N
N

N

HAL

open science

A Flow Scheduler Architecture

Dinil Mon Divakaran, Giovanna Carofiglio, Eitan Altman, Pascale

Vicat-Blanc Primet

» To cite this version:

Dinil Mon Divakaran, Giovanna Carofiglio, Eitan Altman, Pascale Vicat-Blanc Primet. A Flow Sched-
uler Architecture. 9th International IFIP TC 6 Networking Conference (NETWORKING), May 2010,

Chennai, India. pp.122-134, 10.1007/978-3-642-12963-6_10 . hal-01056318

HAL Id: hal-01056318
https://inria.hal.science/hal-01056318
Submitted on 18 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01056318
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Flow Scheduler Architecture

Dinil Mon Divakaran' *, Giovanna Carofiglio?, Eitan Altman®, Pascale
Vicat-Blanc Primet!

! INRIA / Université de Lyon / ENS Lyon,
{Dinil.Mon.Divakaran,Pascale.Primet}@ens-lyon.fr
2 Alcatel-Lucent Bell Labs, Giovanna.Carofiglio@alcatel-lucent.com
3 INRIA, Eitan.Altman@sophia.inria.fr **

Abstract. Scheduling flows in the Internet has sprouted much interest
in the research community leading to the development of many queueing
models, capitalizing on the heavy-tail property of flow size distribution.
Theoretical studies have shown that ‘size-based’ schedulers improve the
delay of small flows without almost no performance degradation to large
flows. On the practical side, the issues in taking such schedulers to im-
plementation have hardly been studied. This work looks into practical
aspects of making size-based scheduling feasible in future Internet. In this
context, we propose a flow scheduler architecture comprising three mod-
ules — Size-based scheduling, Threshold-based sampling and Knockout
buffer policy — for improving the performance of flows in the Internet.
Unlike earlier works, we analyze the performance using five different per-
formance metrics, and through extensive simulations show the goodness
of this architecture.

Key words:Scheduling, Sampling, QoS, Future Internet, Architecture

1 Introduction

Recent works have advocated the importance of networks being ‘flow-aware’.
Bonald et al. have listed the need for having a flow-aware architecture [1]. In a
flow-aware network, the performance is measured at flow level. This is in line
with the utility of end-users, where e.g., the delay of small flows, throughput
of large flows, instantaneous rate of streaming traffic etc. are most often more
important than packet-level QoS metrics. In this context, our goal is to come up
with a flow scheduler architecture for improving the delay performance of small
(and middle size) flows. The current Internet architecture has a FCFS scheduler
and Droptail buffer at each of its nodes. These, along with the fact that most
of the flows in the Internet are carried by TCP, makes this current architecture
biased against small TCP flows for the following reasons. (i) A packet loss to a

* Corresponding author. Postal address: LIP, ENS Lyon, Lyon - 69007, France
** This work was done in the framework of the INRIA and Alcatel-Lucent Bell Labs
Joint Research Lab on Self Organized Networks.

small flow most often results in a timeout due to the small ‘congestion window’
(cwnd) size; whereas, a large flow is most probably in the congestion avoidance
phase, and hence has large cwnd size. Therefore, for a large flow, packet losses
are usually detected using duplicate ACKs, instead of timeouts, thus avoiding
slow-start. (ii) The increase in round trip time (RTT) due to large queueing
delays hurts the small flows more than the large flows. Again, for the large flows,
the large cwnd makes up for the increase in RTT; whereas, this is not the case
for small flows.

These problems being well-known, researchers have explored scheduling al-
gorithms that give priority to small flows. They range from SRPT (Shortest
Remaining Processing Time) [2] to LAS (Least Attained Service) [3] to MLPS
(Multi-level Processor Sharing) scheduling policies [1]. While scheduling algo-
rithms give priority in time, buffer management policies give priority in space.
Guo et al. showed the gain in performance attained by giving space priority to
small flows [5]; but it is a stand-alone concept that does not consider giving time-
priority to small flows. We argue that it is important to give priority in both
time and space to small flows, in order to reduce the delay as well as timeouts
faced. To the best of our knowledge, LAS scheduling policy is the only policy
that gives space priority to packets of small flows [0], thereby giving priority in
both time and space. It does so by inserting incoming packet in the appropriate
position and dropping from the tail whenever the buffer is full. But, it has been
observed that LAS is unfair to very large flows [7]. Moreover, it is challenging
to perform a strict ordering of packets of each flow at high line rates.

