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Abstract. Motivated by applications to maintaining confidentiality and efficiency
of encrypted data access in cloud computing, we uncovered an inherent confiden-
tiality weakness in databases outsourced to cloud servers, even when encrypted.
To address this weakness, we formulated a new privacy notion for outsourced
databases and (variants of) a classical record length optimization problem, whose
solutions achieve the new privacy notion. Our algorithmic investigation resulted
in a number of exact and approximate algorithms, for arbitrary input distribu-
tions, and in the presence of record additions and deletions. Previous work only
analyzed an unconstrained variant of our optimization problem for specific input
distributions, with no attention to running time or database updates.

1 Introduction

As the cloud computing paradigm is entering many of today’s distributed computing
applications, the research community is investigating a host of associated problems in
many areas, including privacy, security, and algorithmic efficiency. One central cloud
computing capability consists of outsourcing data to servers in the cloud, in a way
that delegates the management of the data to the cloud servers while allowing efficient
data access from authorized clients. In a typical instantiation of this capability, the data
owner publishes a searchable database in the cloud and clients make their ordinary
database queries directly to the cloud server. Because of confidentiality requirements
on the data, and of the often unknown location of cloud servers as well as unknown
entities who closely manage them, the data owner typically chooses to publish an en-
crypted version of the database, which can be later queried using privacy-preserving
database retrieval protocols, and subject to compliance to specific query-based access
policies. Unfortunately, encryption alone does not suffice to protect data confidentiality
in these contexts, as encryption is known to hide all partial information but the length of
the encrypted data. Accordingly, a cloud server with side channel information about the
length of individual database records can derive confidential information about the con-
tent of the encrypted database. (As an example from the finance industry, if stock fund
prospectuses are longer than single stock prospectuses, a cloud server can detect the
relative density of stock funds and/or single stocks in the database, even if encrypted).
Our contribution. Our approach to overcome these shortcomings consists of a suitable
combination of padding short database records and splitting long database records so to
normalize all records to have the same length, while still guaranteeing efficient access
to them from clients. This approach calls for a new privacy model and a new optimiza-
tion problem. In our privacy model, we require that the outsourced encrypted database



at most leaks a symmetric function of the original record lengths. Our optimization
problem (a variant of a classical record length problem, studied in the statistical and
computer memory management literature) is defined as follows: an encrypted database
with a large number n of records of different sizes s1, . . . , sn ≤ smax, needs to be
normalized, via padding (e.g., adding a fixed string of a determined length) or splitting
(e.g., dividing the record into 2 or more pieces and possibly padding again on the last
piece) into a database with a potentially larger number n′ of records, all having the
same size σ. Padding obviously increases the database size, but so does splitting, as
each record contains an a-bit searchable header, which has to be replicated on all pieces
resulting from the record split. We want to find the (exactly or approximately) optimal
σ so that the total size of the database (increased due to padding and splitting) is mini-
mized under a constraint that bounds the increase in the maximum (or average) search
time for a given record. For a cleaner problem formulation, applicable to any possible
search strategy, we model this constraint by imposing an upper bound on the number of
pieces derived from a split of any given record (or of all records, respectively).

Our exact algorithms perform O(n · smax) or O(n+ smax log smax) arithmetic op-
erations (for both the unconstrained and the two constrained versions of our problem),
which is super-polynomial in the input length (being linear in smax). Our approxima-
tion algorithms can find c-approximate, for c ∼ 2, solutions with O(n) arithmetic op-
erations (for both the unconstrained and the two constrained versions of our problem),
and a (1 + ε)-approximate solution with O(n ∗ polylog(smax)) arithmetic operations
(for both the unconstrained and one constrained version of our problem). The latter al-
gorithm can be shown to maintain a (1 + ε)-approximated solution by only requiring
O(1) amortized arithmetic operations over a sequence of record additions and deletions,
for any ε > 0 and under very general parameter settings. (Descriptions of this result and
our formal privacy model, and almost all proofs are omitted due to space restrictions.)

