
HAL Id: hal-01056669
https://inria.hal.science/hal-01056669

Submitted on 20 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Secure Outsourcing of DNA Searching via Finite
Automata

Marina Blanton, Mehrdad Aliasgari

To cite this version:
Marina Blanton, Mehrdad Aliasgari. Secure Outsourcing of DNA Searching via Finite Automata. 24th
Annual IFIP WG 11.3 Working Conference on Data and Applications Security and Privacy (DBSEC),
Jun 2010, Rome, Italy. pp.49-64, �10.1007/978-3-642-13739-6_4�. �hal-01056669�

https://inria.hal.science/hal-01056669
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Secure Outsourcing of DNA Searching via Finite

Automata

Marina Blanton and Mehrdad Aliasgari

Department of Computer Science and Engineering, University of Notre Dame,
{mblanton, maliasga}@cse.nd.edu

Abstract. This work treats the problem of error-resilient DNA search-
ing via oblivious evaluation of finite automata, where a client has a DNA
sequence, and a service provider has a pattern that corresponds to a ge-
netic test. Error-resilient searching is achieved by representing the pat-
tern as a finite automaton and evaluating it on the DNA sequence, where
privacy of both the pattern and the DNA sequence must be preserved.
Interactive solutions to this problem already exist, but can be a burden
on the participants. Thus, we propose techniques for secure outsourc-
ing of finite automata evaluation to computational servers, which do not
learn any information. Our techniques are applicable to any type of finite
automata, but the optimizations are tailored to DNA searching.

1 Introduction

The need to protect private or sensitive information about an individual is widely
recognized. Recent advances in bioinformatics and biomedical science promise
great potential in our ability to understand and compute over genome data,
but the DNA of an individual is highly sensitive data. In recent years, several
publications appeared that allow for computing over DNA data in a private
manner with the purpose of identifying ancestry relationships or genetic predis-
position. In particular, results are known for sequence comparisons that compute
the edit-distance [1, 2], error-resilient pattern matching based on finite automata
(FA) evaluation [3, 4], and specific DNA-based ancestry testing [5].

DNAs or DNA fragments used in such computations are large in size. For
that reason, recent work [2, 6] concentrated on improving the efficiency of such
protocols, but they still remain resource-intensive. Thus, if a customer would
like to engage in a private computation that uses her DNA, she might not have
computational resources or bandwidth to carry out the protocol. When this is the
case, it is natural to consider outsourcing the computation to powerful servers
or a large distributed network such as a computational grid. Obviously, in such
a setting the privacy of all sensitive inputs (the customer’s DNA, the service
provider’s tests, etc.) must be preserved from the participating servers.

Results for privacy-preserving outsourcing of the edit distance computation of
two strings are known [7, 8], but outsourcing of more general type of computation
over DNA via finite automata has remained unexplored. Thus, the focus of this
work is on secure outsourcing of oblivious evaluation of a finite automaton on

2 Marina Blanton and Mehrdad Aliasgari

a private input. We use the work of Troncoso-Pastoriza et al. that pioneered
techniques for oblivious finite automata evaluation (OFAE) [3] as a starting point
for out solution and develop techniques for outsourcing such computations.

Using FA for DNA searching is motivated by the fact that queries on DNA
data need to take into account various errors such as clinically irrelevant muta-
tions, sequencing errors, incomplete specifications, etc. Such errors can be toler-
ated if the pattern is expressed using regular expressions, implemented as FA.
We refer the reader to [3] for a detailed description of searching and alignment
algorithms that can be implemented using FA. Then a service provider (such
as, e.g., 23andMe [9]) can build a FA that implements a genomic test, and a
customer who possess a private DNA sequence will use it as an input to the
automaton. A DNA sequence is specified as a string of characters over the al-
phabet Σ = {A,C, T,G} of length N , and a deterministic finite automaton (or a
finite state machine (FSM)) corresponding to a DNA test is specified as a tuple
M = (Q,Σ,∆, q0, F), where Q is a set of states, Σ is an alphabet,∆ : Q×Σ → Q
is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final
states. W.l.o.g, the transition matrix is assumed to be complete, i.e., it specifies
a transition from each state on each input, and is represented as a table of size
|Q| × |Σ|, where each value stores a state. The states are represented as integers
in Z|Q| and input characters are represented as integers in Z|Σ|. A FA M accepts
a string x = x0x1. . .xN−1 ∈ ΣN if on input x it transitions from q0 to qN ∈ F .

Contributions. Our contributions can be summarized as follows:

– We first show how the solution of [3] can be simplified to improve both the
computation and communication for typical values of the parameters (i.e.,
when |Σ| is small). We also provide a detailed (not just asymptotic) analysis
of the original and modified solutions and show that the communication
cost can be rather high and not suitable for all clients. Since most of the
communication overhead of the solutions comes from the oblivious transfer
(OT) protocol, we analyze the performance of the solutions using different
OT realizations that allow us to achieve a computation-computation tradeoff.

– We give a protocol for outsourcing the computation of both the client and the
FA owner (service provider) to two computational servers without increasing
either the communication or computational complexity of the protocol. The
communication complexity of the client and service provider becomes linear
in the size of their data and involves virtually no computation.

– Next, we give a protocol that works for outsourcing the computation to any
number of servers (i.e., the multi-party case). To minimize the overhead, we
use a different structure from that used in the two-party outsourcing solu-
tion. To lower the communication complexity (and in part the computation
overhead), we represent the transition matrix ∆ as a square, so that the
communication is decreased from O(|Σ|+ |Q|) to O(

√

|Σ||Q|).
– We also develop a threshold version of the multi-party outsourcing protocol

which makes the solution suitable to work in unstable or dynamic environ-
ments such as grids. Due to space limitation, it could not be included in this
article and can be found in the full version [10].