This work proposes a flow scheduler architecture, that gives priority in time
as well as space to small flows, and uses sampling for performing size-based
scheduling. To be precise, our flow scheduling architecture combines three essen-
tial modules that help in improving the delay performance of flows:

1. Generalized size-based scheduling;
2. Threshold-based sampling;
3. Knockout buffer policy.

The motivation for such an architecture is given in Section 2, where we also
summarize related works. The architecture is detailed in Section 3. We perform
extensive simulations and compare different performance metrics to show how
each of these three strategies contributes in improving the performance of small
flows, without affecting the performance of large flows. Unlike most previous
works, where the performance was analyzed using just one metric (usually the
conditional mean response time), we consider five different metrics. They are:

Conditional mean completion time of small flows;

Number of timeouts encountered by small flows;

Mean completion time for range of flow sizes;

Mean completion time for small flows, large flows and all flows;

U LN

Maximum completion time of small flows.

The goal of simulations and the setting are described in Section 4. The bene-
fits of using the Knockout policy are analyzed in Section 5. In Section 6, we eval-
uate the proposed flow scheduler architecture and compare with other schemes.

2 Related works and Motivation

The literature in this research area being vast, we limit the references to a small
but important subset. A large number of researchers have considered giving
priority in time to small flows. These have given rise to the study of scheduling
disciplines like SRPT, LAS and MLPS disciplines in the context of Internet
flows. While SRPT requires the knowledge of flow size in advance [2], LAS is a
‘blind’ scheduling policy — requires no in-advance information on flow size [3].
These differentiating policies perform better in terms of delay, when compared
to the naive PS (processor sharing) system*. The MLPS scheduling discipline
is a generalized version with high flexibility, having N different priority levels
distinguished by N — 1 thresholds, and strict priority among these levels [7,8,9].

The drawbacks of LAS policy, such as unfairness and scalability issue, have
motivated researchers to explore other means of giving priority to small flows,
one such being the strict PS + PS model proposed in [7]. The PS + PS model,
as the name indicates, uses two PS queues, with priority between them. The
first 6 packets of every flow are served in the higher priority queue (Q1), and the
remaining in the lower priority queue (Q2). The service discipline is such that,
Q- is served only when @7 is empty. Therefore, it is a strict P.S+ P.S model. This
work also takes a step forward in performance analysis of size-based scheduling
systems, by analyzing another metric — maximum response time — other than
the usual conditional mean response time. In addition, the authors proposed an
implementation of this model; but it relies on TCP sequence numbers, requiring
them to start from a set of possible initial numbers. This not only makes the
scheme TCP-dependent, but also reduces the randomness of initial sequence
numbers. Again, this is another work which does not account for space priority
for small flows.

Authors of [5] considered prioritizing small flows in space. This is achieved by
preferentially treating small flows inside the bottleneck queue which implement
RIO (RED with In and Out). Small and large flows were assigned different
drop functions. To facilitate this, they proposed an architecture where the edge
routers mark packets as belonging to small or large flow, using a threshold-based
classification. With priority given only in space, the performance gains in terms
of average response times (apart from analyzing the fairness) is not complete.

We observe that most of the works dealing with giving preferential treatment
based on size (or age) assume that the router keeps per-flow information. In fact,
this assumption is challenged by the scalability factor, as the number of flows
in progress is in the order of hundreds of thousands under a high load. One
solution is to use sampling to detect large flows (thus classifying them), and

4 At the flow level, the queues in the Internet are generally modelled as an M/G/1—PS
system, even when the queue is served using a FCFS policy at the packet level.