Related work. In the model of databases outsourced to cloud servers, there is a signifi-
cant amount of work on data encryption (seemingly originated in [7]), and some amount
of work on privacy-preserving database retrieval protocols (see, e.g., [1]), and query-
based access policy compliance (see, e.g. [2]). Minimizing the record length is an old
problem considered in contexts like statistics and memory management, and that does
not appear to have been investigated with an algorithmic viewpoint. An unconstrained
version of our problem was introduced by [10], who showed that when record lengths
follow some classes of continuous probability distributions, the optimal choice of tar-
get record length is a quantity close to our result for arbitrary distributions. In [9], the
author analyzed this problem in terms of the characteristic function of the distribution
of the record length, and gave solutions for the cases of the uniform, exponential, and
geometric distributions. In [4] and [3], the authors considered several different target
record sizes, and presented solutions based on dynamic programming and non-linear
optimization techniques. In [8], the author considers a similar problem in an extended
model (somehow merging multiple records into one), which does not preserve some
of the database search functionalities. None of these works focused on minimizing the
running time required to produce a solution for an arbitrary distribution of a discrete set
of record lengths. We are also not aware of any work considering constrained versions
of this problem or the case of dynamic databases.



2 Definitions, Privacy and Algorithmic Models

Preliminary definitions. A database is an indexed sequence of records that can be
modified, added, and removed over time. We denote as n the current number of records
in the database. For i ∈ {1, . . . , n}, the i-th database record can be seen as composed
of two parts: the header, whose size a ≥ 1 is constant across all records, and the
payload, whose size si ≥ 1 is variable. We denote as smax the maximum integer among
s1, . . . , sn. We define a fixed record length database as a database where all record
lengths are equal.

Privacy model. We consider the following Private Database Outsourcing (PDO) prob-
lem: a data owner, on input a database, wants to outsource some version of the database
to a cloud server so that the server only learns minimal information about the database
content, and yet can engage in database retrieval protocols with one or more clients, as
well as policy compliance protocols ensuring that clients’ queries are authorized. In this
paper we only deal with the database outsourcing part of the PDO problem, but note
that our approach integrates well with privacy-preserving database retrieval solutions
(e.g., from [1]) and privacy-preserving policy compliance solutions (e.g., from [2]). En-
cryption is a natural candidate tool to keep the outsourced database private from the
server, who can still later run database retrieval and policy compliance protocols using
techniques based on computing over encrypted data. Although in the cryptographic lit-
erature leakage of the length of an encrypted plaintext is usually considered a very min-
imal privacy violation (both the formal definitions of encryption [6] and of 2-party and
multi-party private function evaluation protocols [11, 5] admit leakage of plaintext/input
lengths), leaking the lengths s1, . . . , sn of all database records may well be an unaccept-
able privacy loss. We then ask the natural privacy question of what could/should be kept
private in any solution to the PDO problem. In a similar question on the encryption of
multiple different-length messages, solutions used in practice include either (a) padding
each message to its next block length, which leaks a close upper bound of all length
values; or (b) padding all messages to a common block length, which, although not the
most efficient solution, has more satisfactory privacy as it only leaks an upper bound of
all length values. Both (a) and (b) leak the exact number of encrypted messages.

(Informal) Privacy requirement: In formulating our privacy model, we attempt to cap-
ture the satisfactory privacy properties of the solution approach in (b), and at the same
time generalize it to allow for a richer set of solutions to the PDO problem. Specifically,
we require any solution to the PDO problem to leak at most:
1. the output of a function that is symmetric1 over the record lengths s1, . . . , sn;
2. an upper bound on the number n of database records.

A formal description of this requirement can be provided in the simulation-based pri-
vacy framework and is omitted due to space restrictions.

