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Abstract. In the recent years an incredible amount of data has been leaked
from major websites such as Adobe, Snapchat and LinkedIn. There are hun-
dreds of millions of usernames, email addresses, passwords, telephone numbers
and credit card details in the wild. The aftermath of these breaches is the
rise of alerting websites such as haveibeenpwned.com, which let users verify if
their accounts have been compromised. Unfortunately, these seemingly innocu-
ous websites can be easily turned into phishing tools. In this work, we provide a
comprehensive study of the most popular ones. Our study exposes the associated
privacy risks and evaluates existing solutions towards designing privacy-friendly
alerting websites. In particular, we study three solutions: private set intersection,
private set intersection cardinality and private information retrieval adapted to
membership testing. Finally, we investigate the practicality of these solutions
with respect to real world database leakages.

Keywords: Data leakages, Phishing, Private Set Intersection, Private Information
Retrieval, Bloom filter

1 Introduction

In the recent years, we have witnessed an increasing number of data leaks from major
Internet sites including Adobe, Snapchat, LinkedIn, eBay, Apple and Yahoo !
(see bit.ly/19xscQO for more instances). While in most of the cases passwords’ files
have been targeted; database of identifiers, phone numbers and credit card details have
also been successfully exfiltrated and published. These leakages dealt a substantial blow
to the trust of people in computer security.

The aftermath of these leakages has led to three pivotal developments. First, the
bad security policies of major websites have been exposed, and better policies have
been proposed to survive leakages (see [27], [20], [18]). In [27], Parno et al. design
an architecture to prevent database leakage. At CCS 2013, Kontaxis et al. propose
SAuth [20], an authentication scheme which can survive password leakage. At the same
conference, Juels and Rivest present the Honeywords [18] to detect if a passwords’ file
has been compromised.

Second, security community has obtained datasets to study the password habits of
users. In [7], Das et al. consider several leaked databases to analyze password reuse.
De Carnavalet et al. [8] use these datasets to test the effectiveness of password meters.

Third, a new kind of websites has appeared: alerting website. Users can check
through these sites whether their accounts have been compromised or not. In order
to check whether a user is a victim of data leakage, alerting websites ask for an iden-
tifying data such as username or email address and sometimes even password. These



websites are maintained by security experts such as haveibeenpwned.com by Troy
Hunt, security companies e.g., LastPass, and even government institutions like the
German Federal Office for Information Security (Bsi): sicherheitstest.bsi.de.

On one hand, these websites are very useful in alerting users, while on the other
hand, they are real “booby traps”. The problem is the following: when a user submits a
username or an email address or a password, the site searches whether it exists or not
in the leaked database. If it exists, the user is warned and the website has accomplished
its purpose. However, if it is not present in the database, the site owner learns for free
a username/email address/password.

Most of these sites advert to the users that they do not indulge in phishing activities
but this is the only guarantee available to the user. The goal of alerting websites
is to reduce the effect of data leakage but not amplify it! Considering the risks
of using alerting websites, we naturally raise the following question: How to design
alerting websites which cannot be turned into a phishing trap? The user must have
a guarantee that it is not possible for the database owner to collect his information
during a search query.

With the increasing frequency of data leakages, these websites are fast becoming
a sine qua non for the victims of data leakages. Consequently, an analysis of these
websites and their service is necessary. Our work presents a comprehensive study of
alerting websites from two angles: the associated privacy risks and possible solutions
to improve the service.

Contribution. The contribution of the paper is threefold:

1. We examine 17 popular alerting websites (Section 2) and analyze their working
mechanism, and their approach to deal with privacy. Our findings reveal that several
of these websites have huge phishing potential and hence users should be careful
while visiting any of these websites.

2. We evaluate existing solutions for designing privacy-friendly alerting websites. Two
different scenarios have been considered depending on whether or not the database
is public. In case of private database (Section 4), private set intersection proto-
col and its variant private set intersection cardinality protocol yield an immediate
solution. The scenario of public database (Section 5) requires us to adapt private
information retrieval protocol for membership testing. This is achieved by combin-
ing it with Bloom filters (Section 5.1). These protocols subsumed under the name
of Private Membership Query protocols ensure user’s privacy in the honest-but-
curious model.