Secure Outsourcing of DNA Searching via Finite Automata 3

2 Related Work

There is a considerable number of publications on secure DNA comparison and
matching (e.g., [1, 8, 11, 3, 5, 12]). The majority of them (e.g., [1, 7, 8, 2, 6]) use dy-
namic programming (DP) to securely compute the edit distance between a pair
of genomic sequences: There are two parties, each with its respective sequence,
and the algorithms compute the edit distance between the sequences without
revealing any information besides the output. Since the DP techniques involve
computation quadratic in the input size, such solutions are computation and
communication heavy. For that reason, consecutive work [7, 8] considered out-
sourcing the edit distance computation to powerful helper servers, and another
line of research [2, 6] concentrated on making such solutions more efficient. Re-
lated to them, [13] gives secure computation of the longest common subsequence
(LCS) using optimized techniques, and this research is continued in [14].

While these techniques are likely to improve the communication and/or com-
putation complexity of the original DP solution, one might consider the edit dis-
tance computation to be a specific type of DNA comparison that might not be
suitable when, e.g., error-resilient searching is necessary (handling sampling er-
rors, incomplete specifications, etc.). For that reason, another line of research [3,
4] uses FSMs to implement error-resilient searching over DNA data, and can
support any searches that can be formulated as regular languages. These publi-
cations provide secure two-party protocols for OFAE, which can be used in any
context and is not limited to DNA searching. We use the first publication in
this domain [3] as a starting point for our outsourcing construction. A follow-up
work [4] uses techniques similar to generic Boolean circuit evaluation to signifi-
cantly lower the round complexity of the protocol (from O(N) to O(1)) and lower
the computation complexity as well. The circuit-based approach, however, does
not generalize to the outsourcing scenario, since it assumes that the function to
be evaluated (i.e., a FA in our case) is known to the participants. Other general
secure function evaluation approaches are not suitable for the same reason.

Other work on privacy-preserving computing over DNA data includes [11],
where the authors introduce a strategy for enhancing data privacy in a dis-
tributed network deploying the Smith-Waterman algorithm for sequence com-
parison. In [5], the authors build secure multi-party protocols for specific genetic
tests such as parental tests; the approach can also handle a small number of
errors, but the complexity of the protocol rapidly increases with the number of
errors it can tolerate. Lastly, [12] presents a cryptographic framework for exe-
cuting queries on databases of genomic data, where data privacy is achieved by
relying on two non-colluding third parties.

3 Preliminaries

Homomorphic encryption. Prior and our work relies on a semantically se-
cure homomorphic public-key encryption scheme. Let E = (Gen,Enc,Dec) be a
public-key encryption scheme, where key generation algorithm Gen takes a se-
curity parameter 1κ and produces a public-private key pair (pk, sk); encryption

4 Marina Blanton and Mehrdad Aliasgari

algorithm Enc takes pk and message m and produces a ciphertext c; and decryp-
tion algorithm Dec takes (pk, sk) and ciphertext c and produces m. For brevity,
we use notation Encpk(m) and Decsk(c). Let n be the public modulus associated
a public key pk; the message space is then Z

∗
n. We will assume that |n| = κ.

With homomorphic encryption, operations on ciphertexts translate into cer-
tain operations on the underlying plaintexts. For additively homomorphic schemes,
Encpk(m1)·Encpk(m2) = Encpk(m1+m2), which implies Encpk(m)a = Encpk(ma)
for known a. A ciphertext Encpk(m) can be re-randomized by multiplying it to
Encpk(0); this makes it infeasible to link the new ciphertext to the original one.

Oblivious transfer. A 1-out-of-t oblivious transfer, OTt
1, allows the receiver

to retrieve one item from the t items at the sender in a way that the receiver
does not learn anything besides that item and the sender learns nothing. It is a
well studied cryptographic tool, with many available realizations. Different OT
protocols from the literature allow one to achieve tradeoffs between sender and
receiver computation and their communication. That is, OTt

1 from [15] has very
efficient amortized cost (one modulo exponentiation per OT for the sender and
the receiver) and linear communication cost O(t). Other protocols (e.g., [16, 17])
achieve sub-linear communication, but have larger computation requirements.
Depending on the parameters used in OFAE (i.e., the number of states, input
length, etc.) and resources available to the participants, one scheme might be
preferred over another. We use different OT schemes in analysis in Section 5.

Oblivious evaluation of finite automata. Here we review the solution of [3],
which is used as a starting point in this work. The service provider S holds ∆
and the client C holds input x. The evaluation processes one input character at a
time, and the current state is shared between C and S modulo |Q|. Throughout
this paper, we will assume that the rows of the matrix are numbered 0 through
|Q| − 1, and the columns of the matrix are numbered from 0 to |Σ| − 1. The
solution consists of three sub-protocols: (i) a protocol for performing the first
state transition, (ii) a protocol for executing a general kth state transition (for
k = 1, . . ., N−1), and (iii) a protocol for announcing the result to the client. Our
description of the (main) kth state transition protocol here is slightly different
from its original presentation in [3]: it is described for a transposed matrix to
improve efficiency of the protocol (as was suggested in [3]). We use qi to denote
the current state in the execution after processing i input characters. Notation

a
R← A means that a is chosen uniformly at random from the set A. The protocol

uses a homomorphic encryption scheme E for which only C knows sk.

Protocol for 1st state transition. It allows C and S to evaluate the FA on
the first input symbol, i.e., compute q1 = ∆(q0, x0), and share it in an additively

split form, i.e., S learns q
(1)
1 and C learns q

(2)
1 such that q

(1)
1 + q

(2)
2 mod |Q| = q1.

1. S picks r
R← Z|Q| and blinds each value in row q0 by adding r to it mod |Q|.

2. The parties engage in an OT
|Σ|
1 , where the sender S uses the blinded row q0

as its database and receiver C retrieves the element at position x0.

At the end, S has q
(1)
1 = −r mod |Q| and C has q

(2)
1 = q1 + r mod |Q|.

Secure Outsourcing of DNA Searching via Finite Automata 5

Protocol for kth state transition. Prior to the protocol, C and S additively

share the kth state (i.e., S has q
(1)
k and C has q

(2)
k such that qk = q

(1)
k + q

(2)
k mod

|Q|); C also holds the next input character xk and S holds the transition matrix
∆. The output consists of C and S additively sharing the (k + 1)st state qk+1.

1. S chooses r
R← Z|Q| and blinds each element of ∆ by adding r to the element

modulo |Q|. S rotates the matrix q
(1)
k rows up to obtain modified matrix ∆k.

