
HAL Id: hal-01054991
https://inria.hal.science/hal-01054991

Submitted on 11 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

ServiceStore: A Peer-to-Peer Framework for QoS-aware
Service Composition

Jun Jin, Yu Zhang, Yuanda Cao, Xing Pu, Jiaxin Li

To cite this version:
Jun Jin, Yu Zhang, Yuanda Cao, Xing Pu, Jiaxin Li. ServiceStore: A Peer-to-Peer Framework for
QoS-aware Service Composition. IFIP International Conference on Network and Parallel Computing
(NPC), Sep 2010, Zhengzhou, China. pp.190-199, �10.1007/978-3-642-15672-4_17�. �hal-01054991�

https://inria.hal.science/hal-01054991
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ServiceStore: A Peer-to-Peer Framework for

QoS-aware Service Composition

Jun Jin1, Yu Zhang2, Yuanda Cao1, Xing Pu1, Jiaxin Li1

1 Beijing Laboratory of Intelligent Information Technology, School of Computer

Science, Beijing Institute of Technology, Beijing, China
2 School of Computer Science, Beijing University of Civil Engineering and

Architecture, Beijing, China
flea.miss@gmail.com

Abstract. Web service composition is to integrate component services for
providing a value-added new service. With the growing number of component
services and their dynamic nature, the centralized composition model can’t
manage them efficiently and accurately. In this paper, we proposed a distributed
hash table (DHT)-based peer-to-peer (P2P) service composition framework,
called ServiceStore. Compared with the central control in centralized model, in
our ServiceStore, service selection and composition are distributed to the
involved task brokers, requesting nodes and service nodes. Furthermore, a
simple parallel service selection approach which can still satisfy global
constraints is proposed and implemented in our multi-role cooperation (MRC)
protocol. The results of experimental evaluation show that ServiceStore can
achieve high scalability and efficiency

Keywords: P2P; DHT; service selection; task broker; MRC protocol.

1 Introduction

Standardized web service as a main solution of service-oriented computing provides a
flexible and convenient way for applications to select and integrate basic services to
form new value-added services. Many applications bring service composition into
practice, Figure 1 shows a service composition example.

Fig. 1. Web service composition example

 * This project supported by Provincial Natural Science Foundation of Hebei Province, China (Grant No.

F2009000929).

In Figure 1, a traveler requests a tourism planning from a service provider and
existing atomic services can’t satisfy this composite request by themselves. Service
composer can integrate the fight booking, accommodation booking and car rental by
using BPEL and execute the BPEL file on an engine such as BEPL4J[6]. Furthermore,
the traveler also associates the request with some global QoS constraints (e.g. total

price ≤ $5 and response time ≤ 1 minute). The service composer must ensure that the
integrated QoS attributes satisfy the global constraints.

With the aim to realize efficient service composition and resource utilization in
distributed environment, our contribution of this paper can be briefly stated as follows:

(1) A resource-efficient service selection approach. In order to pick out appropriate
component services from the alternative ones that provide identical functionality but
distinct QoS attributes and resource states. With the method proposed in [7], we
design a simple local selection approach that not only satisfies the global constraints
but also provides efficient resource utilization.

(2) A multi-role cooperation (MRC) protocol. Each peer in MRC protocol can
plays four roles – query originator, query decomposer, task broker and coordinator.
With the help of this protocol, a composite service request can be solved efficiently.

Assuming that the component service is atomic, the rest of this paper is organized
as follows. Section 2 gives a brief overview of related work. Section 3 introduces the
system architecture. Our multi-role cooperation protocol for distributed service
selection and composition is presented in Section 4. Section 5 gives a simple
proactive failure recovery approach. Experimental evaluations are presented in
Section 6. Finally, Section 7 gives conclusions and our future work.

2 Related work

The problem of service composition has drawn many research institutes in recent
years. As centralized orchestration lacks scalability and is easy to break down, more
research work concentrates on decentralized orchestration. P2P system which is
famous for its self-organizing and scalability has been adopted by many projects as
their basic architecture.

