1
, both must be associated with the same master key

say, M1. The PPMka for the private keys can then be found, i.e. KA1
= VT

A1
M1,

KB3 = VT
B2

M1 and similarly, KA2 = VT
A1

M2, KB2 = VT
B2

M2.

Fig. 1. Pairing attack for case N = 2, η = 2

Collisions If all the numbers in Rr are unique, the above attack would be suc-
cessful. However, if they are not, we say there are “collisions”, and there are
more than one possible PPMka’s for the affected private key.

Couplers and Couplings We call the numbers that are identical across both
partial key-sets RrA and RrB , “couplers”. In Fig. (1), the set C contains the
couplers. The links connecting the couplers to the numbers in RrA and RrB
are called “couplings”. The number of couplings linking Rr to the couplers is
denoted as Nc.

In the ideal case where there is no collision, there would be exactly Nc = N
couplings on each side of C, each one linking the private key to the associated
master key and public key, revealing their PPMka. However, if the couplers are
not distinct, then the PPMka’s for the related private keys are ambiguous.

The probability of having all distinct couplers in the partial key-set of Nη
numbers is Pu = (pp )(p−1p ) · · · (p−Nη−1p ). This can be made very small by choos-
ing suitable values of p, N and η. For example, with p = 31, η = 6, N = 5, we
have Pu = 2.49× 10−12. If Nη > p+ 1, the probability Pu is zero as there is not
enough numbers to go round without repetition.
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Pairing Attack approaches We consider two extreme approaches to discover the
PPMka. In the first case, the “unlimited capture” attack, the attacker is able to
capture as many nodes as necessary until finally the PPMka can be exposed. At
the other end of the spectrum, in the “limited capture” attack, the attacker has
just enough nodes to compute the master keys.

4.3 Unlimited Capture Attack

Traitor Node The pairing attack would be successful if each pairing results in
key-sets R in which all the numbers are unique. However with suitable choice of
keying parameters this probability is very small. Nevertheless, the attack would
have a better chance of success if a node is available such that all the N private
keys associated with one of the public keys is known or “exposed”. This set of
private keys can be used to reduce the ambiguities in subsequent pairings. We
call this node the “traitor node” since it can be used to betray other nodes. For
example in Fig.(1), nodes A and node B are possible traitor nodes.

In general, a traitor node T is found if, in a pairing, the number of couplings it
has is Nc = N i.e. there are 6 N couplers. If Nc > N , there will be ambiguities.

Using the traitor node, another node say B, is paired with it. If the number
of couplings in RrB is N , they distinctly link the related private keys in B to
the exposed private keys in T revealing the PPMka. For example, in Fig. (2), T
is a traitor node and the keys KT1 and KT2 are known to be associated with
Mx and My respectively. Then for node B, the keys KB1 and KB2 must be
associated with Mx and My respectively, and both associated with public key
VB2.

Fig. 2. Traitor Node can be used to attack the PPMka

This is not so straightforward if the number of couplings or couplers in RrB
is 6= N . The PPMka of the keys related to colliding couplers will be ambiguous,
as in Fig. (3). Fig. (3a) shows the partial key-set RrB having only 1 coupler.
While KB1 and KB2 can both be associated with VB2, their associations with
the master keys are ambiguous. In Fig. (3b), RrB has more than N couplings,
i.e. 3 instead of 2. Now it not clear whether KB2 or KB3 is associated with VB2

and master key My.
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Fig. 3. Traitor Node cannot be used to discover the PPMka

Fig. 4. Partial key-sets

Probability of finding a traitor node To determine the probability of finding
a traitor node, we can consider the following problem. In the Fig. (4a), the pairing
attack produces partial key-sets RrA and RrB . We remove the couplers from RrA
to form the set Rc, leaving the reduced partial key-sets R′rA and R′rB in Fig.
(4b). A traitor node is found if the reduced set R′rA is disjoint with (R′rB ∪Rc),
or R′rB is disjoint with (R′rA ∪ Rc). In addition, the sets R′rA, R′rB and Rc can
all be disjoint.

The probability of these occurrences can be found by counting the number of
arrangements for the above cases. Let Na, Nb and Nc be the number of elements
in sets R′rA, R′rB and Rc respectively. Here, Na = Nb = Nη −N and Nc = N .
The number of elements in (R′rB ∪Rc) is Nη.

