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Abstract. A Software Product Lines (SPL)'la set of software-intensive
systems sharing a common, managed set of feathag¢ssatisfy the
specific needs of a particular market segment @sion and that are
developed from a common set of core assets in sciiped way".
Variability is a central concept that permits thengration of different
products of the family by reusing core assetss Itaptured through
features which, for a SPL, define its scope. Featare represented in a
feature model, which is later used to generatepttoelucts from the
line. From the testing point of view, testing alhet possible
combinations in feature models is not practicaldose: (1) the number
of possible combinations (i.e., combinations oftdeas for composing
products) may be untreatable, and (2) some combigmay contain
incompatible features. Thus, this paper resolvesptioblem by the
implementation of combinatorial testing techniqaésapted to the SPL
context.

Keywords: testing, software product lines, combinatorial itest feature
coverage, pairwise

1 Introduction

A Software Product Line (SPL) is a set of softwarenisive systems sharing a
common, managed set of features which satisfy geeific needs of a particular
market segment or mission and which are developath 2 common set of core
assets in a prescribed way [1]. Products in a fhare a set of characteristics
(commonalities) and differ in a number of variatippints, which represent the
variabilities of the products. Software constructim SPL contexts involves two
levels: (1) Domain Engineering, which refers to degelopment of common features
and the identification of the variation points; @joduct Engineering, where each
concrete product is built. At this second levelnooonalities must be included in the
products, and the corresponding variation pointstroa adequately managed.



Traceability and reuse are fundamental aspects In d&elopment and, thus,
testing is an essential task in this kind of sofemdevelopment paradigm. In fact, and
error introduced in a common part which remainsetected may affect all the
products in the line; in the same way, an erraa irariation point will be propagated
to all the products which include that variation.

In previous works [2], a framework for model-drivesting in SPL was defined.
The framework includes a methodological approacdiutomate the generation of test
models from SPL design models, and specifies a waleal with variability: given a
SPL design, the approach produces a test model vilndtides enough information
to build specific test cases both for the commatuies of the line, as well as for the
specific characteristics of the variation pointsafly implemented in each product.

However, just as the execution of integration t&gsts required after unit testing in
a classic testing process, features of a SPL musaldme tested when they are
integrated into a single product; finding no fauits core assets at the Domain
Engineering level does not mean that its transfdomainto a concrete product
(generated at the Product Engineering level) do¢sntroduce defects. In the same
way, the fact of not discovering errors when araisal feature is tested does not
guarantee that a given product with that very séeature, together with others, will
be free of defects, even in those features whippamently, were previously error-
free.

From a testing point of view, testing all the pbisifeature combinations in a SPL
is unfeasible. In a SPL with just 5 features anddants, the number of products that
can be generated is°Z1024. Testing each possible product is expensivé an
unrealistic for software industry.

This paper defines a strategy for testing productegeding from SPL feature
models. The strategy uses pairwise as its coveriitgyion, in the sense that all the
pairs of features must be included and tested leaast one product. The Orthogonal
Variability Model (OVM, [3]) is used to represetiet variation points and its variants.
This does not mean any loss of generality in th@gsal, since any other metamodel
can be used to represent the feature model. Intfecsame rules would be applied to
obtain the test suite of products to test.

One of the most widely-used strategies to obtainMise coverage is the AETG
algorithm [4], which works in polynomial time. Ihe& SPL context, the algorithm
must be modified to deal witequiresandexcludegelationships between features. If
a variant in a feature excludes a variant in andiegure, then the pair between both
variants must not be present in any product. OrthefSPLs we use as a case study
consists of a system to play board games ovemtieeniet. Thus, we may be dealing
with four variation points (Game, Dice, Opponentdadumber of Players) and
several variants in each ({Ludo, Trivial, Chessg€lters}, {Dice, No-dice} {Person,
Computer}, {2, >2}). Ludo or Trivial with No-dicemake no sense, and neither do
Chessor Checkerswith Dice or with more than two players>Z). Restrictions
between pairs such as these are not contemplatedEIG and, therefore, the
algorithm has been modified to not consider undédgiairs.