2. C generates a binary vector of length |Σ| consisting of a 1 at position xk and
0’s in other positions. C encrypts the vector with pk and sends encrypted
bits e = (e0, . . ., e|Σ|−1) to S, where each ei = Encpk(bi) and bi ∈ {0, 1}.

3. S performs matrix multiplication of e and ∆k using the homomorphic prop-
erties of the encryption. As a result, S obtains a new vector v = (v0, . . ., v|Q|),
that corresponds to an element-wise encryption of the column at position xk.

4. Both parties engage in an OT
|Q|
1 , where the sender S holds vector v and

receiver C retrieves the element at position q
(2)
k .

5. C decrypts the value and obtains q
(2)
k+1; S sets its share to q

(1)
k+1 = −r.

Protocol for announcement of result. In the beginning of the protocol, C
and S additively share state qN modulo |Q|. As a result of this protocol, C learns
whether the evaluation resulted in an accept state or not, i.e., it learns a bit.
1. S generates a random binary vector f of length |Q| by setting its element at

position j + q
(1)
N to 1 if the state j ∈ F , and to 0 otherwise.

2. Both parties engage in an OT
|Q|
1 , where the sender S holds vector f and

receiver C retrieves the element at position q
(2)
N .

4 Security Model

The requirements that a scheme for secure outsourcing of OFAE must meet are:
Correctness: The protocol should provide the client with correct evaluation of

the service provider’s finite state machine M on the client’s input x.
Efficiency: Communication and computation complexity of C (S) should be lin-

ear in the size of its input x (in the size of the automaton M (i.e., the size of
∆), respectively). Communication and computation complexity (including
round complexity) of the servers should be minimized if possible.

Security: The servers should not learn any information throughout the protocol
execution. We assume that the servers are trusted to perform their com-
putation correctly, i.e., they are semi-honest or honest-but-curious in that
that they will follow the protocol as prescribed, but might attempt to learn
additional information from the intermediate values.

We now can formally define security using the standard definition in secure
multi-party computation for semi-honest adversaries. Since the helper servers
do not contribute any data to the computation, this should be interpreted as no
private input to the function they are evaluating. Then for the purposes of the
security definition, all data the servers receive before or during the computation
(i.e., the transition matrix and client’s input) are considered to be a part of the
function and therefore must leak no information. We denote “no data” by ⊥.

6 Marina Blanton and Mehrdad Aliasgari

Definition 1. Let parties P0, . . ., Pm−1 engage in a protocol π that computes

function f(⊥, . . .,⊥) = (o0, . . ., om−1), where oi denotes output of party Pi. Let

VIEWπ(Pi) denote the view of participant Pi during the execution of proto-

col π. It is formed by Pi’s input and any internal random coin tosses ri, as

well as messages m1, . . .,mt passed between the parties during protocol execution

VIEWπ(Pi) = (⊥, ri,m1, . . .,mt). We say that protocol π is secure against semi-

honest adversaries if for each party Pi there exists a probabilistic polynomial time

simulator Si such that {Si(f(⊥, . . .,⊥))} ≡ {VIEWπ(Pi),⊥}, where ≡ denotes

computational indistinguishability.

Note that this standard model allows the helper servers to collude (i.e., share
the information) in the multi-party case. The security guarantees must hold as
long as the coalition size does not exceed a specific threshold. The computational
servers do not receive any output, but rather communicate the result to C.

5 Secure FSM Evaluation

Before proceeding with outsourcing solutions, we give a simplification of the
original approach that simultaneously improves its communication and com-
putation overhead. Our simplification involves representing the matrix ∆ as a
one-dimensional list (instead of a two-dimensional table), and does not affect the
functionality or security of the solution while allowing us to skip encryption and
handling of encrypted data. When we represent the matrix as a list, we reference
element (i, j) of the matrix as the element at index |Σ|i+ j in the list.

Protocol for 1st state transition. The same as before.

Protocol for kth state transition. Prior the protocol, C and S additively
share the kth state modulo |Q|, and the output of the protocol consists of C and
S additively sharing the (k + 1)st state.

1. S chooses r
R← Z|Q| and blinds each element of ∆ by adding r to it mod |Q|.

2. S rotates the matrix ∆ q
(1)
k rows up. Let ∆k denote the modified matrix. S

then represents ∆k as a list of |Q| · |Σ| elements.

3. C and S engage in OT
|Q|·|Σ|
1 , at the end of which C obtains the element at

position |Σ| · q(2)k + xk from the list corresponding to ∆k.

Protocol for announcement of result. The same as before.

We now can compare performance of the protocol above with the original so-
lution from [3]. As suggested in [3], we assume that the efficient OTt

1 protocol
with amortized single exponentiation per transfer [15] is used. Also, since in this
application |Σ| ≪ |Q|, we assume that the transition matrix is transposed (as
presented in Section 3) to result in maximal savings from the OT protocol.

In the analysis, we include all modular exponentiations and also count mod-
ular multiplications if their number is large; the overall complexity is expressed
in the number of modular exponentiations (1 mod exp = κ mod mult). The
results for k executions of the kth state transition protocol are presented in

Secure Outsourcing of DNA Searching via Finite Automata 7

Original [3] Modified

C’s exps (|Σ|+ 2)N N

S’s exps |Q|+N(1 + (log(|Q|)|Σ|+ |Σ| − 1)|Q|/κ) |Q||Σ|+N(1 + |Σ||Q|/κ)

Comm 2κN(|Σ|+ |Q|) log(|Q|)N |Σ||Q|
Table 1. Analysis of original and modified oblivious automata evaluation solutions.

Table 1 (the rest of the work is much lower). In the original scheme, in each
protocol round, C performs |Σ| encryptions, 1 decryption, and 1 exponentiation
(for the OT). S’s work for N OT protocols involves |Q|+1 exponentiations and
N |Q| multiplications. To process the client’s response in each round, it performs
|Q||Σ| exponentiations with small exponents (or length log |Q|), which results in
N(log(|Q|)|Σ|)/κ regular modular exponentiations overall. Since the client sends
|Σ| encrypted values and the OT protocol involves the transfer of |Q| encrypted
messages in each round, the overall communication is 2κN(|Σ|+ |Q|).