First, consider the general case of arranging Na numbers given r numbers,
such that each arrangement has all the r numbers. For example, in arrang-
ing 4 numbers given the 3 numbers {6, 7, 8}, permutations like {6, 6, 7, 8} and
{6, 7, 7, 8} would be included, but excludes permutations such as {6, 6, 6, 7} and
{6, 6, 7, 6}, etc. Let the number of arrangements be QNar. It can be shown that

QNar = rNa −
r−1∑
i=1

(
r

i

)
QNai where QNa1 = 1 (5)

The total number of arrangements where R′rA is disjoint with (R′rB∪Rc) is then,

θu =

Na∑
r=1

(
p

r

)
QNar(p− r)Nη (6)



The BYka Scheme 11

It is also possible that the sets R′rA, R′rB and Rc are all disjoint. The number of
such arrangements θd, can be similarly shown to be,

θd =

Nc∑
r=1

[(
p

r

)
QNcr ×

(
Na∑
k=1

(
p− r
k

)
QNak(p− r − k)Nb

)]
(7)

where QNcr and QNak can be obtain as in Eqn. (5).
The total number of possible arrangements is θt = 2θu − θd, without double

counting the cases for all 3 disjoint sets.
The probability of finding a traitor node is then,

Pt =
θt

p2Nη−N
=

2θu − θd
p2Nη−N

(8)

The values of Pt for various keying parameters is given in Table (2).

η N
p = 13 p = 17 p = 31

Pt nc Pt nc Pt nc

6

6 1.07×10−16 2.29×107 1.70×10−15 5.75×106 5.62×10−12 1.00×105

7 5.25×10−19 1.02×109 8.71×10−19 2.51×108 5.01×10−15 3.31×106

8 2.57×10−23 4.68×1010 4.37×10−22 1.12×1010 3.72×10−18 1.23×108

7

6 2.40×10−20 1.29×109 4.07×10−19 3.16×108 2.45×10−15 4.07×106

7 2.88×10−24 1.20×1011 5.01×10−23 2.88×1010 4.68×10−19 2.95×108

8 3.47×10−28 1.10×1013 6.17×10−27 2.57×1012 7.59×10−23 2.34×1010

8

6 5.50×10−24 7.59×1010 9.55×10−23 1.82×1010 8.71×10−19 1.91×108

7 1.62×10−28 1.38×1013 2.88×10−27 3.31×1012 3.63×10−23 2.95×1010

8 4.79×10−33 2.57×1015 8.51×10−32 6.03×1014 1.32×10−27 4.90×1012

Table 2. Probabilities of finding a Traitor Node Pt, and expected capture sizes nc

Expected Node capture We assume that attacker is able to capture any
number of nodes. As a new node is captured, it is paired with each of the previous
ones to find the traitor, if not another new node is captured and the process
repeated. Since the probability of finding a traitor node is Pt, the expected
number of pairing attempts to find one is 1

Pt
. Each node has η public keys to

try, so each pair gives η2 attempts. If the number of nodes captured is nc, the
number of pairs that can be formed is

(
nc
2

)
giving a total of η2

(
nc
2

)
pairing

attempts. To find a traitor node we have,

η2
nc!

2!(nc − 2)!
>

1

Pt

i.e. nc >
1

2

(
1 +

√
1 +

8

η2Pt

)
(9)

The values of nc for some keying parameters is also given in Table (2). It
can be seen that for these cases, thousands of nodes need to be captured just to
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find a traitor node. Finding a traitor does not break the scheme. The chance of
finding a node which has exactly N couplers when paired with the traitor node
is as improbable as finding the traitor node itself.

4.4 Limited capture pairing attack

In this attack only dmη e, but sufficient, number of nodes has been captured.
Using the pairing attack, the partial key-set is obtained. If there are Nc > N
couplings due to collisions, there are Nc possible ways choose the private key
related to one of the master keys, say M1. Using all the η public keys one at
a time, the number of sets of equations from one node is [Nc]

η
. To obtain the

m×m equation, mη nodes are required. The number of possible solutions for the

master key M1 is [Nc]
m

.
After obtaining the first master key, the associated private key is removed

leaving Nc − 1 keys to choose for solving the next master key. In total, to solve
for all the master keys, the total possible number of sets of equations, i.e. the

number of iterations required is, Φ =
N−1∑
i=0

[Nc − i]m.