This change to the algorithm is not restricted th 8Rting, since it is common to
test systems excluding invalid combinations of temues. Pairwise assumes that
many errors only arise from the specific interattad certain values of two or more
parameters [5], but in the actual practice of safawtesting, test cases containing



undesired pairs are often removed from the finsi seiite. For these situations, the
improved version of AETG can be also used.

2 Representing variability in SPL

Variability is a central concept in product famitievelopment. It allows for the
generation of different products in the family Busingcore assetsVariability is
captured throughfeatures A feature can be a specific requirement, a sSelect
amongst optional or alternative requirements, or ba related to certain product
(functionality, usability, performance, etc) or ilementation characteristics (size,
execution platform, standards compliance, etc)[6].

Domain engineering techniques are used to systeafigtiextract features from
existing or planned members of a product line. liedatrees are used to relate features
to each other in various ways, showing sub-featuatiernative features, optional
features, dependent features or conflicting feat(i8¢ Examples of these methods
are FODA [7], FORM [8], FeatuRSEB [9], among othd¥iyure 1 shows a feature
model example.

In this work, the proposal by Pohl et al. [3] isedsto manage the variability,
defined in their Orthogonal Variability Model (OVM). In OVM, variability
information is saved in a separate model contaidiata about variation points and
variants. Avariation point may involve severaVariants in, for example, several
products. OVM allows the representation of depen@snbetween variation points
and variable elements, as well as associations gmariation points and variants
with other software development models (i.e., desigtifacts, components, etc.).
Variation points and variants are the core concegptthe OVM language. Each
variation point offers at least one variant. Adzhtilly, the constraints-associations
between these elements describe dependencies beterdgble elements [3].

‘ Board Games SPL ‘

irequires {requires

‘ Players ‘

N
Person ‘ ‘Computer ‘ >2 ‘

mdo
' requires |
- Trivial | | Checkers | Sl

Figure 1 — Feature Model for Board Game SPL

‘ Opponent ‘

excludes| lexcludes

OVM includes a graphical notation: Variation Poiai® represented by triangles
and their variants with a rectangle. Dotted linggresenbptional variants (i.e., they
can be omitted in some products), whereas solik liepreseninandatoryvariants
(they are present in all products). The associatibetween variants may be
requires_V_Vandexcludes_V_Vdepending on whether they denote that a variation
requires or excludesanother variation. In the same way, associatiogisvéen a



variation and a variation point may lbequires_V_V
denote whether a variation requires or excludesadines

Por excludes_V_VPalso to
sponding variation point.

Figure 2 shows the OVM model for the board game Sik.board games share a
wide set of characteristics, such as the existefheeboard, one or more players, the
use of dice, possibility of taking pieces, presenicabsence of cards, policies related
to the assignment of the turn to the next playtr, &s we showed in the previous
section, there are 4 four variation points (Gamé&eD Number of players and

Opponent) and 4, 2, 2, and 2 variants respectively.
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Figure 2 — OVM model for Board Game SPL

In previous works, a specific UML profile to repraseOVM models was
defined[10]. Figure 3 shows the same informatiomdagure 2 but using the profile.
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Figure 3 — Board Games SPL using U

ML profile for OVM



The use of one or another metamodel is independetihé process: Roos-Frantz,
Benavides and Ruiz-Cortés[11] have shown that poissible to use model-to-model
transformation in order to generate a target modeforming to an OVM metamodel,
preserving all the semantics in the source models.

