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Abstract. We have designed, implemented and evaluated a resource
adaptive distributed information sharing system where automatic adjust-
ments are made internally in our information sharing system in order to
cope with varying resource consumption. CPU load is monitored and a
light-weight trigger mechanism is used to avoid overload situations on a
per-machine basis. Additional improvements are obtained by calculating
what we call a utility score to better determine how the data structures
in the system should be arranged. Our results show that resource adap-
tation is an efficient way of improving query throughput, and that it is
most effective when the number of stored data items in the system is
large or many queries are performed concurrently. By applying resource
adaptation, we are able to significantly improve the performance of our
information sharing system.
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1 Introduction

Data centric networking has become an important networking paradigm. Focus
on content instead of its location has started to drive the design of communica-
tion systems, and over the last decade much research efforts have been invested
into developing solutions for networking data instead of hosts. These activities
have addressed several kinds of approaches ranging from building overlay type
of solutions [13, 10, 7] to designing complete data-centric network architectures
from scratch [6, 4].

It is desirable to have general purpose information sharing solutions that
are capable of storing and querying various kinds of data. This is true for both
the current situation as well as for the future. Many applications today rely on
specific overlay solutions, and the different solutions are usually incompatible,
which introduces significant amount of unnecessary overhead and complexity.
Future Internet approaches such as ANA (Autonomic Network Architecture) [1]
would benefit from such a general purpose information sharing system as an
integral and reusable core component of the architecture. We have designed and



implemented a fully distributed system called MCIS (Multi-Compartment In-
formation Sharing) which is based on a distributed hash table (DHT) type of
structured peer-to-peer system. The core functionality of MCIS is storing and
querying different types of data. We define a data type as a set of attributes
and a data item as a tuple of attribute values. Within the entire MCIS system,
each different data type is formed by separate, logical units for data manage-
ment called attribute hubs. In these attribute hubs, data items and queries are
routed independently from each other. Furthermore, the system supports multi-
attribute range queries.

One of the challenges in deploying such a fully distributed system that relies
on cooperation of every node, is that these nodes can have significantly different
amounts of resources available, such as CPU, memory, storage space and energy.
The amount of available resources depends on the one hand on the device itself,
e.g. mobile devices have scarce resources compared to desktop computers, and
on the other hand on the current workload caused by the applications running on
that node. A single overloaded node can negatively impact the performance of the
overall system. Thus, there are potentially several bottlenecks in the system in
form of overloaded nodes. Therefore, in order for such a system to perform well,
individual nodes should handle overload situations by dynamically adjusting to
the varying resource consumption.

In this paper, we describe our MCIS system enhanced with an automated
resource adaptation mechanism. MCIS is designed in such a way that the differ-
ent attribute hubs introduce replication of data in order to gain performance in
query processing. We take advantage of this design in the resource adaptation
mechanism so that there is a trade-off in the level of replication and the query
processing efficiency against resource consumption and the number of active at-
tribute hubs. We introduce a utility metric to identify the hubs with the most
positive effect on the query processing efficiency and give them priority when
reducing the number of active hubs.

We evaluate the performance and behavior of the resource adaptive MCIS
by storing and retrieving real Internet traffic traces from the Cooperative Asso-
ciation for Internet Data Analysis (CAIDA) [15]. The evaluation results do not
only demonstrate the feasibility of resource adaptation in MCIS, but also the
superior performance of a resource adaptive MCIS compared to a non-adaptive
MCIS. This work is done as part of the ANA project and the complete source
code of our system is available at the project website, http://ana-project.org/.

The remainder of this paper is structured as follows. Section 2 introduces
MCIS. A detailed description of the resource adaptation scheme is given in Sec-
tion 3. In Section 4, we evaluate the system behavior. In Section 5, we draw
conclusions and explain future work.

2 Multi-Compartment Information Sharing

MCIS is a fully distributed store and query system. It is based on Mercury
[2] which is a DHT-based system that supports multi-attribute range queries,



such as size > 100 MB, size < 300 MB when looking up data items with size
between 100 MB and 300 MB. As a DHT-based system, MCIS is fully decen-
tralized.