Fig. 5. Distribution of number of couplings for p = 31, N = 6, η = 6

Binomial Distribution Approximation Fig. (5) shows the typical distribution of
the number of couplings in the pairing attacks, in this case for p = 31, N =
6, η = 6. It suggests that the distribution can be approximated by the binomial
distribution,

P (X = x) =

(
Nη

x

)
pxr (1− pr)(Nη−x) (10)

where the x is the number of couplings, and µ = Nηpr is the mean. From Eqn.
(8), we can compute the probability when there are N couplings, i.e. P (X = N).
Then solving for pr in Eqn. (10), we can obtain the mean µ. Writing the expected
number of couplings in a pairing as Nc = µ, then the probable number of possible
solutions for all the master keys is,

Φ =

N−1∑
i=0

[Nc − i]m =

N−1∑
i=0

[µ− i]m (11)

Table (3) gives the probable number of master keys solutions, Φ for various
keying parameters.
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η N
m = 12 m = 24

13 17 31 13 17 31

6

6 3.55×1017 2.34×1017 9.55×1016 1.26×1035 5.37×1034 9.12×1033

7 2.40×1018 1.66×1018 7.94×1017 5.75×1036 2.75×1036 6.17×1035

8 1.23×1019 1.23×1019 4.79×1018 1.55×1038 1.55×1038 2.24×1037

7

6 1.66×1018 1.66×1018 5.37×1017 2.75×1036 2.75×1036 2.82×1035

7 1.23×1019 1.23×1019 4.79×1018 1.55×1038 1.55×1038 2.24×1037

8 8.91×1019 6.92×1019 3.02×1019 8.13×1039 4.79×1039 9.12×1038

8

6 9.12×1018 6.61×1018 3.39×1018 8.13×1037 4.37×1037 1.15×1037

7 6.92×1019 6.61×1019 3.02×1019 4.79×1039 2.75×1039 9.12×1038

8 3.89×1020 3.09×1020 1.91×1020 1.51×1041 9.55×1040 3.63×1040

Table 3. Probable number of Master key solutions, Φ

4.5 Experimental Results of Simulated Pairing Attacks

A computer programme was used to implement the pairing attacks to determine
the traitor capture sizes nc and the probable number of master key solutions Φ.

The programme first generates the master keys. It then randomly creates
new nodes with unique IDs to simulate captured nodes. Each node is paired
with each of the previously “captured” nodes until a traitor node is found. At
the same time the number of couplings is accumulated for the first m

η nodes.
This is the probable number of couplings in the limited captured attack. When
a traitor node is found, a new implementation is done using a new set of master
keys and this is repeated for 1000 times.

These are real attacks on real systems as the public and private keys can be
implemented in real sensor nodes. They are “simulated” in the sense that cap-
turing the nodes and extracting the keys are done in the computer programme,
greatly accelerating the attacks.

Due to the large traitor capture sizes, only cases which gives results within
a reasonable time is given in Table (4). These results are the mean values for
1000 implementations for each case. As an indication, one run for the case using
N = 6, η = 4 took over 2 1

2 hours to find a traitor node, requiring about 135
captured nodes.

5 Conclusion

The security of our BYka key agreement scheme was analysed in term of the
resistance of its keys against brute force attacks, the security of the Blom’s
scheme on which it is based, and its resilience against node capture. We showed
that the keys are random and large enough to resist brute force attacks. The
scheme inherits the unconditionally security of the original Blom’s scheme and
also allows it to break free from the limitations therein. This is because, by
using multiple keys in permutations, the relationships of the private keys with
the master keys and public keys becomes indiscernible, and they cannot be used
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η N
Traitor Capture size nc Number of solutions, Φ

Eqn.(9) Expt. Eqn.(11) Expt.

4

4 5.59 5.23 7.97 × 1022 1.06 × 1024

5 23.23 21.48 5.43 × 1026 8.46 × 1026

6 128.05 113.53 7.92 × 1028 1.10 × 1029

5
4 24.45 21.37 7.95 × 1026 8.16 × 1026

5 237.99 215.63 7.93 × 1028 9.95×1029

6
3 10.76 9.62 1.00 × 1024 1.17 × 1025

4 155.91 135.88 1.68 × 1028 1.42 × 1029

7 3 37.57 33.04 7.95 × 1025 7.17 × 1026

Table 4. Comparison between analytical and experimental results for p = 31

directly to break the scheme. We calculated the probabilities of discovering the
correct private-public-master-key association information and showed that, with
suitable keying parameters, these probabilities are very small. Consequently, to
break the scheme, it would require a very large number of nodes to be captured,
or an infeasibly large number of solutions are possible. Our analytical results
were verified by comparing them with results obtained from simulated attacks
on the scheme using a computer programme. Our BYka scheme is thus secure
against very powerful adversaries and being fast, efficient and frugal, would be
useful for large ad hoc mobile sensor networks.
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