In the modified scheme, only OT is used, and thus C’s work drops by a factor
of |Σ|+2. S’s work is also lowered, as the dominating term in the original solution
is |Q||Σ|N log(|Q|)/κ, while in the modified scheme it is |Q||Σ|N/κ. This means
that the server’s work drops by a factor of log |Q| (which is an improvement by
at least an order of magnitude). Even though the communication complexity is
now proportional to N |Σ||Q| instead of N(|Σ|+ |Q|) in the original protocol, it
can be two orders of magnitude lower due to the overhead caused by the security
parameter κ in the original scheme (i.e., for any feasible finite automaton size,
log |Q| ≪ κ; a typical setup can consist of log(|Q|) ≤ 20, |Σ| = 4, and κ = 1024).

One of our original motivations for this analysis was large communication
overhead of the scheme. For instance, genome sequences can be billions of char-
acters long, but even with the current ability to sample them, the sequences are
in the thousands. A FSM that represents a search pattern can have significantly
more states than the length of the pattern itself due to the need to handle errors.
Thus, for a sample setup of N = 10, 000, |Q| = 50, 000, and κ = 1024, the com-
munication cost of the original solution is 1012 bits ≈ 0.125 TB (it is lowered to
≈ 3 · 1010 bits in the modified solution). Such overhead is prohibitively large for
many clients (e.g., it can take several days or even months on a rather fast DSL
link). Thus, we investigate the use of other OT protocols, which can lower the
communication overhead of the protocol. Then depending on the computational
power and the bandwidth one has, the most suitable choice can be used.

Besides existing OT protocols, the OT functionality can be achieved by uti-
lizing a Private Information Retrieval (PIR) protocol, which differs from OT in
that the receiver may learn additional information about the database besides
the item or block it receives. Transferring a PIR protocol to a Symmetric PIR
(in which privacy of the database is also preserved, and the receiver learns only
its item) can be done at low cost using the techniques from [18] or [19], which
will give us an OT protocol. We compare the performance of OFAE using three
efficient PIR protocols of different nature. In particular, several PIR protocols
(e.g., [20, 21, 16, 17]) were studied in [22], and we select most communication

8 Marina Blanton and Mehrdad Aliasgari

Lipmaa OT GR OT AG OT

C’s op. K1N log(|Q|)(log(|Q|)/2− 1) (4NKe

√

|Q|) N(K log 10
3 + 2K log 5

3 + |Q|Ke)

S’s op. (2|Q| − log(|Q|))K1N 2|Q|KeN NK2
3

Comm N((K1/2) log
2(|Q|)+ N(log(|Q|) +Ke + 4 N |Q|KeK

2
3

+3Ke log(|Q|)) + log(log(|Q|)))

Table 2. Performance of the original OFAE protocol (except matrix multiplication)
using different OT protocols.

Lipmaa OT GR OT AG OT

C’s op. K1N log(|Q||Σ|)× (4N log(|Q|)
√

|Q||Σ|) N(K log 10
3 + 2K log 5

3

×(log(|Q||Σ|)/2− 1) +|Q||Σ| log(|Q|))

S’s op. (2|Q||Σ| − log(|Q||Σ|))K1N 2|Q||Σ| log(|Q|)N NK2
3

Comm N((K1/2) log
2(|Q||Σ|)+ N(log(|Q||Σ|) + log(|Q|)+ N |Q||Σ| log(|Q|)K2

3

+3 log(|Q|) log(|Q||Σ|)) +4 + log(log(|Q||Σ|)))
Table 3. Performance of the simplified OFAE protocol using different OT protocols.

efficient solutions of Lipmaa [16] and Gentry-Ramzan (GR) [17], as well as a re-
cent lattice-based protocol of Aguilar Melchor-Gaborit (AG) [23] with very light
computation overhead. We replace the original OT protocol [15] in both OFAE
solutions of Sections 3 and 5 by an OT protocol based on these PIR schemes.

Before presenting our analysis, we need to point out the differences between
these protocols because they are based on different setups, which will require the
use of different security parameters and underlying operations. More precisely,
the Lipmaa’s protocol is based on the use of a length-flexible additively homo-
morphic encryption scheme (such as [24]), the GR protocol uses groups with
special properties (in which Φ-hiding assumption holds), and the AG protocol
is a lattice-based PIR scheme. Thus, to achieve as precise analysis as possible,
we measure the computation overhead in the number of group operations, and
describe what a group operation involves in each solution.

The complexity analysis of the original OFAE approach (except the matrix
multiplication in step 3 of the kth state transition protocol in Section 3) is given
in Table 2, where work is measured in group operations. The matrix multiplica-
tion cost (which is the same regardless of the OT scheme used) is given below:

Matrix Multiplication

C’s group op. (|Σ|+ 2)KeN

S’s group op. N |Q|Ke(log(|Q|)|Σ|+ |Σ| − 1)

Comm NKe(|Q|+ |Σ|)

Similarly, Table 3 presents analysis of our modified scheme. In the tables, K1,
K2, and K3 are security parameters for each scheme and Ke is the security
parameter for the homomorphic encryption scheme (i.e., Ke = κ). In Lipmaa’s
solution, K1 is the same as Ke, and thus is near 1024 ([25] also reports that
in the Lipmaa’s PIR the sender’s computation could be reduced by almost 38%
through optimization). In GR approach, K2 is a parameter of a similar length,

Secure Outsourcing of DNA Searching via Finite Automata 9

but it also depends on the configuration of the OT protocol for which it is used.
In particular, K2 = max(κ, ℓ, f(log(t))) for OTt

1, where ℓ is the size of an element
in the OT protocol and f(·) is a polynomial function.K2 is not used in the tables,
but it determines the cost of the group operation (multiplication modulo K2-bit
numbers). Note that in the original solution, the OT protocol is called on blocks
of size 2κ, and to reduce the overhead associated with high K2, each block can
be partitioned into several blocks of smaller size (which results in executing the
OT more than once).