3. Combination testing strategies and related works

Combination strategies are a class of test-caset&sl methods where test cases are
created by the combination of “interesting valuesahich have been previously
identified by the tester. The input of all thesestiteg strategies is a set of sets
(parameters), each with some elements (values)olitpit is a set of combinations,
all of them composed of one element from each isptit

Like many test-case selection methods, combinativategies are based on
coverage. In the case of combination strategiegrage is determined with respect
to the use of the parameter values that the telsteides are interesting. Thus, for
example, a test suite satisfieach-use(also known ad-wisg coverage when each
test value is included in at least one test casledriest suitePairwise (also known as
2-wis@ coverage requires that every possible pair adragting values of any two
parameters be included in some test case. Notettirasame test case may cover
more than one unique pair of values. A natural resiten of pairwise coverage is
wise which requires that every possible combinationirgéresting values of
parameters be included in some test case in thetis.

Different test generation strategies have beenighdid for pairwise testing, some
of them collected in a survey article by Grindaffuband Andler [12]. Since the
problem of generating minimum pairwise test setsNIB-complete, different
researchers have developed strategies to generataminimum pairwise test sets,
such as algorithms based on orthogonal arrays ¢t3jovering Arrays [14]. One
important drawback to these two methods is that ttee only be applicable to sets
(parameters) with the same number of elements {&stes), which restricts the
actual application of these techniques.

One very interesting approach for pairwise coverags proposed by Cohen et al.
[4], who developed the AETG algorithm fewisecoverage (Figure 4).

Considering the combinatorial strategies in SPL exn®errouin et al. [15] uses t-
wise for feature coverage using SAT solvers, digdime set of clauses (transformed
from a feature diagram) into solvable subsets. Ty the features as parameters;
each parameter may receive two valuiese(or false to represent the presence or
absence of the feature: thus, the combinationesjyatollowed up by these authors
may produce much more products to be tested husetrequired. Actually, the
feature model should have information enough tcsictan the relationship between a
variation point and its variants. The authors taite accounmandatoryandoptional
features, theequiresrelationship, but no thexcludesone. In our approach, variation
points are considered as the parameters: instelaavofg two boolean values for each
feature, we process the feature model to considar ¢ach feature variant is a
parameter value. Moreover, all the relationshipBndd in OVM are processed to
include or exclude pairs. The use of combinatdeating to cover features in SPLs



has also been the focus of previous works by Mc@f&§] and Cohen et al.[17],
who address the issue of pairwise testing throughogonal arrays and covering
arrays respectively. However, we consider thateteggproaches have a key limitation
in that they that require all of the features toéhthe very same number of variants.
In our experience (also corroborated by examplaadadn the literature[18]), this is
unrealistic, since features very rarely offer theryv same number of variants.
Moreover, these works neither consider #xeludesrelationship between features.
Indeed, we decided to improve the AETG algorithm beeahe number of values in
each parameter can be variable.

Assume that we have a system wittest parameters and that tkta parameter has
different values.

Assume that we have already selectéekt cases. We select the 1 by first
generatingV different candidate test cases and then choosiadhat covers the most
new pairs.

Each candidate test case is selected by the folpgieedy algorithm:

1.Choose a parametkand a valué for f such that that parameter value
appears in the greatest number of uncovered pairs.

2.Letf, =f. Then choose a random order for the remaining pater Then,
we have an order for dllparameters, ..., f.

3.Assume that values have been selected for paraigter, {. Forl <i <Kk,
let the selected value frbe calleds. Then, choose a valwg,; for fi.1 as
follows.

For each possible valugfor fy, find the number of new pairs in the set of
pairs{f.1 = vand f=v, for L<i <k}. Then, leti.; be one of the values that
appeared in the greatest number of new pairs.

Note that, in this step, each parameter valuerisidered only once for
inclusion in a candidate test case. Also, that wdf@vsing a value for
parametef;,, the possible values are compared with onlykthalues
already chosen for parametéss.., f.

Figure 4. Original explanation of the AETG algorithm for covering pairwise [4]

4 Selection of products to test in SPL

Testing all the existing combinations in a featuredsi is similar to exhaustive
testing in traditional software development andeisonomically unviable. The
objective, then, is to select a testing strategygeoide what products will be tested,
assuming that these products are representatitreeafet of all the possible products
in the line.