Algorithmic Model. To transform any database into a fixed record length one, we only
use two types of operations: (1) padding a payload; i.e., concatenating the payload with
a predefined string (e.g., a 1 followed by an all 0’s string), and (2) σ-splitting a record

1 A function f is symmetric if it satisfies f(x1, . . . , xn) = f(xρ(1), . . . , xρ(n)) for any input
(x1, . . . , xn) and any permutation ρ over {1, . . . , n}.



into multiple smaller records, where each new record has a copy of the same a-bit
header and a distinct σ-bit piece of the original record’s payload, where the last record
may be padded so to have a σ-bit payload as well. Note that while the total length of
the i-th record is a+ si in the original database, this length becomes a+ σ in the fixed
record length database, for some σ that can be chosen from a set of allowed values P .
In particular, we can consider, without loss of generality, P = {1, . . . , smax}, in which
case for any σ ∈ P , any above defined database can be transformed into a fixed record
length database via the following sequence of padding and σ-splitting operations, as
follows: each record with payload shorter than σ can be padded and each si-bit record
with payload longer than σ can be split into dsi/σe records, the last one being padded.
Then, we can compute the size of the fixed record length database as function

f(σ) =
∑
i∈[n]

⌈si
σ

⌉
(σ + a), (1)

where the input σ is taken from the set P which will usually be {1, . . . , smax} or a
subset of that, although in our analysis we will often abuse notation to consider σ taken
from the set of real numbers. We then define our problem of interest as the problem of
minimizing the Encrypted Database Size (EDS), as captured by the function f defined
in Formula 1, and coming into two main variants, depending on the constraints that we
pose on the number of splitting operations. In the first variant, denoted as maxEDS,
there is a maximum number of pieces into which we may split any record payload. In
the second variant, denoted as avgEDS, there is a maximum total number of pieces into
which we may split all of the record payloads. Formal definition follows.

Definition 1. [EDS] Given n+1 positive integers a, s1, . . . , sn, find the integer σ from
set P = {1, . . . , smax} that minimizes f(σ).

Definition 2. [maxEDS] Given n + 2 positive integers a, s1, . . . , sn, cmax, find the
integer σ from set P = {1, . . . , smax} that minimizes f(σ) subject to the constraints
dsi/σe ≤ cmax, for i = 1, . . . , n.

Definition 3. [avgEDS] Given n + 2 positive integers a, s1, . . . , sn and cavg , find the
integer σ from set P = {1, . . . , smax} that minimizes f(σ) subject to the constraint∑n
i=1dsi/σe ≤ cavg .

We investigate algorithms that solve these problems either exactly (i.e., returning any σ∗

that minimizes f(σ)), or δ-approximately (i.e., returning a σ such that f(σ) ≤ δf(σ∗)),
or δ-approximately even across a sequence of record additions and deletions. We will
not try the approach of naturally extending f so that it is defined over all real num-
bers, and finding an analytical expression for a σ that exactly minimizes f as f is not
convex, and is discontinuous at many points. To meet our privacy requirement, we will
only design algorithms A which return a value σ that is a symmetric function of the
values s1, . . . , sn. For the exact algorithms, this can be easily verified since these algo-
rithms return the value σ that minimizes the function f defined in Formula 1, and f is
a symmetric function of s1, . . . , sn. For the approximate algorithms, this is verified by
direct inspection that the formula used in each of these algorithms is also a symmetric
function of s1, . . . , sn.