3. Finally, we experimentally analyze the merits of these solutions with respect to real
world data leakages (Section 6).

2 Alerting Websites: Risks

Users can be alerted on the fact that their account or personal information has been
leaked. We discuss the characteristics of these websites which evidently offer opportu-
nities for sophisticated phishing attacks.

Websites alerting users about their account or data leakage can be divided into
three types according to their sources of information. In the sequel, we categorically
discuss our findings.



Single-source (S). Some websites are associated with a single data leakage. This
is the case for adobe.cynic.al, bit.ly/1by3hd9, lucb1e.com/credgrep and adobe.

breach.il.ly. These websites are related to the Adobe data leakage of 153 million
accounts which occurred in October 2013. The last three websites were successfully
tested on 22/12/2014 but cannot be accessed anymore. Other websites for instance
snapcheck.org,1 findmysnap.com, and lookup.gibsonsec.org are similarly associ-
ated with the SnapChat leakage (4.6 million usernames, phone numbers and city
exposed in January 2014).

Aggregator (A). We observe that 5 of these websites search through several databases
to inform users if their data has been exposed. For instance, shouldichangemypassword.
com (bit.ly/1aJubEh for short) allegates to use 3346 leaked databases while only
194 are officially known. The remaining four are maintained by private companies:
lastpass.com, bit.ly/1fj0SqV, bit.ly/1aJubEh and dazzlepod.com/disclosure.
The last remaining site haveibeenpwned.com is designed and maintained by security
expert Troy Hunt.

Harvester (H). Three sites claim to have created their own databases from harvested
data. Two of these are maintained by famous security companies hacknotifier.com

and pwnedlist.com/query. The last site is maintained by the German Federal Office
for Information Security (Bsi).

The rue89.nouvelobs.com site is slightly different from the others. In September
2014, this French news website bought on the Darknet 20 million French email addresses
for 0.0419 bitcoins (see article bit.ly/1lKAxsB). The article offers the opportunity to
check if the reader’s addresses are included in the leak.

Table 1. Analysis of 17 alerting websites (* result as on 22/12/2014).

Websites Type Database(s) https Statement Answer Descrip.

rue89.nouvelobs.com S Unknown 7 X X 7

adobe.cynic.al S

Adobe

7 7 X X
bit.ly/1by3hd9* S X X X 7

lucb1e.com/credgrep* S 7 7 7 7

adobe.breach.il.ly* S 7 7 7 7

snapcheck.org S
SnapChat

7 7 X 7

findmysnap.com S 7 7 X 7

lookup.gibsonsec.org S 7 7 X 7

didigetgawkered.com S Gawker 7 7 7 7

lastpass.com A 6 X X X 7

haveibeenpwned.com A 9 X X X X
bit.ly/1fj0SqV A 12 X 7 7 7

dazzlepod.com/disclosure A 28 7 X X 7

bit.ly/1aJubEh A 3346/194 X 7 X 7

hacknotifier.com H Unknown 7 X X 7

pwnedlist.com/query H Unknown X 7/X X X
sicherheitstest.bsi.de H Botnets X X X 7

1 The database cannot be accessed anymore (10/12/2014).



We have reviewed 17 alerting sites and our findings are summarized in Table 1. To
measure if a user can trust the service offered by these sites, we have considered four
criteria:

– The usage of a secure connection through HTTPS.
– The existence or not of a security/privacy statement.
– The fact that the site responds or not with an answer.
– A technical description of all the operations performed on the data.

From Table 1, we observe that ten of these sites do not use HTTPS which means
that the traffic towards them can be easily eavesdropped. Single-source alerting sites are
the least trustworthy of all because most of them do not have a privacy statement. The
website bit.ly/1by3hd9 is a notable exception. Aggregator sites in general perform
better. Most of them use HTTPS and have a statement concerning privacy or phishing.
The website haveibeenpwned.com even has a description of how it works.

The harvesters are more controversial: hacknotifier.com claims that “we use a
256-bit secured and encrypted SSL connection”, but does not use HTTPS or any en-
cryption.2 The website pwnedlist.com/query claims that “this is not a phishing site”,
but they also state (pwnedlist.com/faq) that “Over the past years we’ve built an ad-
vanced data harvesting infrastructure that crawls the web 24/7 and gathers any poten-
tially sensitive data ...”.