Obviously, if the core assets are tested in ismhatit is less likely to find defects
when they are assembled in a product. Howeves, litlecessary to ensure that there
are no undesired results when the product is gtbrRather than exhaustive testing,



a combinatorial approach can help SPL engineersetidd what combinations of
features are more interesting to test, based oturfeacoverage and feature
dependencies.

In our proposal, the variation points are the patens for the pairwise, whereas
variations are the values of the parameters. Fivst, define how pairs between
features are generated from the OVM model and skcbow the test cases are
selected using the modified version of the AETG atgor. Each test case is a
combination of features, i.e., a product of thelin

4.1 Building the pairs set

We use the OVM model to describe the features dedrelationships between
features. As described in Section 2, OVM is useexemplify the proposal, since the
results of this study can be extrapolated to ahgratepresentation of feature models.

There are four parameters in the example of the BGames SPL: Game, Dice,
Players and Opponent. The values for the parametershe Variations for each
Variation Point. Table 1 shows the parameters anmdatues for the Board Games
SPL.

features

type dice opponent players
.E ludo dice person 2
2 chess computer | moreThan2
m
=

trivial

checkers

Table 1 — Features and variants

Actually, the information inTable 1is incomplete, as it is necessary to add the
information about the relations between the pararseand their values. Table 1 is
augmented with the following information:

e Variation Point: If the variation point is optional, then a nealue is added.

This value states that the entire variation poimisselected for the product.

The rule is:

If VP is an optional Variation Point withvariants, then the VP parameter has

n+1 values: one for each variant and one more fov#hee “no”.

In the example, the variation point Dice is opéiband the “no” value is added.

e Variants: In OVM the relationship between a Variation P@nt a Variant can
be optional, mandatory or alternative. For eacle.cas

e Optional The optional variability dependency states thataant can (but
does not need to) be part of a product line aptdiog3]. No values are
added for this relationship.

. Mandatory The mandatory variability dependency states thatraant must
be selected for an application if and only if tlsaciated variation point is
part of the application [3]. For example, varianihZigure 2 for the Players
variation point is mandatory: then, val@ecan be present in all products of
the line (because the Player variation point is aisndatory) and the variant
More than 2is optional. The rule is:




If VP is a variation point withn variants, beingk mandatory anch-k
optional, then the parameter VP Hask)+1 values, where the first value
the selection of all th& mandatory values together, and th& remaining
values are pairs of each optional value with th& fialue.

For the example, since value 2 is mandatory, &trbe added to the other
values: i.e., MoreThan2 and (2,MoreThan2), whicthésecond value for
the parameter Player.

»  Alternative The alternative choice groups a set of variahtd are related
through an optional variability dependency to thens variation point and
defines the range for the amount of optional vasida be selected for this
group [3]. The alternative contains two attribut@# andmax The rule is:

If VP is a variation point witm optional variants, where the alternative
dependency igj, k], the values for the parameter VP are the resu
Comb(n,i)whereCombis the combinatorial function @fvalues taken fron
n values, with = j..k.

t of

With this information, the table of parametersudittas shown irrable 2

features
type dice opponent players
% ludo dice person 2
= chess no computer 2, moreThan2
g trivial
checkers

Table 2 — Parameters for pair-wise

The next step is to build the tables of pairs betwtbe parameters shown in Table 3.

type-dice type-opponent type-players |dice-opponent| dice-players | opponent-players
ludo-dice ludo-person ludo-2 dice-person dice-2 person-2
chess-dice ludo-computer ludo-2,more2 |dice-computer|dice-2,more2| person-2,more2
trivial-dice chess-person chess-2 no-person no-2 computer-2
checkers-dice| chess-computer chess-2,more2 | no-computer | no-2,more? | computer-2,more2
chess-no trivial-person trivial-2

checkers-no

trivial-computer

trivial-2,more2

ludo-no

checkers-person

checkers-2

trivial-no

checkers-computer

checkers-2,more2

Table 3 — Pairs between parameters

The OVM model also states the relationship betwegiation points or variants
belonging to different variation points. The redahip can be:
e Variant requires variant (requires_V_V): The selection of one variant v1 in

the variation point VP1 requires the selection abther variant vk in the
variation point VPK, without taking into accounethariants associated. The rule