Each data type in MCIS is administrated by an instance of a Mercury system.
The data types can have several attributes like string name, int size, and
string type; and the specification of the collection of these attributes is called
a schema. An example of a data item for this schema is ‘‘example, 150, MKV‘‘.
The data types are managed by attribute hubs which are logical ring structures,
one per attribute in the schema. These attribute hubs, like Hname, Hsize and
Htype in Figure 1, organize and route the data items related to the specific
attribute independently of each other. This is done in the following way: Data
items are replicated and stored in all hubs while a query is only forwarded to the
hub where it is expected to be executed most efficiently. A wild card attribute
in a query needs to be evaluated at each node in the hub corresponding to that
attribute, while a small range for another attribute narrows the search down
to only few nodes in that other hub. In this way, replication is introduced to
improve query processing efficiency. Figure 1 shows how a data item is stored
in all attribute hubs, i.e. Hname, Hsize and Htype, and how a potential query
could most efficiently retrieve the data from Hsize.

Fig. 1. MCIS hub structure

It should be noted that hubs do not necessarily need to be actively used
for all the attributes in the schema, but they help to decrease hop count in a
system with a large number of nodes. In other words, hubs can be joined or left
at any time in order to adapt to resource consumption, but with the expense of
potentially heavier query processing and longer query response times when few
hubs are active. This potential expense is the trade-off our resource adaptation
mechanism relies on. As shown in Figure 1, there are four nodes in the system.
All of these nodes participate in Hsize, but only three of them participate in
Hname and Htype.



3 Resource Adaptation

Distributed systems like MCIS can have a high degree of churn, and one reason
for this is failing nodes [11]. There is a risk that one failing node can harm the
entire system, and even with data replication, the overall performance decreases
with node failures. The main problem in distributed systems is that the number
of concurrent users can become too high for the system to handle. Our solution to
this problem is self-optimization, which in MCIS means to automatically detect
certain changes in the individual nodes and adapt to these changes in order to
improve the service.

Available memory and processing power are critical system resources that
vary depending on all running processes on the machine. Our strategy for self-
optimization is to identify when resource consumption is at a level where MCIS
is unable to function properly or to service its users, make internal changes to
adapt to this, and consequently improve performance. It is possible to adapt to
variance in almost all resources such as memory, storage space and energy. We
call this resource adaptation, and it consists of two distinct functions in addition
to the actual MCIS application: 1) The resource consumption is measured in
order to determine when the consumption is at a critical level. We focus on CPU
load, but any other node resource could be measured. 2) The measurement data
is analyzed, and nodes join or leave attribute hubs when pre-defined thresholds
are reached.

Fig. 2. Feedback control system

Figure 2 shows our feedback control system for resource adaptation of MCIS.
The two resource adaptation modules dictate how many active attribute hubs
each data type has, based on CPU load and pre-defined thresholds. The System
monitor inspects system resources at fixed intervals and makes the obtained
information available to the Decision maker. We use processor load as the
resource adaptation trigger because calculating query routes in the attribute
hubs is a CPU intensive task. Without sufficient available CPU capacity the
queries will not be successfully executed. The processor load is calculated based
on CPU queue length, i.e. the number of processes in the waiting queue when
idle and blocking processes are omitted. This load number is calculated by the
Linux kernel [9] as the exponentially weighted moving average within a one
minute window. It is found to perform better than utilization indices when doing
dynamic load balancing in distributed systems [3]. We normalize this measure
by factor 100 such that an idle computer has a load of 0 and a fully loaded CPU
has a load above 100. We have also investigated memory utilization, but found
that it did not influence performance enough to be used as trigger.



The adjustment made in each MCIS node is whether it should join or leave
a certain attribute hub. This is not a coordinated event, but made on a per
machine basis. Individual nodes can leave a hub while the remaining nodes can
continue to use it if they have enough available resources. Leaving an attribute
hub leads to less routing calculation with a potential drawback of extra hops
and higher response times. By minimizing calculations of where to retrieve data
we expect that the MCIS node is able to answer more queries. This kind of
optimization is especially valuable for resource constrained devices like PDAs
or systems where resource demanding applications use a large percentage of the
available processing capacity.