Four sites do not give any answer: either they are not working anymore (like lucb1e.
com/credgrep) or they are real phishing traps.

Almost all the sites receive account information in clear. However, there are two
notable exceptions lastpass.com and dazzlepod.com/disclosure. The former uses
cryptographic hash functions and truncation to obfuscate the query and seems to be the
most transparent and trustworthy of all. Table 2 presents a summary of our observations
on lastpass.com. The latter source, dazzlepod.com/disclosure only recommends to
truncate the email address. With pwnedlist.com/query, it is also possible to submit
the SHA-512 digest of the email address instead of the address itself.

Table 2. Detailed analysis of lastpass.com.

Victim Query Policy Privacy method

Adobe Email non-storage None

LinkedIn password non-storage and non-logging SHA-1

Snapchat user name non-storage and non-logging SHA-1

Apple UDID Truncation

Last.fm password non-storage and non-logging MD5

eHarmony password non-storage and non-logging MD5

Cryptographic hash functions, e.g. MD5, SHA-1 or SHA-3 are however not enough
to ensure the privacy of passwords, identifiers or email addresses: these data do not
have full entropy. Email addresses were recovered from Gravatar digests [2] as well
as passwords (see [25] for instance). Apple’s Unique Device IDs aka UDIDs are no
exceptions. They are computed by applying SHA-1 on a serial number, IMEI or ECID,

2 Actually, subscribing for the hacknotifier.com watchdog is also not secure.



the MAC address of WiFi and the MAC address of Bluetooth. The values used to
produce a UDID can be guessed and LastPass asks only for the first 5 characters of
UDID. It reduces the amount of information submitted to the site but the user is not
warned if he provides more than 5 characters.

As a general conclusion, the measures taken by these websites are clearly not ade-
quate to ensure the privacy of users’ queries. In the remainder of the paper, we evaluate
how existing cryptographic and privacy preserving primitives can solve the problems
associated to alerting websites. These privacy-friendly solutions should guarantee that
the websites cannot harvest any new data from a user’s query.

3 Privacy-Friendly Solutions: Private vs. Public Database

As previously discussed, the existing alerting websites in general do not respect the
privacy of a user and entail huge phishing potential. The need of the hour is to design
privacy-friendly alerting websites. These websites would rely on what we refer as Private
Membership Query protocols – allowing a user to privately test for membership in a
given set/database. Such a protocol would guarantee that no new data can be harvested
from a user’s query.

To this end, two different privacy objectives can be defined depending on the privacy
policy of the database owner. One that we henceforth refer as Private Membership
Query to Public Database, and the other as Private Membership Query to Private
Database. This classification arises due to the fact that most of these leaked databases
are available on the Internet (as hackers have acquired the database dump) and hence
can be considered as public in nature. However, even though they are public in terms
of availability, an ethical hacker might want to ensure that the leaked information
is not used for malicious purposes and hence the database cannot be accessed in a
public manner to consult private information corresponding to other users. Rendering
the database private could also be of interest for government agencies such as bsi
sicherheitstest.bsi.de.

We highlight that a private membership query protocol provides a direct solu-
tion to the problem of designing privacy-friendly alerting websites. A user wishing to
know whether his data has been leaked would be required to invoke the private mem-
bership protocol with the database owner and learns whether he is a victim of the
breach. Thanks to the user’s privacy provided by the protocol, no new data can then
be harvested by the website. Consequently, in the rest of this work, we concentrate on
evaluating solutions for private membership query problem. In the sequel, we formalize
the privacy policies and examine viable solutions in the two database scenarios.

4 Solutions for Private Databases

The scenario of private membership query to private database involves a private database
DB and a user U . The database DB = {y1, . . . , yn}, where yi ∈ {0, 1}` consists of n
bit-strings each of length `. User U owns an arbitrary string y ∈ {0, 1}`. Private mem-
bership query to DB consists in knowing whether or not user’s data y is present in the
database while keeping y private to the user and DB private to the database.

Adversary model: The client and the database-owner are supposed to be honest-
but-curious i.e. each follows the protocol but tries to learn information on the data
held by the other player.



