
HAL Id: hal-01348765
https://hal.science/hal-01348765

Submitted on 25 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fault Detection and Diagnosis in Induction Machines: A
Case Study

Miguel Marques, João Martins, V. Fernão Pires, Rui Dias Jorge, Luís Filipe
Mendes

To cite this version:
Miguel Marques, João Martins, V. Fernão Pires, Rui Dias Jorge, Luís Filipe Mendes. Fault Detec-
tion and Diagnosis in Induction Machines: A Case Study. 4th Doctoral Conference on Computing,
Electrical and Industrial Systems (DoCEIS), Apr 2013, Costa de Caparica, Portugal. pp.279-286,
�10.1007/978-3-642-37291-9_30�. �hal-01348765�

https://hal.science/hal-01348765
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Fault Detection and Diagnosis in Induction Machines: 

A Case Study 

Miguel Marques
1
, João Martins

2
, V. Fernão Pires

3,4
, Rui Dias Jorge

5
 and Luís 

Filipe Mendes
5 

 
1 Department of Electrical and Computer Engineering, Faculty of Sciences and Technology 

– University New of Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal 
2 CTS/UNINOVA, Faculty of Sciences and Technology – University New of Lisbon, Quinta 

da Torre, 2829-516 Caparica, Portugal 
3 Instituto Politécnico de Setúbal, Campus do IPS, Estefanilha, 2914-508 Setúbal, Portugal 

4 Center for Innovation in Electrical and Energy Engineering (CIEEE), Lisbon, Portugal 
5 EFACEC, Rua da Garagem, nº1, Carnaxide, 2790-078, Oeiras, Portugal 

Abstract. Nowadays in industry there many processes where human 

intervention is replaced by electrical machines, especially induction machines 

due to his robustness and performance. Although, induction machines are a 

high reliable device, they are also susceptible to faults. Therefore, the study of 

induction machine state is essential to reduce human and financial costs. It is 

presented in this paper an on-line system for detection and diagnosis of 

electrical faults in induction machines based on computer-aided monitoring of 

the supply currents. The main objective is to detect and identify the presence of 

broken rotor bars and stator short-circuits in the induction motor. The presence 

of faults in the machine causes different disturbances in the supply currents. 

Through a stationary reference frame, such as αβ-vector transform it is possible 

to extract and manipulate the results obtained from the supply currents using 

Principal Component Analysis (PCA). 

Keywords: induction motor, diagnosis, fault detection, principal component 

analysis, PCA, eigenvalue, eigenvector. 

1   Introduction 

Three-phase induction machines perform critical functions as part of industrial 

processes. It is estimated that induction motors typically consume 40 % to 50 % of all 

electrical energy produced in a country [1]. Therefore, induction motors have a 

special role in the economy of industrialized countries. 

Due to its importance, is urgent to develop intelligent systems that detect the 

presence of faults in the machines in order to reduce maintenance costs. These 

systems will allow the possibility of scheduled maintenance and predict the need for 

maintenance before serious deterioration or fault occurs, making it possible to 

increase the reliability of equipment, the improvement of his behavior and 

performance [2]. 

Concerning to maintenance of induction machines, preventive maintenance is 

widely used currently. It consists in periodic inspections with the objective of 
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replacing parts that are supposed to break after a certain number of hours. However, 

even with periodic inspections this type of maintenance presents disadvantages such 

as, unneeded maintenance costs and in some situations catastrophic failures still likely 

to occur. Thus, the concept of condition-based maintenance (CBM) has emerged as an 

alternative to preventive maintenance. This type of maintenance is defined as the 

process of monitoring characteristics or parameters of a machine, in order to verify 

early changes and trends that can be used to indicate a fault situation or the need for 

maintenance. 

In the last 20 years, FDD in induction machines is a research area that had a great 

evolution, as seen by the number of proposed methodologies, such as neural networks 

[3], current space patterns [4], fuzzy logic [5], spectral analysis [6] and vibration 

monitoring [7]. 