In the AG solution, the security parameter K3 is suggested to be set to 50,
but the group operations are performed using elements in Zp for prime p of size
3(⌈log(tK3)⌉ + 1) on the database of size t. Note that the value of t in OTt

1 is
different in the original and modified solutions (|Q| and |Q||Σ|, respectively),
which will affect the overhead of group operations when they depend on t.

From these options, the AG solution has the highest communication cost
(which can be further increased to lower the computation), but it is very com-
putation efficient unlike other protocols (also see [26] for further discussion).
Thus, it is ideally suited for parties with very fast communication links. The GR
approach, on the other hand, has the lowest communication cost, although the
amount of computation carried on the server side as well as the client side are
more pronounced. Thus, the first two methods based on Lipmaa’s and GR PIR
schemes should be used when the bandwidth is an issue of consideration, while
the third approach gives the fastest performance with respect to the execution
time assuming a fast data link between the participants.

6 Secure Outsourcing of FSM Computation

Secure two-party outsourcing. The idea behind this solution is that the
client C additively splits (modulo |Σ|) each character of its x between helper
servers P0 and P1. Likewise, S splits (modulo |Q|) each element of its matrix ∆
between P0 and P1. We refer to the Pi’s share (for i = 0, 1) of string x as x(i) and

its share of the kth character of x as x
(i)
k . Similarly, we refer to the Pi’s share of

∆ as ∆(i) and its share of the element of ∆ at position (j1, j2) as ∆(i)(j1, j2).
The helper servers are also given q0, i.e., they know what row in the matrix is
the start state (which gives no information about the automaton itself). Finally,
P0 and P1 receive information about final states F in a split form. We represent
F as a bit vector of length |Q| that has jth bit set to 1 iff state j ∈ F . This
vector is additively split modulo 2 (i.e., XOR-split) between P0 and P1.

During the kth state transition, P0 acts as S in the previous solution and P1

as C, except that the share of the matrix P0 possesses is rotated by both P0’s

share of the next input character x
(0)
k and its share of the current state q

(0)
k . At

the end of this execution, P0 and P1 additively share some value q′. The same
steps are also performed with the roles of P0 and P1 reversed (using P1’s share
of the transition matrix), which results in P0 and P1 additively sharing another
value q′′. Finally, P0 and P1 each locally add their shares of q′ and q′′, which
results in state qk+1 being split (modulo |Q|) between them.

10 Marina Blanton and Mehrdad Aliasgari

Protocol for 1st state transition.

1. For i = 0, 1, Pi chooses value ri
R← Z|Q|, blinds each element of row q0 by

adding ri to it modulo |Q| and rotates the row x
(i)
0 elements left.

2. For i = 0, 1, Pi engages in OT
|Σ|
1 with P1−i, where the sender Pi holds the

modified row q0, and receiver P1−i obtains the element at position x
(1−i)
0 .

Denote the element that P1−i receives by si.

3. For i = 0, 1, Pi sets its share of state q1 to q
(i)
1 = s1−i − ri mod |Q|.

Protocol for kth state transition. Prior to the protocol, P0 and P1 additively
share the kth state qk (modulo |Q|), the kth input character xk (modulo |Σ|),
and each element ∆(i, j) of ∆ for 0 ≤ i < |Q| and 0 ≤ j < |Σ| (modulo |Q|).
The output consists of P0 and P1 additively sharing the state qk+1 modulo |Q|.
1. For i = 0, 1, Pi chooses ri

R← Z|Q| and adds it to each ∆(i)(j1, j2) mod |Q|.
2. For i = 0, 1, Pi rotates the resulting matrix ∆(i) q

(i)
k rows up and x

(i)
k ele-

ments left, and represents it as a list of |Q| · |Σ| elements, denoted by ∆
(i)
k .

3. For i = 0, 1, Pi engages with P1−i in OT
|Q|·|Σ|
1 (where Pi acts as the sender),

at the end of which P1−i obtains the element at position |Σ| · q(1−i)
k + x

(1−i)
k

from the database ∆
(i)
k prepared by Pi. Denote the retrieved element by si.

4. For i = 0, 1, Pi sets its share of state qk+1 to q
(i)
k+1 = s1−i − ri mod |Q|.

In the above q′ = s0 − r0 mod |Q| and q′′ = s1 − r1 mod |Q|, and also q
(0)
k+1 =

s1 − r0 mod |Q| and q
(1)
k+1 = s0 − r1 mod |Q|.

Protocol for announcement of result. In the beginning, P0 and P1 share
XOR-split bit vector F , and at the end C learns the bit of F at position qN .

1. For i = 0, 1, Pi generates a random bit bi and blinds its vector F (i) by

XORing it with bi. Pi then rotates its q
(i)
N bits left.

2. For i = 0, 1, Pi engages in OT
|Q|
1 with P1−i, where Pi uses it modified vector

F (i) as the sender and Pi−1 retrieves the bit ci at position q
(1−i)
N .

3. For i = 0, 1, Pi sets it share of the result to f (i) = bi ⊕ c1−i.
4. P0 and P1 send f (0) and f (1) to C, who XORs them and learns the result.

Secure multi-party outsourcing. To generalize the above solution to multiple
parties P0, . . ., Pm−1, we first need to have C and S split their data among all
parties. For a split item a, we use a(i) to denote the share party Pi has. Since
now both the input characters and the current state will be split among m
participants, any solution that involves data rotation by a share of the state or
input character becomes more expensive. In particular, at leastm−1 parties need
to rotate the data in a predetermined order using their own shares. This means
that the data to be rotated must be obfuscated from others (i.e., encrypted) when
it leaves the owner and it also means that each party needs to re-randomize the
data to hide the amount of rotation. With this (or any other secure) approach,
the work performed by one party in a single execution of the state transition
protocol is inevitably O(|Q||Σ|) (and is also a function of κ), and we wish to
minimize the amount of work other parties need to perform, as well as their

Secure Outsourcing of DNA Searching via Finite Automata 11

communication complexity. Therefore, we reduce the overhead of most parties
to O(

√

|Q||Σ|) by representing the transition matrix ∆ as a two-dimensional

array of size
√

|Q||Σ| ×
√

|Q||Σ|. The interaction is then similar at the high-
level to the interaction in the original protocol and proceeds as follows: one party
generates a vector of encrypted bits of size

√

|Q||Σ|, m− 2 parties sequentially
rotate and randomize it, and the last party performs matrix multiplication to
create a new vector of the same size. This vector is also passed tom−2 parties for
rotation and re-randomization, after which the last party obtains the decryption
of one element of it. This process is repeated for each share of the matrix ∆(i).