The above problem is very closely related to the problem of Private Set Intersection,
hence we examine its applicability to designing privacy-friendly alerting websites.

Private Set Intersection (PSI). PSI protocol introduced by Freedman et al. [13] con-
siders the problem of computing the intersection of private datasets of two parties.
The scenario consists of two sets U = {u1, . . . , um}, where ui ∈ {0, 1}` and DB =
{v1, . . . , vn},where vi ∈ {0, 1}` held by a user and the database-owner respectively.
The goal of the user is to privately retrieve the set U ∩ DB. The privacy requirement
of the scheme consists in keeping U and DB private to their respective owner. Clearly,
the private membership query to private database problem reduces to PSI for m = 1.

There is an abounding literature on novel and computationally efficient PSI proto-
cols. The most efficient protocols are the ones by De Cristofaro et al. [10], Huang et
al. [17] and Dong et al. [12]. The general conclusion being that for security of 80 bits,
protocol by De Cristofaro et al. performs better than the one by Huang et al., while
for higher security level, the latter protocol supersedes the former. The most efficient
of all is the protocol by Dong et al. as it primarily uses symmetric key operations.
We however note that the communication and the computational complexity of these
protocols is linear in the size of the sets.

Private Set Intersection Cardinality (PSI-CA). PSI-CA is a variant of PSI where the
goal of the client is to privately retrieve the cardinality of the intersection rather than
the contents. While generic PSI protocols immediately provide a solution to PSI-CA,
they however yield too much information. While several PSI-CA protocols have been
proposed [13], [19], [16], [29], we concentrate on PSI-CA protocol of De Cristofaro et
al. [9], as it is the most efficient of all. We also note that PSI-CA clearly provides a
solution to the membership problem: if the size of the intersection is 0, then the user
data is not present in the database.

5 Solutions for Public Databases

This scenario is modeled using a public database DB and a user U . The database as
in the previous scenario is DB = {y1, . . . , yn}, where yi ∈ {0, 1}`. User U owns an
arbitrary string y ∈ {0, 1}` not necessarily in DB. Private membership query consists
in knowing whether or not user’s data y is present in the database while keeping y
private to the user.

The difference to the previous problem (Section 4) is that the database in this
context is public. This leads to a trivial solution ensuring absolute privacy consisting
in sending the database to the user, who using the available resources performs a search
on the database. With huge databases of order GB, the trivial solution is not the most
desirable one for low memory devices. In this scenario, a user would wish to securely
outsource the search to the database-owner. In the following we present tools which
provide a solution in the public database case.

5.1 Tools

In the first place we present a protocol called Private Information Retrieval [6], which
is the closest to our needs. In the sequel we present Bloom filter and finally show that
combining these tools allows us to obtain a protocol for private membership query to
public database.



Private Information Retrieval (PIR). PIR first introduced in the seminal work by
Chor et al. [6] is a mechanism allowing a user to query a public database while keeping
his intentions private. In the classical setting of PIR [6], a user wants to retrieve the
bit at index 1 ≤ j ≤ n in a database DB = {y1, . . . , yn}, where yi ∈ {0, 1}, but does
not want the database to learn j.

Adversary model: The database owner is supposed to be honest-but-curious.

Since the work by Chor et al., several variants of PIR have been studied which
include Private Block Retrieval (PBR) scheme – where the goal is to retrieve a block
instead of a bit and PrivatE Retrieval by KeYwords (PERKY) [5] – where the user
only holds a keyword kw instead of an index j. While PIR may either be built on single
or replicated database copies, most of the latter works only consider the more realistic
single database scenario. These works improve on the communication complexity [3,4],
[14], [21,22]. The current best bound ofO(log2 n) is independently achieved in [22], [14].
In this work, we only consider single database protocols. The principle reason being
that in our context a user interacts with only one website.

Bloom Filter. Bloom filter [1] is a space and time efficient probabilistic data structure
that provides an algorithmic solution to the set membership query problem, which
consists in determining whether an item belongs to a predefined set.