IS:

For each pai(vl, vj),wherevj is different fromvk, the valuevk is added to the
pair, thus gettingvl,vj,vk).




e Variant excludes variant (excludes_V_V):The selection of one variant v1 in
the variation point VP1 excludes the selection obther variant vk in the
variation point VPK, without taking into accounethariants associated. The rule
is:

The (v1, vk) pair is deleted from the corresponding pairseabl |
In the example irFigure 2 the Chessvariant excludes th&loreThan2variant
(the same occurs with tl@gheckersvariant). Thus, the pai{€hess-2,More2and
(Checkers-2,MoreZare deleted from th@ype-Playerspair table.

e Variant requires Variation Point (requires_V_VP): The selection of one
variant v1 in the variation point VP1 requires ttensideration of a variation
point VPk. The rule is:

If the variation poinVPkis optional, the value “no” was added as valuélier
parameter VPK. Th@y1, no)pair is deleted from the pairs between VP1 and Pk
In the example ifrigure 2 theLudo variant require®ice (the same occurs with
the Trivial variant). The pairéTrivial,no) and (Ludo, no)are deleted from the
pairs between type and dice.

e Variant excludes Variation Point (excludes_V_VP):The selection of one
variant v1 in the variation point VP1 excludes toasideration of variation point
VPK. The rule is:

If the variation point VPK is optional, the valued” was added as value for the
parameter VPk. All pairs between (v1, vk) are dmldtom the pairs between
VP1 and VPk except the pair (v1, no)

In the example oFigure 2 the ChessandCheckersrariants exclud®ice: thus,
(Chess, dicepnd (Checkers, diceare deleted from the pairs between type and
dice.

e Variation Point requires Variation Point (requires_VP_VP): The selection of
one variation point VP1 requires the consideratibivariation point VPk. The
rule is:

If the variation point VPK is optional, the valued” was added as value for the
parameter VPK. The pair (vi, no) is deleted from plairs between VP1 and VP
where vi represents all values of VP1

e Variation Point excludes Variation Point (excludes W _VP): The selection of
one variation point VP1 excludes the consideratibrariation point VPk. The
rule is:

If the variation point VPK is optional, the valued” was added as value for the
parameter VPK. All pairs between (vi, vk) are dadiefrom the pairs between
VP1 and VPk except the pair (v1, no),

Table 4 shows the resulting pairs between the pdesmalues, excluding the
relationships between features.
Once the pairs table is built, the AETG algorithmstrioe modified to remove the
undesired pairs from the final products.



type-dice type-opponent type-players |dice-opponent| dice-players | opponent-players
ludo-dice ludo-person ludo-2 dice-person dice-2 person-2
trivial-dice ludo-computer ludo-2,more? |dice-computer|dice-2,more2| person-2,more2
chess-no chess-person chess-2 no-person no-2 computer-2
checkers-no | chess-computer trivial-2 no-computer | no-2,more | computer-2,more2

trivial-person trivial-2,more2

trivial-computer checkers-2

checkers-person

checkers-computer

Table 4 - Pairs between parameters excluding relatnships between features

4.2 Modifications to the AETG algorithm

The next step is to calculate the test cases usaigvipe. Achieving pairwise
coverage requires each pair to be covered by at l@ae test case. The AETG
heuristic algorithm must be adapted to consideufeadependencies.

AETG selects the value for each parameter that appeamost unvisited pairs.
The problem in this case is that, after removinguhdesired pairs, not all pairs are
present in the final set of pairs. Therefore, tlygw@hm must find the value in each
parameter that appears in most unvisited pairsfdiing into account that the pairs
between the selected values exist. ConsideringgXample, the pairs in Table 4, the
execution of the original AETG algorithm seleglisdo, dice, person, 2as first test
case. The second test case selected wilirivéal, no dice, computer, 2-moreThan2}
however, the(trivial, no dice) pair is not present in the set of pairs. The o&bin
AETG algorithm Figure 4 is improved in step 3: instead of leaving “thér gelected
appears in the greatest number of new pairs”, gdttind the pair exists in the pairs
set” is required.