We choose which hub to join and leave based on what we call a utility score
which ranks the different hubs based on how profitable they are when performing
queries. Data items are always replicated and sent to each hub, but queries are
only forwarded to the most selective hub, which is then responsible for providing
the results. Hence, leaving the attribute hub where fewest queries are forwarded
minimizes routing overhead. The utility score for each hub is calculated in the
following way: If a hub stores a data item, its utility score is decreased by one,
but if it forwards a query, the score is reset to zero. The result of this formula is
that hubs that answer many queries will have a utility score close to zero, while
less utilized hubs have negative scores. When MCIS is told to leave a hub, it
chooses the hub with the lowest score. The reasoning behind this strategy is to
first leave the hubs that add to resource usage by routing data items, but never
route queries.

T0 T1 T2 T3 T4

Hname 0 -3 -3 -5 0
Hsize 0 -3 0 -2 -2
Htype 0 -3 -3 -5 -5

Table 1. Example time-line of utility scores

Table 1 shows an example of how utility scores are calculated in a given
situation. T0 through T4 are points in time, ranging from oldest to newest. At
T1, 3 data items are stored and all the hubs decrease their utility score. At T2,
a query is forwarded to Hsize making it reset its score to 0 while the other two
remain at -3. At T3, 2 new data elements are stored. At T4, a query is forwarded
to Hname giving the hubs three different utility scores. The most valuable hub
at this point in time is Hname. Hsize is less important, while Htype is least
important and the first hub an overloaded node leaves.

In summary, our resource adaptation extension is a simple and light-weight
solution where the introduced overhead is too small to measure correctly. It
monitors CPU load and calculates utility scores, but does not require global
coordination or introduce extra networking traffic. All changes are made on
a per-machine basis, and the potential result is fewer node failures and more
queries performed.



4 Evaluation

The objective of the evaluation is to investigate the differences between our MCIS
system with and without self-optimization to quantify the resulting performance
improvement when adapting to changing resource consumption. The desirable
outcome of the evaluation is higher efficiency and an increased number of queries
performed when resource adaptation is applied. The number of simultaneous
queries that MCIS can perform is known as throughput rate and is expressed as
queries per time unit. We choose to evaluate our system based on throughput
as it reflects the demands and requirements that applications using MCIS have
for performance.

In our studies, the number of active hubs in MCIS is one of the key param-
eters. It varies according to resource consumption and influences how routing is
done. External load is also an important parameter, and we use synthetic load
to have total control over the quantity and when the load is applied. It is gener-
ated by two programs with the purpose of using a predetermined, fixed amount
of processing capacity. We aim at keeping our evaluation realistic and choose
data items and queries that represent real world use-cases. The data items we
use in our studies are real Internet traffic traces gathered by CAIDA [15], and
a typical investigation of these traces is anomaly detection. One example of our
queries is locating traffic on a range of ports, known to be used by malicious
programs. These queries also invoke route calculations and might not be issued
if the system has insufficient resources. Other queries have also been tested.

The parameters we vary explicitly are the number of stored data elements
(DE) and the number of queries per minute (QPM). We choose these parameters
because they correspond well to the internal load of MCIS. By changing one or
both of these parameters we can investigate the implications and understand in
which situations, if any, resource adaptation can improve MCIS.

We conduct our evaluation experiments in two phases with one local and one
distributed test. In the first test, we use one MCIS node and experiment with
a wide range of parameters. This test is an attempt to narrow our parameter
values and prepare for the second, distributed test.

Fig. 3. Distributed evaluation setup



We repeat the experiments three times and use the same configuration on all
machines to ensure that queries are processed under the same conditions, inde-
pendently of which MCIS node they are forwarded to. The machines have 2.60
GHz processors and 1 GB of memory. In the distributed test, all the machines
are connected directly to each other through the same switch. There are two
MCIS nodes and one client node running, as shown in Figure 3.

In the local test, we see that MCIS has an average CPU load of 5 on the
given hardware. This means that if the external load is below 95, MCIS has
sufficient CPU. We conclude that a load of 95 can be the trigger for leaving an
attribute hub as this is the critical level where MCIS can function properly. With
different hardware specifications the load numbers will differ and the triggers
must be adjusted accordingly. We determine all our parameter values based on
what MCIS can handle on our hardware.