Classical Bloom filter as presented in [1] essentially consists of k independent
hash functions {h1, . . . , hk}, where {hi : {0, 1}∗ → [0,m − 1]}k and a bit vector
z = (z0, . . . , zm−1) of size m initialized to 0. Each hash function uniformly returns
an index in the vector z. The filter z is incrementally built by inserting items of a
predefined set S. Each item x ∈ S is inserted into a Bloom filter by first feeding it
to the hash functions to retrieve k indices of z. Finally, insertion of x in the filter is
achieved by setting the bits of z at these positions to 1.

In order to query if an item y ∈ {0, 1}∗ belongs to S, we check if y has been inserted
into the Bloom filter z. Achieving this requires y to be processed (as in insertion) by
the same hash functions to obtain k indexes of the filter. If any of the bits at these
indexes is 0, the item is not in the filter, otherwise the item is present (with a small
false positive probability).

The space and time efficiency of Bloom filter comes at the cost of false positives. If
|S| = n, i.e., n items are to be inserted into the filter and the space available to store
the filter is m bits, then the optimal number of hash functions to use and the ensuing
optimal false positive probability f satisfy:

k =
m

n
ln 2 and ln f = −m

n
(ln 2)

2
. (1)

Membership Query to Bloom Filter: 2-party setting. Let us assume that Alice wants to
check if her value y is included in the Bloom filter z held by Bob. The easiest way to do
so consists for Alice to send y to Bob. Bob queries the filter on input y. He then sends
0 or 1 to Alice as the query output. If the canal between Alice and Bob has limited
capacity, another strategy is possible and is described in Fig. 1.

Alice cannot send y due to some channel constraints but she can send ai = hi(y),
for 1 ≤ i ≤ k. We suppose that Alice and Bob first agree on the hash functions to be
used. Then Alice sends ai to Bob. In reply, Bob returns the bit at index ai of z to



Alice A Bob B
y z

count=0

for i ∈ {1, . . . , k}
ai = hi(y)

ai−−−−−−−−−→ ri = zai

if ri = 1 then count++
ri←−−−−−−−−−

if count=k then YES
else NO

Fig. 1. Verification on a constraint channel.

her. If she only receives 1, y is included in z (with a small false positive probability f)
otherwise it is not.

Remark 1. A possible private membership query protocol in the case of private database
can be built by combining PSI/PSI-CA and Bloom filter. The idea would be to build a
Bloom filter corresponding to the database entries and generate the set DB = supp(z),
where supp(z) represents the set of non-zero coordinate indices of z. The client on
the other hand generates U = {h1(y), . . . , hk(y)} for a data y. Finally, the client
and the database owner invoke a PSI/PSI-CA protocol to retrieve the intersection
set/cardinality of the intersection respectively. However, this solution is less efficient
than a PSI/PSI-CA protocol on the initial database itself. The reason being the fact
that, with optimal parameters the expected size of supp(z) = m/2 = 2.88kn (see [24]
for details) . Hence, the number of entries of the database in PSI/PSI-CA when used
with Bloom filter is greater than the one of the original database.

We note that despite the similarity of the two problems: PIR and private member-
ship to public database, PIR stand-alone does not provide a solution to our problem.
Nevertheless, we show that when combined with a Bloom filter, PIR behaves as a
private membership query protocol. Details are given in the following section.

5.2 Membership Query Using PIR

To start with, we note that classical PIR per se cannot be applied to our context since
the user holding a data (email address, password, etc.) present in a database does not
know its physical address in the database. Furthermore, PIR does not support non-
membership queries as the database is constructed in a predefined manner and has
only finite entries, while the set of all possible queries is infinite. PERKY resolves the
problem of physical address as it only needs kw, and not the index. However, stand-
alone it still suffers from the non-membership issue for the same reason as that in case
of PIR.

Despite these issues, we can still design a private membership query protocol using
PIR as a subroutine and by changing the database representation to Bloom filters
which support non-membership queries as well. The idea then is to invoke PIR on each
query to the filter.

The protocol explained below requires that the database owner builds a bloom filter
z using the entries and a user queries the filter and not the database.



– Database owner builds the Bloom filter z using k hash functions {h1, . . . , hk}.
– User for a data y generates {h1(y), . . . , hk(y)}.
– For each 1 ≤ i ≤ k, the user invokes a single-server PIR on index hi(y) and retrieves
zhi(y).