3 Exact algorithms

We discuss two exact algorithms: a naive algorithm that runs in time O(nσmax) and an
improved algorithm that runs in time O(n+ σmax log σmax).
A first exact algorithm. On input a, s1, . . . , sn, define algorithm A0,1 for the EDS
problem as follows: for each value σ from P , evaluate f(σ) using Formula (1); finally,
select the value σ that minimizes f(σ). This algorithm finds an optimal solution for EDS
in O(n|P |) = O(nsmax) arithmetic operations. By further checking that the constraint
is satisfied, this algorithm is directly extended to find an optimal solution for maxEDS
and avgEDS in the same asymptotic running time.
A second exact algorithm. As a potential improvement, we consider algorithm A0,2

that precomputes two sets of values related to the multiplicities of the payload sizes, and
uses an alternative expression for f(σ) that is faster to compute, given the precomputed
values. Specifically, the precomputed values consist of the multiplicities of the pay-
load sizes mv = |{i ∈ N : si = v}|, and the related values m+

v = |{i ∈ N : si ≥ v}|,
defined for all v ∈ P . We note the following
Fact 1. For each v = 1, . . . , smax, it holds that m+

v = m+
v+1 +mv .

The alternative expression for f(σ) is the following:

f(σ) =

dsmax/σe∑
h=1

∑
i:dsi/σe=h

⌈si
σ

⌉
(σ + a) (2)

=

dsmax/σe∑
h=1

h
(
m+

1+σ(h−1) −m
+
1+σh

)
(σ + a) (3)

Based on these definitions, we define algorithm A0,2 for the EDS problem, as follows:
Algorithm A0,2: On input a, s1, . . . , sn, do the following:
1. Calculate smax
2. Calculate mv , for each v from 1 to smax.
3. Calculate m+

v , for each v from smax down to 1, using recurrence relation in Fact 1.
4. Calculate f(σ), for each σ in P , using Formula (3).
5. Return the value σ∗f that minimizes f .

For the running time, we observe that steps 1, 2 and 3 can be run in time O(n), step
4 in time O(smax log smax) (that is, O(smax/σ), for σ = 1, . . . , smax), and step 5
in time O(smax). This algorithm is directly extended to find an optimal solution for
maxEDS by further checking that the constraint is satisfied, which can be done in
time O(n). Checking that the constraint for avgEDS is satisfied can be done in time
O(smax log smax) by observing that the left hand side of the constraint can be rewritten
similarly as in Formula (3). Thus, algorithmA0,2 can be extended to work for maxEDS
and avgEDS by keeping the same asymptotic running time. We obtain the following

Theorem 1. For each of the problems EDS, maxEDS and avgEDS, we can construct
an algorithm that exactly solves the problem in O(min{nsmax, n + smax log smax})
arithmetic operations.



The running time in Theorem 1 is not polynomial in the input length (as it is linear in
smax) and can be too expensive in practical large databases (e.g., when n ≥ 109 and
smax ≥ 10MB). Thus, we turn our attention to finding approximation algorithms with
faster running times (possibly, linear in n and polylogarithmic in smax). As both the al-
gorithm’s running time and the quality of the approximation are of interest, we study al-
gorithms that attempt to minimize one metric while achieving satisfactory performance
on the other one. Specifically, we study algorithms with constant approximation factor
and very fast running time (i.e., O(n)) in Section 4, and algorithms with very small
(i.e., (1 + ε), for any ε > 0) approximation factor and any running time improving over
A0,1 and A0,2 in Section 5.

4 Faster Algorithms with O(1) Approximation Factor

In this section we study algorithms for maxEDS and avgEDS that attempt to minimize
their running time while achieving a constant approximation factor. When compared
with the exact algorithms in Section 3, the algorithms in this section achieve a smaller
running time (only linear in n and with no dependency on smax) at the cost of achieving
approximation factor 2 or slightly greater than 2. We start with a definition useful for
both algorithms; we define function g over the set of real numbers, as follows:

g(σ) =

n∑
i=1

(si
σ

+ 1
)

(σ + a), (4)

Then, our first algorithm, for problem maxEDS, and its properties are as follows.

Algorithm Amax1 : On input a, s1, . . . , sn, cmax, compute s̄ =
∑n
i=1 si/n and then

σ∗g =
√
as̄, and then return σ, computed as the value among bσ∗gc, dσ∗ge, dsmax/cmaxe

that is at least dsmax/cmaxe and results in the smaller value for f(σ).