use this information to perform size-based scheduling. Since the requirement
here is only to differentiate between small and large flows, the sampling strategy
need not necessarily track the exact flow size. A simple way to achieve this is
to probabilistically sample every arriving packet, and store the information of
sampled flows along with the sampled packets of each flow [10]. SIFT, proposed
in [11], uses such a sampling scheme along with the PS + PS scheduler. A flow
is ‘small’ as long as it is not sampled. All such undetected flows go to the higher
priority queue until they are sampled. The authors analyzed the system using
the ‘average delay’ (average of the delay of all small flows, and all large flows)
for varying load, as a performance metric. Though it is an important metric,
it does not reveal the worst-case behaviour in the presence of sampling. This is
more important here, as the sampling strategy can have false positives; small
flows if sampled will be sent to the lower priority queue. In such scenarios, it is
necessary to compare other performance metrics, which we listed earlier.

3 Architecture

This section describes the modules of the architecture, and the cost of imple-
menting this architecture.

3.1 The modules

The flow scheduler architecture consists of three functional modules: a size-based
scheduler, a threshold-based sampling technique to detect large flows, and a
Knockout buffer policy giving space priority to small flows.

Size-Based scheduling: Since sampling introduces errors in the detection of
large flows, thereby permitting misclassification, using a strict priority-scheduling
strategy is not advisable. Therefore, we take a generalized model of the strict
PS + PS scheduling, called generalized size-based scheduling, or simply SB
scheduling. As before, packets of all flows are served in)1, as long as the ongo-
ing size is less than 6 packets. Once the ongoing flow size crosses 0, it is queued
in Q2. But instead of giving the whole capacity to @1, only a fraction of the
capacity is assigned to Q1. That is, the high priority queue is assigned a weight
0 <w < 1. If C is the link capacity, @1 and @2 are serviced at rates wC and
(1 — w)C respectively, whenever the queues are not empty. If Q1 is empty, Q2
is served at full capacity C. We assume that the scenario of Q2 being empty
and ()1 being non-empty is a rare possibility. Note that, if w = 1, this becomes
the PS + PS scheduling policy. The scheduling module in the figure is shown as
deciding which queue to dequeue based on the parameter w.

Threshold-Based sampling: For the sampling part, we use the well-studied
‘Sample and hold’ strategy proposed for detecting large flows [12]. It works as
follows. For every sampled packet, a flow entry is created in the flow table if

Flow Q:
Table

Sampling
module

Queueing
module

Scheduling
module

Fig. 1. Flow scheduler architecture

it does not exist. A packet of s bytes is sampled with a probability p, which is
expressed in terms of byte-sampling probability 5. We have, p = 1 — (1 — §)*.
When a packet arrives, a flow table lookup is performed. If the arriving packet
is found to be part of an existing flow, the flow-size counter in the flow table
is updated. Thus, for each sampled flow, there is a counter that maintains the
estimated size. This process is performed during every measurement interval.
Thresholds are used to reduce false positives, and to preserve continuing large
flows across intervals. Observe that the flow-table lookup is done for every arriv-
ing packet, and size update is performed for every detected flow. This is costly
in terms of processing, but reduces the flow table’s size considerably (to a few
thousands of entries). Therefore, it is possible to use SRAM to store the flow
table for efficient lookups. A useful property of this sampling strategy is that,
since the estimated size is never greater than the actual flow size, by choosing
an appropriate threshold, false positives can be completely avoided.

Knockout buffer policy: The third part is the Knockout buffer policy for
giving space priority to small flows. Though there is only one single physical
queue, it is shared by two virtual queues, one for enqueueing packets of flows
classified as small, the other for enqueueing packets of flows classified as large.
These correspond to the two queues (1 and @2 described earlier. The policy
is different from Droptail only during packet discard instants [13]. Upon the
arrival of a packet when the physical buffer is full, the Knockout policy operates
thus: if the packet is for Qs (i.e., the system has classified it as belonging to a
large flow), it is dropped. If the arriving packet is for Q1 (i.e., the system has
classified it as belonging to a small flow), the last packet from Qs is ‘knocked
out’ making space for this new packet. In the scenario of Q3 being empty (i.e.,
the physical buffer has packets of only flows classified as small), the arriving
packet is dropped. Assuming most large flows are carried by TCP, dropping a
packet from a large flow is meaningful as it will be retransmitted by the TCP
source.