– If zhi(y) = 0 for any i, then y is not in the database, else if all the returned bits are
1, then the data is present (with a false positive probability f).

The only difference with the classical use of Bloom filter (Fig. 1) in the protocol is that
the bit is retrieved using PIR.

Remark 2. As in the case of PIR, the database owner in our scenario is honest-but-
curious. This attack model for instance does not allow the database owner to return a
wrong bit to the user. Under this adversary model, the above protocol modification is
private (i.e., keeps user’s data private), if the underlying PIR scheme is private. PIR
hides any single query of the user from the database owner. Therefore, any k different
queries of the user are also hidden by PIR.

5.3 Extension with PBR Protocol

The adapted protocol in its current form requires a bit retrieval PIR scheme. Never-
theless, it can be easily modified to work even with a block retrieval aka PBR protocol.
The essential advantage of using a PBR protocol instead of a classical PIR protocol
would be to increase the throughput i.e. decrease the number of bits communicated to
retrieve 1 bit of information. In fact, the most efficient PIR schemes [14], [22] are block
retrieval schemes. The modification required to incorporate PBR would consist in using
a Garbled Bloom filter (see [12]) instead of a Bloom filter. We briefly explain below the
garbled Bloom filter construction, and later we present the modification required.

Garbled Bloom Filter. At a high level Garbled Bloom Filter (k,m,Hk, λ) GBF [12] is
essentially the same as a Bloom filter. The parameter k denotes the number of hash
functions used, while Hk is a family of k independent hash functions as in a Bloom
filter. The size of the filter is denoted by m, and λ is the size of the items to be included
in the filter. The difference with respect to a Bloom filter is that at each index in GBF,
a bit string of length λ is stored instead of just storing the bit 1. In order to include
an item y ∈ {0, 1}λ, one randomly generates k shares {ry1 , . . . , r

y
k},where ryi ∈ {0, 1}λ

such that y = ⊕iryi . As in a Bloom filter, one then generates the k indices iy1, . . . , i
y
k by

computing the hashes as iyj = hj(y) and truncating them by taking modulo m. Finally,
at index iyj of the filter, the bit string ryj is stored. Collisions on two values y and y′ for
a certain hash function hj are handled by choosing the same rj for both the values.

To check if a given item is in GBF, one computes the truncated hashes and retrieves
the shares stored at these indices in GBF. If the XOR of these shares is the same as the
given item, then the item is in the filter, or else not. More details on the probability of
collisions and the probability of false positives can be found in [12].

Private Membership Query using PBR. This protocol essentially follows the same prin-
ciple as the one which combines PIR and a Bloom filter. The database owner now
builds a GBF (k,m,Hk, λ) using the entries and a user queries the GBF instead of
the database. Again k PBR invocations are required to retrieve the k random shares.
This adapted protocol is private if the underlying PBR scheme is private, i.e., does not
reveal the user’s queries.



Remark 3. At this juncture, we have two solutions for private membership query to
public database: 1) k invocations of single server PIR/PBR to Bloom filter/GBF, 2)
Send the complete filter for a local query. On one hand, any PIR based solution only
provides computational privacy, has a communication cost, the best being O(log2m)
and involves cryptographic computations and hence entails a significant time complex-
ity. While on the other hand sending the filter ensures absolute privacy, but has a
larger communication complexity m bits (still much better than the trivial PIR i.e.,
sending the initial database) but has a very low time complexity (has to invoke the
protocol in Fig. 1 locally). Since the size of the database gets drastically reduced with
Bloom filter, this solution provides a competitive alternative to trivial PIR even for
low memory devices.

6 Practicality of the Solutions

We reiterate that a private membership query protocol provides an immediate solution
for designing privacy-friendly alerting websites. For the sake of practicality, any realistic
privacy-friendly alerting websites should provide response to a user’s query in real time.
It is hence highly important to evaluate the practicality of the underlying protocol.

We first discuss the practicality of the solutions based on PIR/PBR and Bloom filter
in case of public database and in the sequel we discuss the practicality of PSI/PSI-CA
protocol in case of private database.

Since Bloom filter is highly efficient in space and time, the practicality of PIR/PBR
based protocol depends on the practicality of the underlying PIR/PBR scheme. Hence
we first discuss its practicality as perceived in the literature and later by experimentally
evaluating PIR/PBR protocols.