Theorem 2. Amax1 2-approximately solves the maxEDS problem in O(n) arithmetic
operations.

An algorithm A1 for problem EDS with the same running time and approximation fac-
tor can be obtained by directly simplifying Amax1 . We cannot directly adapt these tech-
niques to avgEDS, as a value for σ satisfying the equality in constraint

∑n
i=1dsi/σe ≤

cavg may be hard to find, due to the n rounding operations. Instead, we minimize the
approximating function g subject to an even tighter constraint, and bound the additional
error produced. We now define an algorithm for avgEDS and state its properties.

AlgorithmAavg1 : On input a, s1, . . . , sn, cavg, compute the quantities β = cavg/n and
s̄ =

∑n
i=1 si/n. Then check whether

⌊√
as̄
⌋
≥ s̄/(β − 1). If yes, set s∗g the value

among
⌊√

as̄
⌋

and
⌈√

as̄
⌉

that has a lower value of function g, as defined in Formula 4.
If not, set s∗g = ds̄/(β − 1)e. Finally, return s∗g .

Theorem 3. Aavg1 (2+1/s̄+1/(β(β−1)))-approximately solves the avgEDS problem
in O(n) arithmetic operations, where β = cavg/n.



5 Fast Algorithms with (1 + ε) Approximation Factor

We show an algorithm for maxEDS (and thus EDS) that achieves (1+ε) approximation
factor, for any ε > 0, and running time asymptotically smaller than the exact algorithms
described in Section 4. Our algorithm extends the technique used in Section 4 where
we approximated function f by a convex function g. Here, we approximate function f
with several functions gk, for any integer k > 0. First, for any integers k > 0 and any
real number x > 0, we define w(k, x) as dxe if x ≤ k− 1 or 1 + x if x > k− 1. Then,
for any integer k > 0, we define an approximation function gk to f as

gk(σ) =
∑
i∈N

w
(
k,
si
σ

)
(σ + a)

Note that for k = 1, function g1 is the same as function g defined in Section 4, where
we have showed that g can be computed in time O(n). For k > 1, we can still evaluate
function gk more efficiently than f , using some auxiliary variables and a suitable piece-
wise decomposition and rewriting of gk. A first set of definitions relevant to this goal
include the previously defined quantities mv,m

+
v and some new quantities bv, ch,v ,

defined as follows, for each v = 1, . . . , smax, and each integer h > 0:
1. bv =

∑
si≥v si; and

2. ch,v = |{i ∈ N : dsi/ve = h}|.
To reduce the number of candidate σ values from P from which we plan to evaluate
gk(σ), for any integer k and any j = 0, . . . , q, where q is the max value such that
(1 + ε)q ∗ dsmax/cmaxe ≤ smax, we define the quantities:
1. τ0 = dsmax/cmaxe, τj = d(1 + ε) ∗ τj−1e;
2. Mj = |{i ∈ N : 1 + τj(k − 1) ≤ si < τj+1(k − 1)}|; and
3. Bj =

∑τj+1(k−1)
si≥1+τj(k−1) si.

By applying the definitions of mv,Mj , bv, Bj , ch,σ,m
+
v , we derive the following

Fact 3. For each j = 0, . . . , q and each integer h > 0, it holds that
1. m+

1+τj(k−1) = m+
τj+1(k−1) +Mj

2. b1+τj(k−1) = b+τj+1(k−1) +Bj

3. ch,τj = m+
1+τj(h−1) −m

+
1+τjh

We can then evaluate gk(σ), for all σ = τ0, τ1, . . . , τq , as

gk(σ) =

k−1∑
h=1

∑
i:dsi/σe=h

⌈si
σ

⌉
(σ + a) +

∑
i:si/σ>k−1

(
1 +

si
σ

)
(σ + a) (5)

=

(
k−1∑
h=1

ch,σh

)
(σ + a) +

(
m+

1+σ(k−1) + b1+σ(k−1)
1

σ

)
(σ + a) (6)

Based on the above, we can now construct our algorithm Amax2 , by setting k = d1/εe,
quickly computing gk based on Formula 6 and Fact 3, approximating f with gk, and
minimizing gk subject to the constraint dsmax/σe ≤ cmax and σ varying over the
multiplicative grid of τ0, . . . , τq .