The stop condition for the algorithm also must banged. The original AETG
algorithm stops when all pairs in the pairs setehbeen visited. In our case, pairs
may exist that are unreached. This is the casehBmpair(no dice, 2-moreThan2),
which is never visited because is not possiblérit & combination of feature values
where this pair is valid. Then, this pair remaingisited at the end of the algorithm.
The stop condition is changed and the algorithmsstwpen the test case selected
does not visit any unvisited pair. We have called AETG algorithm with these
improvementsCustomizable AETG

4.3 Implementation of aCustomizable AETG algorithm

Previously, a framework for combinatorial testirglled Combinatorial Testing for
Software Product Lines (CTSPL) was implemented aglaapplicatioh Any of the
testing strategies supported by the framework @arebumed as an algorithm which
takes a set of sets as inp8t=(S,, S, ...,9}, which correspond to the parameters or
variation points) and produces a set of combinatufrthe elements in the sets (which

L http://161.67.140.42/CombTestWeb/



correspond to the parameter values, or productthenSPL context). Thus, the
algorithm implementing each strategy can be seea gsecialization of an abstract
Algorithm (Figure 5), which builds its corresponding colleotiof elementdy means
of an abstract operationbyildCombination which is implemented in each
specialization.

Algorithm #sets Set
#divisors:int[] -elements:Vector
#maxNumberOfCombinations:int 1
#selectedPositions:OrderedVector
+add(s:Set)()
+getCombination(index:int):Combination() [ !

+buildCombinations()() 0 Combination
f \ T / % -positions:int[]
AlliCombinations AETG CustomizableAETG
+buildCombinations()() +removePair(PairsTable pt, Pair p)()
+buildCombinations()() +buildCombinations()()

Figure 5. Partial view of the hierarchical structureof Customizable AETG

As seen in the figure, each algorithm holds a cttha of sets, which represent the
parameters. Moreover, each algorithm has a calledf integersqelectedPositions
which hold the positions of the selected combinmetio

1. Build pairTablesfor S the set of parameterpdirTablesdoes not includes the
unrequired pairs).

2. letc=combination #0
3. Add c to theselectedset
4. UpdatepairTableswith the pairs visited bg
5. while there are unvisited pairsrairTables and continue
1. initialize c putting the value which visits more unvisited pairpairTables

2. completec with the values of the remaining satsuch way most pairs are
jointly visited and the pairs selected exists ipairTables

3. if c covers some unvisited pair
3.1 Addc to theselectedset

3.2 UpdatgoairTableswith the pairs visited byg

elsecontinue:= false

Figure 6. Pseudocode of the Customizable AETG algohin

Each Combinationkeeps an array of as many integers as there #eirsédts
positionsfield. Each integer ipositionsrepresents the index of the selected element



from the corresponding set. Given a combinatiore #igorithm extracts the
parameter values by visiting its collectionsefts

Figure 6 shows a pseudocode of this new versioABTG. Note the changes
introduced in the stop condition (step 5) and mgklection of values (step 5.2).

4.3 Description of the web application

The web application accepts the description of tleenents in the sets (sets are
distributed in columns; their elements in rows) atldws the application of any of
the implemented combination algorithms. Moreovieg, application also accepts xmi
files representing the feature model of the SPLEigure 7, the user has selected and

is ready to submit the xmi file corresponding te feature model of the Board Games
SPL.