For experimental evaluation, the tests were performed on a 64-bit processor desktop
computer powered by an Intel Xeon E5410 3520M processor at 2.33 GHz with 6 MB
cache, 8 GB RAM and running 3.2.0-58-generic-pae Linux. We have used GCC 4.6.3
with -O3 optimization flag.

6.1 Applicability of PIR

Sion and Carbunar [28] evaluate the performance of single database PIR scheme. The
authors show that the deployment of non-trivial single server PIR protocols on real
hardware of the recent past would have been orders of magnitude less time-efficient
than trivially transferring the entire database. The study primarily considers the com-
putational PIR protocol of [21]. The authors argue that a PIR is practical if and only
if per-bit server side complexity is faster than a bit transfer. With a normal desktop
machine, trivial transfer (at 10MBps) of the database is 35 times faster than PIR. This
ultimately restricts the use of PIR protocols for low bandwidths (tens of KBps).

Olumofin and Goldberg [26] refute the general interpretation [28] that no PIR
scheme can be more efficient that the trivial one. Authors evaluate two multi-server
information-theoretic PIR schemes by Chor et al. [6] and by Goldberg [15] as well as
a single-server lattice-based scheme by Aguilar-Melchor and Gaborit [23]. The later
scheme is found to be an order of magnitude more efficient over the trivial scheme
for situations that are most representative of today’s average consumer Internet band-
width. Specifically, for a database of size 16 GB, the trivial scheme outperforms the
lattice based scheme only at speeds above 100 Mbps.



6.2 Experimental Analysis

We have implemented two PIR/PBR protocols: 1) Cachin et al. [3], which is the most
efficient (in terms of communication) bit retrieval scheme 2) Aguilar-Melchor and Ga-
borit [23] (implemented in parig-gp3) which is the most computationally efficient PBR
protocol. We have also implemented RSA-OPRF PSI protocol of De Cristofaro et
al. [10] and PSI-CA protocol of De Cristofaro et al. [9]. The existing implementation4

of protocol by Dong et al. [12] seems not to execute correctly. Even after correcting the
initial compilation errors, the code seems not to be executing the protocol till the end.
We hence do not consider it for our evaluation.

Table 3. Results for the leaked databases using SHA-1. Databases contain single data for a
user, for instance Snapchat contains only username and ignores other auxiliary leaked infor-
mation.

Database Size n − log2 f m (MB) Build time (mins) Compress. ratio

Snapchat 49 MB 4609621
128 102 6 0.48
64 52 2 0.94
32 26 1 1.88

LinkedIn 259 MB 6458019
128 142 10 1.82
64 72 3 3.60
32 36 1.5 7.19

Adobe 3.3 GB 153004872
128 412 198 8.20
64 206 72 16.4
32 102 30 33.13

Public Database. The cost of using PIR-based schemes reduces to the cost of building
the filter combined with the cost of k PIR invocations on the filter. We present the time
required to build a Bloom filter for the leaked databases corresponding to Snapchat,
LinkedIn and Adobe in Table 3. The filter is constructed using SHA-1 which generates
20 bytes’ digest.

From Table 3, we can observe that the filter size grows slowly and that the compu-
tational time of the filter is reasonable. Initially, all the computations are performed in
a sequential manner. We have then distributed the computation on 4 computers (with
similar characteristics). Parallelizing the creation of the Bloom filter is straightforward
and we nearly achieved a 4× speedup (50 mins). With a few computers, it is possible to
reduce the computational time for creating the filter to a desired threshold. We further
note that building a Bloom filter involves only a one-time cost.

Despite the space and time efficiency of Bloom filter, the huge cost of PIR invocation
(using the existing primitives) makes such protocols impractical. The protocol [3] takes
over 6 hours in case of Snapchat database for one invocation. If the probability of
false positive is 2−32 i.e. k ≈ 32, the estimated time for 32 PIR invocations is over
32× 6 hours i.e. over 8 days. The PBR protocol [23], takes around 2 hours for 1 PBR
invocation on Snapchat garbled Bloom filter. The security level considered here is of

3 pari.math.u-bordeaux.fr/
4 Available at bit.ly/1k75nu6



100 bits. However, considering the household network bandwidth of 10 Mbps, the time
to download the filter would take 20 seconds. The time efficiency of the trivial PIR
with Bloom filter seems unmatchable.