Our solution requires the parties to convert shares v(i) of value v additively
split modulo n to additive shares of it modulo |Q|. To do so, the parties will
need to compute the quotient u = ⌊

∑m
i=1 v

(i)/n⌋ and use it to adjust the shares.
To prevent the parties from learning u, we additively split it over integers. Since
0 ≤ u < m, we define B > m2κ

′

, where κ′ is a security parameter. Then if we
choose shares of u from [−B,B], the value of u will be statistically hidden.

Finally, the parties now use a threshold homomorphic encryption scheme, in
which the public key pk is known to everyone, but the decryption key sk is split
among them. Here we require all m parties to participate in decryption (i.e., use
(m,m)-threshold encryption), and the threshold multi-party solution given in
[10] will have the threshold set to t (i.e., (t,m)-threshold encryption).

Before presenting the main protocols, we describe a sub-protocol, RotateAndShare,
that will be utilized in all of them, but will be called on different types of data.
This sub-protocol assumes that one party, Pi, has a vector, which will be en-
crypted, and then rotated by a certain amount, re-randomized, and blinded by
every party. Pi will be the data owner and plays a special role in the protocol.
The amount of rotation is determined by some value additively split among all
parties (e.g., the current state qk). Blinding involves adding a random value ri
to the encrypted contents by each party. Then when the last party chooses an el-
ement of the vector, other parties jointly decrypt that value for it. At this point,
all parties jointly hold additive shares of the result modulo n. As the last (and
optional) step, they engage in the computation to convert the additive shares
modulo n to additive shares modulo a different modulus n′.

RotateAndShare: The input consists of value i, 0 ≤ i ≤ m− 1, encryption E with
public key pk, modulus n, and distributed secret key sk, final modulus n′ (if no
conversion is necessary, n′ is set to ⊥), party Pi inputs vector v = (v0, . . ., vℓ−1)
and its length ℓ, and each party Pj , 0 ≤ j ≤ m − 1 inputs amount of rotation
rt(j). The output consists of the parties additively sharing value o modulo n′ (or
modulo n if n′ =⊥), which corresponds to one of the values from vector v.

1. Pi chooses ri
R← Zn, adds it modulo n to each vj , and encrypts each result

with pk to obtain e = (e0, . . ., eℓ−1), where ej = Encpk(vj + ri) for j =
0, . . ., ℓ − 1. Pi circularly rotates the elements of e rt(i) positions left and
sends the result to Pi+1.

2. Pi+1 circularly rotates the vector it received rt(i+1) positions left. It also

chooses ri+1
R← Zn and multiplies each element of its resulting vector by

different encryptions Encpk(ri+1) (or by the same encryption, but then re-

12 Marina Blanton and Mehrdad Aliasgari

randomizes each element). This adds ri+1 to the encrypted values. Pi+1 sends
the result to Pi+2.

3. Each of Pi+2, . . ., Pm−1, P0, . . ., Pi−2 sequentially perform the same steps at
Pi+1 using their respective values of randomness r and rotation amount rt.

4. Parties Pi−2 and Pi−1 engage in OTℓ
1, where the sender Pi−2 has the final

encrypted vector and receiver Pi−1 uses index rt(i−1). This results in Pi−1

obtaining an encrypted value at position
(

∑m−1
j=0 rt(j)

)

mod ℓ in v blinded

with
(

∑

j∈[0,m−1],j ̸=i−1 rj

)

mod n. Pi−1 re-randomizes that values asks the

rest of participants to decrypt it, and sets ri−1 to the decrypted value.
5. Now, if n′ ̸=⊥, the parties re-share the result modulo n′. To do so, they com-

pute the number of times the sum of the shares “wraps around” the modulus
n and use it in their computation. The parties engage in secure multi-party
computation, e.g., using a standard multi-party Boolean circuit [27]. Here

each party inputs its share, they jointly compute u = ⌊(∑m−1
j=0 rj)/n⌋ (e.g.,

by repeated subtraction of n from the sum) and the output is additively
shared over the integers. That is, party Pj for j = 0, . . .,m − 2 receives a

random sj ∈ [−B,B] and party Pm−1 receives sm−1 = u−∑m−2
j=0 sj .

6. Party Pj , for j = 0, . . .,m− 1, sets its output o(j) to (sj · n− rj) mod n′.
We are now ready to present the main protocols of the multi-party outsourcing.

Protocol for 1st state transition.

1. For i = 0, . . .,m−1, execute in parallel: Pi sets v to be the q0th row of its∆(i)

and all parties execute RotateAndShare(i, E , pk, sk, |Q|, v, |Σ|, x(0)
0 , . . ., x

(m−1)
0).

Let o
(j)
i denote the output Pj receives after such execution on Pi’s data.

2. For i = 0, . . .,m−1, party Pi sets its share of q1 to q
(i)
1 =

∑m−1
j=0 o

(i)
j mod |Q|.

Protocol for kth state transition. Prior to the protocol execution, the par-
ties additively share the kth state qk (modulo |Q|), the kth input character xk

(modulo |Σ|), and each element ∆(i, j) of ∆ for 0 ≤ i < |Q| and 0 ≤ j < |Σ|
(modulo |Q|). At the end, they additively share state qk+1 (modulo |Q|).

For i = 0, . . .,m− 1, perform in parallel using the share ∆(i) of ∆:

1. Pi rotates the matrix ∆(i) q
(i)
k rows up and x

(i)
k elements left. We denote the

resulting matrix by ∆
(i)
k . Pi represents ∆

(i)
k as a two-dimensional array of

roughly square size as follows1: Pi computes the size of the first dimension
of the matrix as d1 = ⌈

√

|Q||Σ|⌉ and the size of the second dimension as
d2 = ⌈|Q|/d1⌉|Σ|. Pi then creates columns 0 through |Σ|− 1 of the modified

matrix using rows 0 through d1 − 1 of ∆
(i)
k , columns |Σ| through 2|Σ| − 1

using rows d1 through 2d1−1 of∆(i)
k , etc. In other words, the modified square

matrix, denoted ∆̃
(i)
k , is filled in stripes of width |Σ| until all of |Q| rows are

used (note that part of the square might be incomplete due to rounding in
the computation). Empty cells are then filled with dummy entries to make
it a full matrix of size d1 × d2.