Minimum Maximum

Data elements 1000 2000
Queries per minute 100 300
External CPU load 100 100

Table 2. Parameter values

Table 2 shows our results from the local test and what parameter value
ranges we use in the distributed test. For each of the varying query rates
and number of stored data elements, we perform experiments with and without
resource adaptation enabled. The improvement of the self-optimization is indi-
cated when comparing throughput between the experiments with and without
resource adaptation.
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Figure 4 shows that the experiments are almost equal when resource adapta-
tion is enabled, regardless of the number of stored data elements. MCIS is able
to perform close to 100% of all the queries when both 100 and 200 queries are
performed per minute. This is not the case when adaptation is disabled. In the
experiments where resource adaptation is disabled, the number of queries per-
formed drops drastically when the rate is increased from 100 queries per minute
to 200 queries per minute. This is especially true for the experiments with 1000
and 1500 stored data elements. In addition, we are unable to achieve consistent
results when trying to query MCIS without adaptation 300 times per minute.
The machines are fully saturated and we need to decrease the maximum query
rate to 250 when resource adaptation is disabled.

Our analysis shows that resource adaptation has a positive effect on through-
put and that it significantly improves the performance of MCIS. Most improve-
ment is achieved when the number of stored data elements is large or when query
rate is high. As expected, when a sufficient amount of resources are available the
effect of resource adaptation is neglectable.

5 Related Work

Several scalable information systems that gather information about networked
systems have been proposed in the literature such as in [14, 16, 8]. The first
two approaches focus more on information aggregation aspects, while the last
approach exhibits some self-configuration properties regarding resource utiliza-
tion. InfoEye [8] is a self-configuring distributed information management system
where management nodes communicate with monitoring sensors located at each
overlay node in order to get information about the overlay nodes which execute
application tasks. This information is provided via a query interface to applica-
tions. Since collecting information about every attribute of each overlay node is
unfeasible in a large system, InfoEye self-configures in an optimal fashion the
way it gathers the information from monitoring sensors, e.g. which attributes,
from which nodes, and via push or pull mechanism. InfoEye with the central-
ized management nodes (one such node exists in [8]) is a quite different concept
from MCIS which is a fully distributed system in which nodes make independent
decisions.

Replication in distributed systems has been studied earlier. For example, a
popularity/size-adaptive object replication degree customization scheme is de-
scribed in [17]. In [5], the focus is on maximizing object availability in peer-
to-peer communities under space constraints. Together with an additional large
body of approaches, this work focuses on developing optimal models for replica-
tion in a system given certain constraints and objectives. Our scheme differs in
that there is no system-wide coordination. Instead, individual nodes dynamically
and independently make adjustments depending on their system state.

The closest match to our work that we could find is the concept of Elastic
Routing Table (ERT) [12]. This mechanism is proposed to prevent overload
situations at particular DHT nodes due to inherent load balancing problems



in DHTs, the heterogeneity of network nodes, and the non-uniform and time
varying popularity of content. ERT uses variable size routing tables for DHT
nodes which are adjusted based on load at the particular node. The difference
to our work is that we consider impacting the replication degree of data instead
of the routing tables. In fact, ERT could be used as a complementary scheme in
MCIS to adjust each node’s routing tables for individual hubs.

6 Conclusions

In this paper we present MCIS, our distributed information sharing system which
is able to self-adapt to changing levels of resource consumption when necessary.
We achieve self-adaptation by altering internal data structures with the possi-
ble side-effect of extra hops and higher response times. This property allows the
system to be deployed among heterogeneous nodes while alleviating the problem
of individual nodes to become bottlenecks, which can decrease the performance
of the entire system. Our evaluation results demonstrate that with the use of re-
source adaptation the system achieves higher throughput than without resource
adaptation. These results are also relevant for other distributed systems that
can trade-off response time for throughput.

This paper presents our first results in our pursue towards a fully self-
organizing information sharing system. Hence, there are a number of challenges
that we would like to address in our future work. The current version of MCIS
attempts to handle overload situations in individual nodes. We want to benefit
from the large body of analytical work on replication for high availability in or-
der to drive the design of MCIS towards optimal resource adaptation. This work
also includes replicating data through duplicate attribute hubs, which requires
changes to the design of the underlying Mercury system. In addition, we plan to
model the resource consumption to be able to evaluate the behavior of the MCIS
system with a large number of nodes through simulations. Specifically, we are
interested in understanding the quantitative impact of nodes leaving and join-
ing hubs to the query response time in a large system. We are also interested in
analyzing the trade-off between the number of joined hubs and query hop count.
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