Private Database. Table 4 presents results obtained for the PSI protocol by De
Cristofaro et al. [10] for 80 bits of security.

Table 4. Cost for PSI protocol [10]
with 80 bits of security using SHA-1.

Database Cost (mins)

Snapchat 48

LinkedIn 68

Adobe 1600

Table 5. Cost for PSI-CA protocol [9]
with 80 bits of security using SHA-1.

Database Cost (mins)

Snapchat 9

LinkedIn 12

Adobe 301

As the user’s set has only one data, his computational cost is negligible. To be pre-
cise, a user’s computational cost consists in computing a signature and n comparisons.
The authors in [11] claim that the result of the server’s computation over its own set
can be re-used in multiple instances. Hence, the server’s cost can be seen as a one-time
cost, which further makes it highly practical.

Table 5 presents results obtained using PSI-CA protocol by De Cristofaro et al. [9].
Recommended parameters of |p| = 1024 and |q| = 160 bits have been chosen.

Clearly, PSI-CA outperforms PSI by a factor of 5. The reason behind this perfor-
mance leap is that the exponents in modular exponentiations are only 160 bits long in
PSI-CA as opposed to 1024 bits in PSI.

Table 6. Summary of the results on Snapchat with f = 2−32.

Cost

Protocol Type Commun. Comput.

Trivial PIR with Bloom filter PIR 26 MB 1 min

Cachin et al. [3] PIR 7.8 KB > 8 days

Melchor et al. [23] PBR 12.6 TB > 2.5 days

De Cristofaro et al. [10] PSI 562 MB 48 mins

De Cristofaro et al. [9] PSI-CA 87.92 MB 9 mins

Table 6 summarizes the results obtained on Snapchat database for f = 2−32.
Clearly, in the public database case, sending the Bloom filter is the most computa-
tionally efficient solution. While, in the private database scenario, PSI-CA provides
a promising solution. Comparing the two cases, we observe that the private database
slows down the query time by a factor of 9.

We highlight that PSI/PSI-CA protocols perform much better than PIR/PBR pro-
tocols. This is counter-intuitive, as in case of PIR the database is public while in PSI
the database is private. A protocol on private data should cost more than the one
on public data. With a theoretical stand-point, there are two reasons why private set



intersection protocols perform better than PIR protocols: 1) the computational cost in
PSI/PSI-CA protocols is reduced at the cost of communication overhead, 2) the size
of the security parameter is independent of the size of the database. More precisely,
the communication cost of the most efficient PSI/PSI-CA protocols [9,10], [17], [12] is
linear while the goal of PIR protocols is to achieve sub-linear or poly-logarithmic com-
plexity. This indeed comes at a cost, for instance the size of RSA modulus in PSI [10]
for 80 bits of security is 1024 bits and hence independent of the size of the sets involved.
While in case of PIR [3], the size of the modulus used is log3−o(1)(n) bits. Hence for a
million bit database, the modulus to be considered is of around 8000 bits, which leads
to a very high computational cost.

7 Conclusion

In this work, we examined websites alerting users about data leakage. With the current
rate of leakage, these websites will be needed for a while. Unfortunately, it is currently
difficult to determine whether or not these websites are phishing sites since they do
not provide any privacy guarantee to users. Our work exposes the privacy risks asso-
ciated to the most popular alerting websites. We further evaluate how state-of-the-art
cryptographic primitives can be applied to make private query to an alerting site pos-
sible. Two different scenarios have been considered depending on whether the database
is public. While PSI/PSI-CA protocols provide a straightforward solution in the pri-
vate database scenario, a tweak using Bloom filter transforms PIR/PBR into private
membership protocols for public database.

Our experimental evaluation shows that PSI/PSI-CA protocols perform much bet-
ter than PIR/PBR based protocol. This is an encouraging result for the ethical hacking
community or security companies. Yet the cost incurred by these ad hoc solutions is
considerable and hence there remains the open problem of designing dedicated and
more efficient solutions.
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