2   Contribution to Internet of Things 

The paper presents the development of a commercial application for fault detection 

and diagnosis of electrical faults in induction machines. This analysis, based on PCA 

methodology [8,9], allows to conclude the practical feasibility of on-line monitoring 

through current space pattern analysis using an industrial product, such as the 

Terminal Protection Unit (TPU) developed by EFACEC. In the future the use of 

condition-based systems, based on non-invasive measurements, will contribute to 

connect the induction machines with cyberspace making it possible to know the state 

of the machine remotely. Thus, since TPU allow the use of multiple communication 

standards it will be possible to make a remote monitoring and diagnosis of the devices 

connected to TPU. 

3   Principal Components Analysis (PCA) 

Principal Component Analysis is a non-parametric statistical method used to reduce 

the number of original variables, which are correlated, in a set of new uncorrelated 

variables referred as Principal Components (PC). The first public descriptions of this 

method were given in 1901 by Pearson [10] and latter developed in 1933 by Hotelling 

[11]. 

PCA can be obtained through several ways, such as eigenvalue decomposition of a 

matrix or single value decomposition (SVD) of a matrix [12]. In the case of 

eigenvalue decomposition it consists in the representation of matrix in terms of its 

eigenvalues and eigenvectors.  Through the definition of eigenvectors, this technique 

is able to obtain the main directions of the data sample on a space-vector. It also 

possible to measure the weight of the sampled data spread through the main directions 

defined by the eigenvectors. These metric values are defined as eigenvalues [12]. 

Let X 
mn×ℜ∈  represents a data matrix, where n denotes the number of 

measurements and m denotes the number of physical variables. The 
TX nm×ℜ∈  

represents the transposed matrix of X, where m and n have the same meaning as in the 
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X matrix. From the product of the two matrices X and TX  is obtained a square matrix 

E 
nn×ℜ∈  called correlation matrix. 

XXE T=  (1) 

After establishing the correlation matrix the eigenvectors and the respective 

eigenvalues, of E are calculated. There are several ways to define eigenvectors and 

eigenvalues, the most common approach defines an eigenvector of the matrix E as a 

vector that satisfies the following equation: 

0I)u-E( =λ  (2) 

In fact, this concept of reducing the number of variables through PCA is useful in 

energy systems, particularly three-phase systems, such as three-phase induction 

machines. In three-phase energy systems without neutral connection it is usual to use 

the αβ-vector transformation to reduce the number of original variables. This 

transformation converts the three-phase currents or voltages into an equivalent two-

phase system. So in ideal conditions, the three-phase currents lead to αβ-vector with 

the following components: 
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Under normal conditions and with a balanced and constant frequency power 

supply, a pure sinusoidal signal makes a circular pattern centered at the origin of the 

αβ coordinates. In Fig. 1 there is the representation of a healthy motor input current in 

the αβ-vector pattern. 

 

Fig. 1. Healthy motor input current αβ –vector pattern 
 

However under abnormal conditions and considering a constant frequency power 

supply the previous conditions are no longer valid and the αβ pattern loses its circular 

shape. For a situation where occurs a stator winding fault the input current αβ pattern 

becomes an ellipse because there is an amplitude variation in the current of the 
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winding that is in a fault situation. The patterns related to a stator winding fault are 

presented in the Fig. 2. 

 

Fig. 2. Stator fault input current αβ-vector patterns. (A) stator fault in phase A (B) stator 

fault in phase B (C) stator fault in phase C 

When the motor presents a rotor fault situation the αβ-vector pattern presents a 

circular shape but the eigenvalues are not constant. It is possible to observe (Fig. 3) 

the appearance of a thick ring and the thickness of the ring increases with the severity 

of the fault. Cardoso et al. [13] concluded that the severity of the fault is proportional 

to the number of the rotor bars, but there is a moment where severity of the factor 

decreases as the number of broken bars increases. 

 

Fig. 3. Rotor fault input current αβ-vector pattern 

4   Experimental Results 

4.1   Experimental Set Up 

The experimental set up used is depicted in Fig. 4. A series of tests were conducted on 

three squirrel-cage induction motors with a mechanical power (Pmec) of 2 Hp, 230/400 

V nominal voltage (Vnom), a rated speed (N) of 3000 rpm, all with same parameters. 

One motor was considered a healthy motor and tested. The other two motors were 

tested with stator short-circuits and broken rotor bars faults. 
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Fig. 4. Experimental apparatus used in this work. 