Fig. 1 gives a pictorial representation of the architecture. An arriving packet first
goes to the sampling module, which does a flow-table lookup. Packet sampling
and flow-table update are performed if necessary. The queueing module decides
to queue the packet in Q)7 or @5 based on the flow-size estimate available from
the flow table and the parameter 6. If the physical buffer is full, the Knockout
policy is used to select the packet to be dropped. The scheduling module uses
the weight parameter w to perform SB scheduling.

3.2 Implementation cost

SB scheduling requires two queues. These can be implemented as virtual queues,
on top of the physical queue. The scheduling of packets as such can then be
implemented by assigning weights to these queues.

For the sampling, an SRAM with sufficient size to hold the flow table is
required. There is extra processing for updating the flow size of detected flows.
The flow-table lookup can be combined along with route-table lookup.

Knockout policy uses the two virtual queues, @1 and @2, with ()1 being the
higher priority queue. Observe that a virtual queue can grow to the actual size
of the physical queue with the other virtual queue being empty. To be able to
knock out an already queued packet from @3, the tail of Q2 needs to be tracked.
All these can be achieved if the physical queue is implemented as a linked list,
and pointers to the head and tail of the two virtual queues are maintained. This
deviates from the simplest way of implementing a queue as a circular buffer,
thus adding extra overhead in maintaining the linked list.

4 Simulation

4.1 Goal

The goal of the simulations is to evaluate the performance of the flow sched-
uler architecture. As described earlier, small flows are biased against large flows
when it comes to timeouts. Hence, we are interested in analyzing not only the
improvement in delay performance, but also the reduction in number of timeouts
faced by small flows. On the other hand, since prioritizing small flows should not
adversely affect large flows, the mean completion times of large flows conditioned
on their flow sizes are also analyzed. To see the improvement over today’s Inter-
net architecture, we compare results with the FCFS scheduler. Along with the
FCFS scheduler, the buffer policy used in all simulations here is Droptail (as is
the case in Internet nodes), though not stated explicitly in figures.

4.2 Settings

Simulations are performed using NS-2. A dumbbell topology, representing a sin-
gle bottleneck link connecting source-destination pairs, was used throughout.
The bottleneck link capacity was set to 1 Gbps, and the capacities of the source

10000

)

[=}

S

S 1000 |
G

12

2 100
Q

[}

o

£ 10 |
>

o

8

3 1+
3

Q

O

© o1

02 03 04 05 06 07 08 09 1
weight, w

Fig. 2. Average occupancy for @; for different weights

nodes were all set to 100 Mbps. The delays on the links were set such that the
base RTT (consisting of only propagation delays) is equal to 100 ms. The size of
the bottleneck queue is set in bytes, as the bandwidth delay product (BDP) for
100 ms base RTT. There were 100 node pairs, with the source nodes generating
flows according to a Poisson traffic. The flow arrival rate is adapted to have a
packet loss rate of around 1.25% with FCFS scheduler and Droptail buffer. Flow
sizes are taken from a Pareto distribution with shape a = 1.1, and mean flow
size set to 500 KB.

All flows are carried by TCP, in particular, using the SACK version. Packet
size is kept constant and is equal to 1000 B. For simplicity, we keep the threshold
in packets; 6 is set to 25 packets in all the scenarios, unless explicitly stated
otherwise. For post-simulation analysis, we define ‘small flow’ as a flow with size
less than or equal to 20 KB, and ‘large flow’ as one with size greater than 20 KB.
Here the flow size is the size of data generated by the application, not including
any header or TCP/IP information. Also note that, a small flow of 20 KB can
take more than 25 packets to transfer the data, as it includes control packets
(like SYN, FIN etc.) and retransmitted data packets.

5 Performance analysis of the scheduler using Knockout

Here we analyze SB scheduler using Knockout buffer policy, but without sam-
pling. In this case, flows are accurately classified as small and large by tracking
the ongoing size of the flow. The focus of this section is to show the importance
of having the Knockout buffer policy.