Algorithm Amax2 : On input a, s1, . . . , sn, cmax, ε, do the following:
1. Calculate smax and set k = d1/εe.
2. Calculate all Mj , for j = 0, . . . , q by scanning all si’s only once and, for each si,

using binary search to find the associated Mj .
3. Calculate all Bj , for j = 0, . . . , q by scanning all si’s only once and, for each si,

using binary search to find the associated Bj .
4. Calculate m+

1+τj(k−1), for j = 0, . . . , q, using recurrence relation in Fact 3, item 1.
5. Calculate b1+τj(k−1), for j = 0, . . . , q, using recurrence relation in Fact 3, item 2.
6. Calculate ch,τj , for j = 0, . . . , q, and h = 1, . . . , k − 1, using recurrence relation

in Fact 3, item 3.
7. Choose the value σ∗g,k that minimizes gk, by examining every value of σ from
{τ0, τ1, . . . , τq} and using Formula (6) to evaluate gk(σ).

Theorem 4. For any ε > 0, Amax2 (1 + ε)-approximately solves the maxEDS problem
in O(n log(log(cmax)/ε) + log cmax/ε

2) arithmetic operations.

Acknowledgement. We thank Euthimios Panagos for interesting discussions. This work was sup-
ported by the Intelligence Advanced Research Projects Activity (IARPA). The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright annotation hereon. Disclaimer: The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.

References

1. G. Di Crescenzo, D. Cook, A. McIntosh, E. Panagos: “Practical Private Information Retrieval
from a Time-Varying, Multi-Attribute, and Multiple-Occurrence Database”. In Proc. of 28th
DBSec Conference, 2014.

2. G. Di Crescenzo, J. Feigenbaum, D. Gupta, E. Panagos, J. Perry, R. Wright: “Practical and
Privacy-Preserving Policy Compliance for Outsourced Data”. In Proc. of 2nd WAHC Work-
shop, 2014.

3. R. E. Erickson, S. Halfin and H. Luss, “Optimal Sizing of Records when Divided Messages
Can Be Stored in Records of Different Sizes”, Operations Research, vol. 30, pp. 29-39, 1982

4. R. E. Erickson and H. Luss, “Optimal Sizing of records Used to Store Messages of Various
Lengths”, Management Science, vol. 26, pp. 796-809, 1980

5. O. Goldreich, S. Micali, and A. Wigderson, “How to Play any Mental Game or A Complete-
ness Theorem for Protocols with Honest Majority”, Proc. of ACM STOC 1987: 218-229.

6. S. Goldwasser, and S. Micali, “Probabilistic Encryption”, J. Comput. Syst. Sci., vol. 28(2):
270-299 (1984)

7. H. Hacigms, B. R. Iyer, C. Li, S. Mehrotra: “Executing SQL over encrypted data in the
database-service-provider model”. In Proc. of SIGMOD Conference 2002, pp. 216-227

8. H. Luss, “An Extended Model for the Optimal Sizing of Records”, Journal of Operation
Research Society, vol. 34, pp. 1099-1105, 1983

9. P. Sipala, “Optimum Cell Size for the Storage of Messages” IEEE Transactions on Software
Engineering, vol. SE-7, pp. 132-134, 1981

10. E. Wolman, “A Fixed Optimum Cell-Size for Records of Various Lengths”, Journal of the
ACM, vol. 12, pp. 53-70, 1965

11. A. C. Yao, “How to Generate and Exchange Secrets”, Proc. of IEEE FOCS 1986: 162-167