Combinatorial testing page

Upload feature model: |C\Documents and Settil

Algorithms Data

A

O All combinations {exponential cost
> Each choice (verv low cost

O Antirandom (exponential cost

© Comb (lincal cost 0 ludo 2 person dice
O Genetic 1 |trivial 2,52 computer No
O Costly pairwise (exponential cost
O AETG (lineal cost

(O Customizable pairwise (exponential cost 3 |checkers
& Customizable AETG (beta, lineal cost)
O Random (lineal cost

Example

v public void testTCD
erbose: [ ClassUnderTest o=

2 chess

Expression to generate test cases:

Figure 7. Uploading the feature model shown in Figur&

Once the application has received the feature meilelthe xmi file, it analyzes it
and shows the pairs tables (Figure 8) leaving #ex to select those that should not
be included in the final suite. At this time, weeamodifying the code of the
subsystem in charge of processing the xmi filedtect, via the relationships defined
in the model (excludes and requires), which pdimikl be removed.

Then, the user is ready to select any of the provalgorithms (left side of Figure
7) and obtain the results. If s/he selects the d@oighble Pair AETG algorithm, the
algorithm shows the results.

We will illustrate how the results are reached dbsty the steps followed by the
Customizable AET@ Figure 6. The first step in the algorithm is ‘iBupairTables
for S, the set of parameters, the pairTables doemolode the restricted pairs”, the
pairTables is shown in Table 6. At the beginning, ¢cbkimn corresponding to the
test case that visits this pair is blank. Table &shthe visited pairs in each step of
the algorithm. In the first step, the ludo valugegrs in 5 unvisited pairs (see Table



6). When the combination # 0 ={ludo, dice, perspni@selected, Table 6 is updated

and for step 2, the ludo value appears now in 2sited pairs.

Algorithm "customizableaetg"
Check below the pairs to be removed

8 pairs in (0, 1)

Ogoo=Eoogoo

€

Oooono

Elements # of visits
(ludo, ) 0
(ludo, 2.22) 0
(chess, 1) 0
(chess, 2,=2) 0
(trivial, 2) 0
(trivial. 2.2) 0
(checkers, 2) 0
(checkers, 2270
4 pairs in (1, 2)
Elements # of visits
(2, person) 0
(2. computet) 0
(222, person) |0
(2,72, computer) |0

8 pairs in (0, 2)
Elements
(ludo, person)
(ludo, computer)

(chess, person)

oooono

(trivial, person)
O
[ |(checkets, person)

0

0

0
(chess, computer) 0
0
(trivial, computer) 0
0

0

[J [(checkers, computer)

4 pairs in (1, 3)

Elements  # of visits
[ (2. No) 0
[J /(2. dice) 0

[]1(2=2.No) 0
[ 1(2.=2, dice) |0

# of visits

Figure 8. The user selects the pairs to be removed

8§ pairs in (0, 3)
Elements
(ludo, No) 0
(ludo, dice) 0
(chess, Na) 0
(chess, dice) 0
(trivial. No) 0
(trivial, dice) 0
(checkers, Na) |0
(checkers, dice) |0

# of visits

O
a
O
O

4 pairs in (2, 3)

Elements # of visits
[ |(person, No) 0
[ (person. dice) |0

[ (computer, No) |0
[ (computer, dice) 0

Visited pairs by value
Step| ludo| chess| trivial | checkers| dice| no dice| person | computer| 2 |2- »2| Test Case

1 5 4 5 4 6 6 3 ] 8| 6 {ludo, dice, person, 2}
2 2 a4 5 4 3 6 5 2 5 6 {trivial,dice,computer,2-=2}
3 2 a4 2 4 0 6 5 5 5 3 {chess,no dice,person,2}
4 2 1 2 4 0 3 3 5 3 3 | {checkers, no dice,computer,2}
5 2 1 2 1 0 1 3 2 1 3 {trivial dice,person,2-=2}
6 2 1 1 1 0 1 1 2 1 2 {ludo,dice,computer,2->2}
7 ] 1 1 1 0 1 1 1 1 1 {chess,no dice,computer,2}
8 o 0 1 1 0 1 1 0 1 1 {trivial, dice, person, 2}
9 o 0 0 1 0 1 1 0 0| 1 {checkers,no dice, person,2}