Before choosing the weights, we present an observation. First, it should be
noted that, by giving priority to small flows, a policy essentially tries to keep the
corresponding buffer for small flows almost empty. With this in mind, we con-
ducted simulations to analyze the average occupancy of Q1 for different weights.
The result is shown in Fig. 2. The number of packets of small flows in queue
is almost constant for weights w > 0.6. Hence, any w > 0.6 should give close

performance for small flows. Dynamically adapting w according to the buffer oc-
cupancy being outside the scope of this work, we set w to 0.8 for SB scheduler in
our simulations. The other scenario considered is with w set to 1.0; thus we also
analyze the strict PS + PS system. Even when there is no sampling involved,
we see that there is no notable gain in using a strict SB scheduler.

5.1 Results

25 T T T T 200

FCFS —— FCFS ——
z SB,w=0.8,KO=0 I SB,w=0.8,KO=0
2 SB,w=1.0,KO=0 - 2 SB,w=1.0,KO=0 -
g 2 SB,w=0.8,KO=1 S SB,w=0.8,KO=1
o SB,w=1.0,KO=1 2 150 SB,w=1.0,KO=1
£ £
[} 15)
£ £
= S 100 |
2 k]
9 1r ksl
Q Q
£ £
s 8 s0f
S 05 <
5} P @
= e =
0 L L L L 0 - - L L
0 20 40 60 80 100 100 1000 10000 100000 1le+06
Flow sizes (in packets of 1000 B) Flow sizes (in packets of 1000 B)
(a) small flows (b) large flows

Fig. 3. Conditional mean completion time

Fig. 3(a) shows the mean completion time conditioned on the flow sizes,
for small flows. The naive packet-level FCFS scheduling policy is shown as a
comparison. The other curves correspond to SB scheduling with different weights,
and with and without the Knockout policy. A value of ‘0’ for KO implies that the
Knockout policy is not in use, and ‘1’ implies the contrary. The figure shows the
goodness of size-based scheduling compared to the FCFS scheduling. Knockout
buffer policy is seen to complement the SB schedulers. Observe also that, with
this metric, there is no notable difference using a weight of 0.8 or 1.0.

Fig. 3(b) indicates that the large flows are not affected by giving priority to
small flows (both in space and time). In fact, it can be seen in Fig. 4(a) that
the SB scheduler with w = 0.8 and KO = 1, gives the same mean delay for very
large flows, as does the FCFS scheduler. Fig. 4(a) plots the mean completion
time of flows within different size ranges (e.g., 0-20 packets, 21-200 packets etc.).
The mean values show that, in general, the SB scheduler also performs better
for medium flows (those with a size around 2000 packets).

For each scheduling, Table 1 lists the number of timeouts faced by small flows,
along with the mean completion time (indicated by CT) for small, large and all
flows. We see that the number of timeouts encountered by small flows is highest
for FCFS, followed by the schedulers without Knockout. This happens as some
of the flows in @1, after being served with priority for the first 6 packets, come
back with more packets (due to a larger cwnd) and join @2, thereby increasing

' " FCFS —— % 1l ' +

& SB,w=0.8,KO=0 --x-- 8 SB,w=10,KO=0 O
g SB,w=1.0,KO=0 --o 5 SB,w=08KO=1 O
S SB,w=08KO=1 @ § 12 SB,w=10,KO=1 4
2 10 ¢ SB,w=10,KO=1 & c " . R
£ o 101 4t ¥
o £
,g c 8 r
c S
k=) @
ko] = 6 +
s 1r + + +
g g * T e T
8 g £ 4f,+ T g o
g g o B
] = o
) D e

01 LA : ,

<20
Range of flow sizes (in packets of 1000 B)

20-200 200-2000 2000-20000 >20000

0

40
Flow sizes (in packets of 1000 B)

10 30

(a) Mean completion time (b) Maximum completion time

Fig. 4. Other metrics

. small| small | large | all

Metrics Tos| o | oT | oT
FCFS 579 10.8432(2.3294(1.9022
w=0.8, KO = 0| 386 [0.4325|1.7532|1.3736
w=1.0, KO = 0| 449 |0.4375|1.8540|1.4468
w=08 KO =1| 6 |0.3996/1.5715|1.2347
w=10,KO=1| 5]0.3997|1.6219|1.2706

Table 1. Comparison of different metrics.

the total buffer occupancy. Without space priority, the packets of small flows
are dropped when the buffer is full. With the Knockout policy, the timeouts
are brought down tremendously as the packets of small flows are the last to
experience drops. Fig. 4(b), which plots the worst-case completion time per flow
size for small flows, also supports the necessity of giving space priority in addition
to time priority (the figure does not plot the scenario of {w = 0.8, KO = 0} for
better clarity).