1 In the current discussion we assume that |Σ| < |Q|, but the technique can be used
when either |Σ| < |Q| or |Q| < |Σ|.

Secure Outsourcing of DNA Searching via Finite Automata 13

2. Party Pi+1 creates a vector of encrypted values e = (e0, . . ., ed1−1) using

homomorphic encryption, where the value at position q
(i+1)
k mod d1 corre-

sponds to encryption of 1, and all other ej ’s to encryption of 0.
3. Party Pi+1 sends the vector to Pi+2, who performs a circular rotation of

it q
(i+2)
k values left and re-randomizes the encrypted values. The encrypted

vector is sequentially processed by parties Pi+2, . . ., Pm−1, P0, . . ., Pi−1 who
perform the same operations as Pi+2 using their respective shares of qk.

4. Pi−1 sends the final vector ẽ = (ẽ0, . . ., ẽd1−1) to Pi. Pi performs matrix
multiplication using ẽ and ∆̃(i) as follows: compute the jth element of the

resulting vector v as vj =
∏d1−1

ℓ=0 ẽ
∆̃

(i)
k

(ℓ,j)

ℓ . Now the vector v corresponds to

the element-wise encryption of the row of the matrix ∆̃
(i)
k at index qk mod d1.

5. All parties execute a modified algorithm RotateAndShare(i, E , pk, sk, |Q|, v, d2,
(x

(0)
k , ⌊q(0)k /d1⌋|Σ|), . . ., (x(m−1)

k , ⌊q(m−1)
k /d1⌋|Σ|)) with the following changes:

(a) The vector v is already in an encrypted form, so no encryption is per-
formed in step 1 of RotateAndShare.

(b) Instead of each Pj rotating the vector by amount rt(j), rt(j) now consists

of two parts, rt
(j)
1 and rt

(j)
2 . Starting from j = i, Pj divides the vector

v into blocks of size |Σ| and circularly rotates each block rt
(j)
1 positions

left, and then rotates the overall resulting vector rt
(j)
2 positions left.

(c) Using two different values for the amount of rotation also affects the
oblivious transfer in step 4 of the protocol. Now party Pi−1 selects the

element at position rt
(i−1)
1 + rt

(i−1)
2 |Σ|.

Let o
(i)
j denote the output party Pj receives as a result of such execution.

After executing these steps on all shares of the database ∆(i), party Pj sets its

share of qk+1, q
(j)
k+1, to the sum of the values it received in step 5 of the protocol

executions, i.e., q
(j)
k+1 =

∑m−1
i=0 o

(j)
i mod |Q|.

Protocol for announcement of result. Prior to the protocol, P0, . . ., Pm−1

additively share the state qN and also share vector F XOR-split between them.

1. For i = 0, . . .,m−1, execute in parallel: the parties call RotateAndShare(i, E , pk,
sk,⊥, F (i), |Q|, q(0)N , . . ., q

(m−1)
N). Let o

(i)
j denote the output party Pj receives.

2. For i = 0, . . .,m− 1, Pi computes f (i) =
∑m−1

j=0 o
(i)
j modn and sends f (i) to

C.
C recovers the result by computing bit b =

∑m−1
i=0 f (i) mod n.

The above protocol calls RotateAndShare without modulus conversion. The
reason is that the client can easily recover the result by adding the shares it
received modulo n. If the client is extremely weak, however, the above protocol
can include modulus conversion from n to 2 at the cost of the increased work
for the helper servers. In this case, the client performs only m− 1 bit XORs.

Also note that the protocol for announcement of the result can have a similar
structure to the kth state transition protocol if the vector F is represented
as a matrix of size

√

|Q| ×
√

|Q|. Then the computation and communication
complexity of all parties will be reduced by a significant amount. But since this

14 Marina Blanton and Mehrdad Aliasgari

protocol is executed only once (as opposed to the kth state transition protocol),
we leave it in the simple form above.

Remark. The above technique allow us to have communication associated with
processing a square two-dimensional grid to be linear in the size of its one di-
mension. One might ask if it might be possible to further reduce the commu-
nication by represented the matrix as a high-dimensional hypercube and still
have communication to be proportional to its single dimension. Such technique
was employed in private information retrieval systems to dramatically decrease
communication cost to O(ℓϵ) for any ϵ > 0 [21] or O(log2(ℓ)) [16] with stronger
privacy guarantees for a database of size ℓ. Here we note that such a solution
would not work in our setting because decreasing the dimension of the matrix
(represented as a hypercube of any dimension) by one requires interaction of all
of the participants, and thus would involve communication close to linear in the
matrix size in our case (this technique worked for PIR systems when the entire
database is stored at a single location).

7 Analysis

We now evaluate correctness and security properties and analyze complexity.

Correctness. Correctness of the protocols follows by examination. That is,
during each round of the protocol, the parties additively share the value of the
next state that can be found in matrix ∆(i) for each participant Pi and add them
all together to correctly share the next state. The same applies to the protocol
for announcement of the result.

Security. The argument for achieving security in presence of semi-honest parties
that we use here is very standard, and is based on the following components:
– The composition theorem due to Canetti [28] states that composition of

secure protocols remains secure. This means that the security of the overall
solution reduces to ensuring that sub-protocols or other tools used as a part
of it are secure against semi-honest adversaries.

– Semantic security of homomorphic encryption ensures that no information
about the underlying plaintext can be learned by observing its encryption.
Threshold encryption ensures that participation of a predefined number of
parties (including all parties) is necessary for decryption.

– Additive secret sharing ensures unconditional security as long as there is at
least one honest party that does not collude with the rest of the participants.