] 0 0 i) 0 1 0 i) 0 1 {chess,no dice, person, 2}

Table 5 — Visited pairs and test cases in Customiake AETG

The algorithm selects the value for each parame#tvisits the most pairs. In step
2, itfirst selects computer because this valyseaps in 8 pairs; the selected test case
up to now is {-,-,computer,-}. Then for the rest thie parameters, the algorithm
selects the value that visits the most pairs. Tis¢ larameter selectedTigpeand the
value trivial is selected because it appears imigspThe test case is now {trivial,-
,computer,-}. For the parametBice, the value no dice appears 6 times, but the pair
(trivial, no dice) does not exist in pairsTable,tke value dice is selected. The test
case is {trivial, dice,computer,-}. For the paraereplayer, value 2, moreThan2
appears 6 times and is selected. The test caseriigal{t dice, computer, 2-



MoreThan2}. Once the test case is selected, Taldeupdated with the visited pairs
for the test case.

The algorithm continues 9 more steps and the testscaelected are shown in
Table 5. In the last step, only one pair is unvikitéhis pair is (no dice, 2-
MoreThan2). This pair is unreacheable by a comlmnadif pairs, so in step 10 the
algorithm selects {chess,no dice, person, 2}. Duehe fact that this pair does not
visit any unvisited pair, the algorithm stops.

type-dice |testcase| typ test case| type-players |test case|d test case | dice-play test case play: test case

ludo-dice 1,6 ludo-person 1 ludo-2 1 dice-person 15,8 dice-2 1,8 person-2 1,3,8,9
trivial-dice 2,5,8 ludo-computer 6 ludo-2,more2 6 dice-computer 2,6 dice-2,more2| 2,5,6 person-2,more2 5
chess-no 3,7 chess-person 3 chess-2 3,7 no-person 3,9 no-2 3,4,7,9 computer-2 4,7
checkers-no 4,9 chess-computer 7 trivial-2 8 no-computer 4,7 no-2,more2 computer-2,more2 2,6
trivial-person 5,8 trivial-2,more2 2,5
trivial-computer 2 checkers-2 4,9
checkers-person
checkers-computer 4

Table 6 — Test cases that visit each pair in Custanable AETG

Using the CustomizedAETG algorithm the test caseaiddl are shown in Table
5, this mean that the test engineer must testaf@nings products in the line (where
CF refers the set of common features to all thelyets in the line):

Product 1 = CF U {ludo, dice, person, 2}

Product 2 = CF U {trivial, dice, computer, 2, Moreaii2}

Product 3 = CF U {chess, person,2}

Product 4 = CF U {checkers, computer,2}

Product 5 = CF U {trivial, dice, person, 2, MoreTi2a

Product 6 = CF U {ludo, dice, computer, 2, MoreTHan2

Product 7 = CF U {chess, computer, 2}

Product 8 = CF U {trivial, dice, person, 2}

Product 9 = CF U {checkers, person, 2 }

4 Conclusions

This paper describes the application of combindtaesating to the context of
Software Product Lines. Products proceeding fronPl &nsist of different types of
combinations of the variants and variation pointsmposing the line. Since
exhaustive testing is not viable and, furthermonany of the possible combinations
will not belong to any of the final products, sealeauthors have also approached
combinatorial testing strategies for SPL testingpeeglly applying pairwise
coverage. However, even some combinations procgdobm this kind of coverage
criterion will not be present in any product (iretBoard Games example, neither
chess nor checkers will match with more than twayets). Thus, the AETG
algorithm for pairwise coverage has been modifeecemove the unfeasible products
from the final suite.

The modified version of the algorithm has been ideth on a web page, which
furthermore makes it possible to upload a featuoglehdescribed in xmi. The tool
loads the variants and variation points and is lolgp@af applying a variety of
algorithms. In current SPL practice, there are pafitsombinations which the tester is



more interested in testing. Therefore, we are atgwroving the algorithm to give
weight to each pair, in order to more exhaustivest the most important pairs.
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