Comparing the mean CTs, it can be noted that the Knockout policy gives
better results for all the means, compared to those without Knockout policy. Note
that the prioritized service enjoyed by the first 6 packets of a large flow helps
in having a ‘quicker’ slow-start phase when compared to the FCFS-Droptail
system. Similarly, non-strict schedulers give better performance (in terms of
means) for large flows, compared to the strict counterparts (both with KO = 0,
and KO = 1). At the same time, the mean CT of small flows remain almost the
same. With these comparisons, it becomes clear that a non-strict scheduler with
Knockout buffer policy performs better than strict scheduler (strict PS + PS)
without Knockout buffer. In general, these results also confirm a well-known
result — SB scheduling outperforms FCFS scheduling in improving the delay
performance.

N
w

200

=
= o N
= =
o a
S o

[ad

3
@
=}

Mean completion time (in seconds)
Mean completion time (in seconds)

o
=}

. . . . ol . .
20 40 60 80 100 100 1000 10000 100000 1le+06

0
Flow sizes (in packets of 1000 B) Flow sizes (in packets of 1000 B)
(a) small flows (b) large flows

Fig. 5. Conditional mean completion time

6 Performance analysis of the scheduler with sampling

This section analyzes the performance of the flow scheduler architecture, which
combines the SB scheduler, the threshold-based sampling strategy and the Knock-
out buffer policy. For the scheduler, we set the weight w to 0.8. The results are
compared to the SIFT scheme [11]. Note that SIFT does not use the Knockout
policy; nor does it use a threshold to classify large flows. Instead, a sampled flow
is considered ‘large’ and sent to ()s; all other undetected flows go to Q1. To see
the degradation due to sampling, we also compare these schemes with the basic
SB scheduling scheme (with no sampling). The packet-sampling probability is
set to 1/100 in the sampling schemes of both SIFT and our flow scheduler archi-
tecture. Here, we analyze the system under two traffic scenarios which differ in
flow size distribution. Scenario 1 corresponds to the one considered before, where
flow sizes were taken from a Pareto distribution. In Scenario 2, 85% of flows are
generated using an Exponential distribution with a mean 20 KB; the remaining
15% are contributed by large flows using Pareto distribution with shape a = 1.1,
and mean flow size set to 1 MB.

In the figures below, the name ‘SB-SH’ represents our flow scheduler archi-
tecture, coming from Size-Based scheduling using ‘Sample and Hold’.

6.1 Results with traffic scenario 1

Figures 5(a), 5(b), 6(a) and 6(b) show the results. The conditional mean comple-
tion time curves for small flows in Fig. 5(a) reveal that sampling-cum-scheduling
strategies (including SIFT) give improved performance for small flows in compar-
ison to FCF'S scheduling. This is anticipated, as most small flows go undetected
and get prioritized. Even the maximum delay experienced by small flows using
sampling-cum-scheduling is lesser as seen in Fig. 6(b). In the figure, the com-
pletion time in SIFT is sometimes close to that of FCFS. These are cases when
SIFT samples small flows and de-prioritizes them. Between the sampling-cum-

100

Mean completion time (in seconds)

0.1

i
o

-

20-200 200-2000 2000-20000 >20000
Range of flow sizes (in packets of 1000 B)

<20

(a) Mean completion time

.
N

[N
o

Maximum completion time (in seconds)
»~

-
I

=)

=)

SB-SH, w=0.8,

L + ++
L F

+
+ o+ + 4
R N S
L ++ +
++ 5]
A}

+

A
(o0}

a]
2

L 8 L
| g e

4

© [oXo) + o+

[o] o} Cgp Cﬁ%
ng;ﬁg g - A%
0 40 50

30
Flow sizes (in packets of 1000 B)

0 10

(b) Maximum completion time

Fig. 6. Other metrics

scheduling strategies, SB-SH scheme is seen to give smaller delay to small flows

than SIFT, both in the mean case and in the worst case.