Given the above, it is straightforward to build a simulator that will simulate
the view of the computational parties without access to C’s or S’s data. That
is, every time encryption is used, it can produce encryptions of random values
that will be indistinguishable from real data due to the security property of
encryption, and every time shares are used, it will also produce random shares
that will be indistinguishable from the shares used in the real execution. Since
only secure and composable components are used in the protocols, the overall
solution is secure as well.

Secure Outsourcing of DNA Searching via Finite Automata 15

Complexity. We analyze computation and communication complexity of two-
party and multi-party outsourcing protocols separately. The analysis corresponds
to the N executions of the kth state transition protocol (as the rest of the
overhead will be orders of magnitude lower).

Two-party outsourcing: The client C only splits its input between two servers,
therefore the computation is near N (no cryptography is used) and communica-
tion is 2N log(|Σ|). The service provider S splits the representation of its automa-
ton M among two servers, with the computation being near |M | and communi-
cation approximately twice the size of representing M (i.e., near |Q||Σ| log(|Q|)).
Each computational server incurs computation and communication overhead of
both C and S in the solution with no outsourcing (as given in Table 1). That is,
each server performs about |Q||Σ| + N(2 + |Σ||Q|/κ) modulo exponentiations
and communicates about 2 log(|Q|)N |Σ||Q| bits.
Multi-party outsourcing: The work and communication of C and S remain simi-
lar to the two-party case, except that splitting of their data and communication
needs to be done for m servers instead of two. This means that work becomes
proportional to m (with no cryptographic operations, as before), which for C
means mN and for S is m|M |, and their communication is mN log(|Σ|) and near
m|Q||Σ| log(|Q|), respectively. The computation and communication require-
ments for the computational servers also now increase by a factor of m and are as
follows. The main computation overhead comes from (i) 2

√

|Q||Σ|(m− 1) mod-
ular exponentiations in each round due to re-randomization; (ii) |Q||Σ| log(|Q|)
modular multiplications in each round for matrix multiplication; (iii) κ OT2

1 ex-

ecutions for the Boolean circuit and one OT

√
|Q||Σ|

1 in each round. We assume
that the OT protocol with low amortized cost (one mod exp per transfer) is used.
The communication complexity is dominated by the transmission of encrypted
vectors and the OT protocol and is near 4κ(m− 1)N

√

|Q||Σ|.
Acknowledgments. Portions of this work were sponsored by grant AFOSR-
FA9550-09-1-0223. The first author would like to thank Scott Emrich for useful
discussions regarding DNA processing technology.

References

1. Atallah, M., Kerschbaum, F., Du, W.: Secure and private sequence comparisons.
In: WPES. (2003) 39–44

2. Jha, S., Kruger, L., Shmatikov, V.: Towards practical privacy for genomic compu-
tation. In: IEEE Symposium on Security and Privacy. (2008) 216–230

3. Troncoso-Pastoriza, J., Katzenbeisser, S., Celik, M.: Privacy preserving error re-
silient DNA searching through oblivious automata. In: ACM CCS. (2007) 519–528

4. Frikken, K.: Practical private DNA string searching and matching through efficient
oblivious automata evaluation. In: DBSec. (2009) 81–94

5. Bruekers, F., Katzenbeisser, S., Kursawe, K., Tuyls, P.: Privacy-preserving match-
ing of DNA profiles. ePrint Cryptology Archive Report 2008/203 (2008)

6. Wang, R., Wang, X., Li, Z., Tang, H., Reiter, M., Dong, Z.: Privacy-preserving
genomic computation through program specialization. In: ACM CCS. (2009) 338–
347

16 Marina Blanton and Mehrdad Aliasgari

7. Atallah, M., Li, J.: Secure outsourcing of sequence comparisons. In: PET. (2004)
63–78

8. Atallah, M., Li, J.: Secure outsourcing of sequence comparisons. International
Journal of Information Security 4(4) (2005) 277–287

9. : Genetic Testing for Health, Disease & Ancestry; DNA Test – 23andMe
http://www.23andme.com.

10. Blanton, M., Aliasgari, M.: Secure outsourcing of DNA searching via finite au-
tomata. Technical Report 2010–03, University of Notre Dame (2010)

11. Szajda, D., Pohl, M., Owen, J., Lawson, B.: Toward a practical data privacy
scheme for a distributed implementation of the Smith-Waterman genome sequence
comparison algorithm. In: NDSS. (2006)

12. Kantarcioglu, M., Jiang, W., Liu, Y., Malin, B.: A cryptographic approach to
securely share and query genomic sequences. IEEE Transactions on Information
Technology in Biomedicine 12(5) (2008) 606–617

13. Franklin, M., Gondree, M., P.Mohassel: Communication-efficient private protocols
for longest common subsequence. In: RSA. (2009) 265–278

14. Gondree, M., Mohassel, P.: Longest common subsequence as private search. In:
WPES. (2009) 81–90

15. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA. (2001)
448–457

16. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In:
Information Security. Volume 3650 of LNCS. (2005) 314–328

17. Gentry, C., Ramzan, Z.: Single-database private information retrieval with con-
stant communication rate. In: ICALP. (2005) 803–815

18. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC.
(1999)

19. Crescenzo, G., Malkin, T., Ostrovsky, R.: Single database private information
retrieval implies oblivious transfer. In: Advances in Cryptology – EUROCRYPT.
(2000) 122–138

20. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with poly-logarithmic communication. In: EUROCRYPT. (1999) 402–414

21. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: IEEE FOCS. (1997) 364–373

22. Melchor, C.A., Deswarte, Y.: Single-database private information retrieval
schemes: Overview, performance study, and usage with statistical databases. In:
Privacy in Statistical Databases. (2006) 257–265

23. Aguilar-Melchor, C., Gaborit, P.: A lattice-based computationally-efficient private
information retrieval protocol. In: WEWORC. (2007)

24. Damgard, I., Jurik, M.: A length-flexible threshold cryptosystem with applications.
In: Australasian Conference on Information Security and Privacy. (2007)

25. Bae, H.: Design and analysis for log-squared and log private information retrieval
(2008)

26. Melchor, C., Crespin, B., Gaborit, P., Jolivet, V.: High-speed private information
retrieval computation on GPU. In: IEEE SECURWARE. (2008)

27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC.
(1987) 218–229

28. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1) (2000) 143–202