In the performed tests the motors {5} were fed with a three-phase auto-transformer 

with an apparent power (S) of 4 kVA and 0-400 Vlnl (line-to-line). The mechanical 

load was applied to the induction motor by connecting the shaft to a DC generator {6} 

(controlled by a dc current source{3}) of 0.75 kW rated power (Pel). The output of the 

DC generator was connected to a variable resistive load. In order to allow tests to be 

performed at different load levels, the DC excitation current and the load resistor were 

both adjustable. 

The data acquisition, signal conditioning and data processing are performed by the 

TPU S220 {4} developed by EFACEC. For the laboratory tests, a broken rotor bar 

fault was introduced by drilling a hole into a bar, the hole diameter is slightly larger 

than the bar width. In the case of short-circuits in the stator windings they were 

applied by introducing an external variable resistor in series with the windings of each 

phase. 

 
5.2   Experimental Results 
 

The motor was initially tested in a healthy situation, with the stator windings and its 

cage intact, in order to verify the current αβ-vector reference pattern. In the conducted 

tests were applied various levels torque, in order to verify the robustness of the 

algorithm at different load levels. The start-up condition was discarded since it is not 

considered by the algorithm. 

The temporal evolution of the motor stator currents is represented in the Fig. 5 (A). 

The Fig. 5 (B) does not present the αβ-vector with a circular shape due to 

experimental limitation, such as harmonic distortion in the supply voltage and the 

magnetic field distribution in the machine is not perfectly sinusoidal. However the 

machine was considered in a healthy condition. For stator faults were used three 

variable resistors with 11.2 Ω/ 5A in series with the impedance of each phase of the 

machine (Z = 4.8 Ω). In the case of a fault severity factor of 60% the resistance value 

is 1.2 Ω. The αβ-vector (Fig. 6) no longer presents a “circular” shape and exhibit an 

elliptical shape. 
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Fig. 5. (A) Stator currents of the machine in nominal operation (B) Experimental αβ-vector 
(C) Current A spectrum 

 

Fig. 6. Experimental results obtained for a stator fault situation in nominal operation with a 
SF = 60 % in the phase A (A) Stator currents of the machine (B) Experimental αβ-vector 
 

The results obtained for 6 broken rotor bars (major fault) are shown in the Fig. 8. 

The appearance of a thick ring  (Fig. 8 (A)) in a rotor fault situation can be detected 

through the variation of eigenvalues (Fig. 8 (B)). In the experimental results the 

eigenvalues does not present a sinusoidal behavior, but show a periodic variation over 

time. 

The results obtained for 6 broken rotor bars (major fault) are shown in the Fig. 8. 

The appearance of a thick ring  (Fig. 8 (A)) in a rotor fault situation can be detected 

through the variation of eigenvalues (Fig. 8 (B)). In the experimental results the 

eigenvalues does not present a sinusoidal behavior, but show a periodic variation over 

time. 
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Fig. 7. Experimental αβ-vector pattern for a SF = 60 % (A) Phase B (B) Phase C 

 

Fig. 8. Experimental results obtained for the machine with 6 broken rotor bars (A) 

Experimental αβ-vector pattern (B) Variation of the eigenvalues over the computation cycles 

6   Conclusions & Future Work 

The research in the field of fault detection and diagnosis could provide a reduction in 

operational costs and the increase of the machine’s reliability that associated with 

remote systems will enable the interconnection of the induction machines with the 

cyberspace. 

In this paper is presented an on-line fault detection and diagnosis system for three-

phase induction motors based on PCA. The proposed system uses the eigenvalue 

decomposition to detect changes in the αβ-vector pattern. 

The experimental results indicate that it is possible to detect the presence of short-

circuits in the stator windings and broken rotor bars in induction machines with this 

FDD method. Through the analysis of the eigenvalues from the αβ–vector 

components it is possible to infer if the machine is in a fault situation or not. For 
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stator fault situations using the eigenvectors, it is also possible to identify in which 

phase the fault occurred. 

Concerning to future works the stator faults were applied through the addition of 

variable resistors in series with the stator windings. This set up can be considered as 

an approximation to the fault situation. In the future should be short-circuited some 

stator windings and test the algorithm to observe his behavior. 
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