. small| small | large | all

Metrics TO0s| T | o | OT
FCFS 579 (0.8432|2.3294(1.9022
p=0.01, KO =0, SIFT || 502 |0.4585|1.9483|1.5200
p=0.01, KO =1, SB-SH|| 5]0.3998(1.4406(1.1414
p=0.0,KO=1,SB 6 10.3996|1.5715(1.2347

Table 2. Comparison of different metrics.

Additional metrics are compared in the Table 2. In all SB schedulers, the
weights are the same (w = 0.8), and hence not made explicit in the table. The
SIFT scheme induces large number of timeouts for small flows, as it gives no space
priority to packets of small flows. In addition, a small flow that is sampled, gets
de-prioritized in SIFT, leaving it to compete with the large flows. This is also
clear from Fig. 6(b), which plots the maximum delay per size for small flows.
From Fig. 6(a) and Table 2, it is seen that the delay for large flows is higher
in SIFT than in the SB-SH scheme. Observe that we have the same sampling
probability for both schemes. This means, a flow once sampled is de-prioritized
immediately in SIFT; whereas a sampled flow still enjoys priority (both in time
and space) for the next 6 packets in SB-SH scheme. This helps the large flows
to attain a large TCP cwnd faster (than in FCFS and SIFT).

Comparison of SB-SH scheme with the naive SB scheduling (without sam-
pling), which shows that the former performs better than the latter, might appear
to be surprising. But in fact, it is not — recall, that we have not tried to find
the optimal threshold, 6, in our study here. The false negatives that results from

% 1l ‘ ‘ " FCFS |+
I k) SIFT,w=0.8,p=0.01,KO=0 ©
2 S SB-SH,w=0.8,p=0.01,KO=1 A
S § 12 SB,w=0.8,p=0,KO=1 m]
[}
® £
£ T 1ot + 4 + + *
= @ + ++
< 2 -
£ s 8f
S B .
Z =3 6
= £ + [
+ + + + +
£ 2 sl Frt e s o 5 oy
8 o @ o
c 3 [0} (0] m
é % 2t fecoos OOOdJ °© Em%g@(po L N
= (Seepeo) <l A A A a
o 0 . . .
0 20 40 60 80 100 0 10 20 30 40 50

Flow sizes (in packets of 1000 B) Flow sizes (in packets of 1000 B)

(a) Conditional mean completion time (b) Maximum completion time

Fig. 7. Metrics for small flows

. small| small | large | all
Metrics T0s| T | o | OT
FCFS 792 10.7603|1.7491{1.2168
p=0.01, KO =0, SIFT || 778 10.4204|1.3195|0.8354
p=0.01, KO =1, SB-SH|| 0]0.3671{1.2327|0.7666
p=0.0,KO=1,SB 14]0.3698(1.3101{0.8039

Table 3. Comparison of different metrics.

the sampling strategy increase the mean number of packets being served at @1,
which is similar to increasing the threshold 6. Increasing the threshold, increases
the rate at which TCP cwnd increases (due to negligible queueing delay and very
few losses). To confirm, we performed SB scheduling (with Knockout policy, and
without sampling) where 6 was set to 100 packets. It was found that number of
timeouts for small flows was 5, and the mean CTs for small, large and all flows
were 0.3997, 1.3740 and 1.0939 respectively. Except for the mean CT for small
flow, which is almost the same for all, these values are better than all the results
shown in Table 2.

6.2 Results with traffic scenario 2

Similar graphs were obtained for the second traffic scenario. We show only two
plots here — figures 7(a) and 7(b), and refer to an internal report for other
figures [14]. Table 3 compares other interested metrics. Comparing the values in
the table reveals that the results are similar to that with the first traffic scenario.
Note that, as the number of small flows is higher in this scenario, SIFT gives
a worse performance for the maximum completion time of small flows in this
scenario (Fig. 7(b)) in comparison to the previous scenario (Fig. 6(b)).

7 Conclusions

In this paper, we proposed a new flow scheduler architecture to improve the
performance of flows in the Internet. Through arguments and simulations we
have emphasized the importance of each of the modules in the architecture. The
architecture is shown to improve the performance of flows in comparison to the
naive FCFS scheduler. Besides, in comparison to SIFT, the flow scheduler archi-
tecture brings in better performance in terms of conditional mean completion
time and timeouts for small flows, and mean CTs (for small, large, and all flows).
Apart from these, the worst-case delay performance is also appealing.

In general, our study confirms previous observation that size-based scheduling
induces negligible degradation to large flows. While sampling is known to be a
practical solution in tracking large flows, here we also see that it does not affect
the performance of small flows. This work opens different directions for future
work. The parameters such as threshold 8, weight w and sampling probability
p were kept constant here. Finding the right values for each of these so as to
obtain the optimal delay performance is dependent on the other two parameters.
All of them have an influence on the mean queue length. A larger value of 6 will
result in a larger number of packets sent to 1, a smaller value of w indicates a
reduction in the service rate at (J1, and decreasing the sampling probability will
also increase the average number of packets of large flows served at Q1. So, the
variation in the average queue length (for a given load) can be used to decide
the optimal values for these parameters.

References

1. Bonald, T., Oueslati-Boulahia, S., Roberts, J.: IP traffic and QoS control: the need
for a flow-aware architecture. In: World Telecommunications Congress. (Sep. 2002)

2. Schrage, L.: A proof of the optimality of the Shortest Remaining Processing Time
Discipline. Operations Research (16) (1968) 687-690

3. Rai, ILA., Urvoy-Keller, G., Vernon, M.K., Biersack, E.W.: Performance analysis
of las-based scheduling disciplines in a packet switched network. SIGMETRICS
Perform. Eval. Rev. 32(1) (2004) 106-117

4. Kleinrock, L.: Queueing Systems, Volume II: Computer Applications. Wiley In-
terscience (1976)

5. Guo, L., Matta, L.I.: The war between mice and elephants. In: ICNP ’01. (Nov.
2001) 180-188

6. Rai, I.A., Biersack, E.W., Urvoy-Keller, G.: Size-based scheduling to improve the
performance of short TCP flows. Network, IEEE 19(1) (2005) 12-17

7. Avrachenkov, K., Ayesta, U., Brown, P., Nyberg, E.: Differentiation Between Short
and Long TCP Flows: Predictability of the Response Time. In: INFOCOM. (2004)

8. Aalto, S., Ayesta, U., Nyberg-Oksanen, E.: Two-level processor-sharing scheduling
disciplines: mean delay analysis. SIGMETRICS Perform. Eval. Rev. 32(1) (2004)
97-105

9. Aalto, S., Ayesta, U.: Mean delay analysis of multi level processor sharing disci-
plines. In: INFOCOM. (2006)

10. Zseby, T., et al: RFC 5475: Techniques for IP Packet Selection. http://www.rfc-
editor.org/rfc/rfc5475.txt (Mar. 2009) Network Working Group.

11.

12.

13.

14.

Psounis, K., Ghosh, A., Prabhakar, B., Wang., G.: SIFT: A simple algorithm for
tracking elephant flows, and taking advantage of power laws. In: 43rd Annual
Allerton Conference on Control, Communication and Computing. (2005)

Estan, C., Varghese, G.: New directions in traffic measurement and accounting.
SIGCOMM Comput. Commun. Rev. 32(4) (2002) 323-336

Chang, C.G., Tan, H.H.: Queueing analysis of explicit policy assignment push-
out buffer sharing schemes for atm networks. In: Proceedings of the 13th IEEE
Networking for Global Communications. Volume 2. (Jun. 1994) 500-509
Divakaran, D.M., Carofiglio, G., Altman, E., Primet, P.V.B.: A flow scheduler
architecture. Research Report 7133, INRIA (Dec. 2009)

	A Flow Scheduler Architecture
	Dinil Mon Divakaran , Giovanna Carofiglio, Eitan Altman, Pascale Vicat-Blanc Primet