SELF-SERV [4,5] adopts an orchestration model based on P2P interactions
between service components in the composition which provides greater scalability
than the approaches based on central scheduler. They propose the concept of service
community and a decentralized execution model. But service discovery and selection
are not considered.

WSPDS [7] uses an unstructured P2P system – Gnutella [2] as its infrastructure.
With probability flooding technique and the subsequent content-based network, the
overhead of query dissemination is significantly reduced. In WSPDS, each servent
(acts as both server and client) is composed of two engines, communication engine
and local query engine, having tasks for communication, collaboration and issue
query. To discover a requested service, each servent receives the query and forwards
it to the neighbor that has the most similar identity to the query. However, QoS-aware
service selection is not considered in WSPDS.

SpiderNet [10] proposes a QoS-aware service composition framework that uses
DHT based P2P system as its infrastructure. Using (key, value) pairs, service
discovery is very efficient. SpiderNet, each peer acts the same as in WSPDS, both
server and client. SpiderNet uses a probing protocol to collect needed information and
perform parallel searching of multiple candidate service graphs. Although the authors
use probing budget and quota to control each request’s probing overhead, they don’t
consider the situation when dealing with large number of concurrent requests and the
service session setup time can’t be guaranteed.

Note that all the research work above treats service discovery and selection
sequentially which is costly and unnecessary. Integer programming [8] can be used to
find optimal selection of component services [15]. Alrifai et al. [9] adopts it and
changes service selection into a parallel fashion. In this paper, we adopt this idea and
propose a distributed broker-based framework with MRC protocol to achieve QoS-
aware and resource-efficient service composition.

3 System Architecture

The ServiceStore system is implemented as a distributed middleware infrastructure,
which can effectively map user’s composite service request into a set of component
services in the P2P service overlay.

3.1 Three-layer architecture

The architecture of ServiceStore is a three-layer structure (see Figure 2). The bottom
service overlay is constructed by all service nodes with their registry component
services and links mapped from underlying physical network. To facilitate node
location in service overlay, a unique identifier nodeID is assigned to each service
node. Each component service provides its functionality with advertised QoS
attributes, however these non-functional values are mutative yet, e.g., the response
time will be high when network congestion emerges, we classify them into two parts:
(1) static metadata denoted as MDs(sij), a profile of the component service, including
function name, its location LC(sij) and IO parameter list; (2) dynamic metadata
denoted as MDd(sij), including recent statistical QoS attribute values Q(sij) =
[q1(sij),…,qM1(sij)] and instant workload WL(sij) = [r1(sij),…,rM2(sij)], where M1 and M2

are the sizes of QoS vector and workload vector respectively, Q(sij) and WL(sij) are
mutative to describe the performance of sij. All these component services can be
classified into different service classes with each class sharing the same functionality.
From the perspective of delivered functionality, each service class is identified as a
service task, denoted as Ti. For clarification, we use Si = {si1,…, sij,…, siL} to denote
the service class corresponding to Ti, where sij represents the j-th component service
being able to fulfill the service task Ti, and L is the size of Si. The scenario of L > 1
indicates that the service task Ti is able to be realized by multiple candidate services,
which can differ in their respective QoS attributes.

To fast locate components services, we adopt Distributed Hash Table technique
[13] to manage the component services in ServiceStore. DHT systems use (key, value)

pairs to store and retrieve the value associated with a given key. We design a hash
function to map a function name (keywords of function name) to a nodeID (GUID).
After applying it, the metadata list of component services that own similar function
names and thus belong to the same service class (including MDd(Si) and MDs(Si)) are
stored on the same service node, here called task broker. We use Broker(Si) to denote
the task broker corresponding to Si. In Figure 2, the middle layer shows the task
brokers of all component services on the service overlay.

The top layer is a function graph that comes from a user’s composite service

request. A request is denoted as R =ǇF, Qr
ǈ, where F = {T1,…,TN}is a function

graph composed by a set of tasks (composition relations); Qr = [rq1
,…, r

Mq 1
] shows a

user’s QoS requirements.

Fig. 2. System architecture

3.2 QoS-aware service composition problem

In ServiceStore, given a composite service request R with F = {T1,…,TN} and Qr =

[rq1
,…, r

Mq 1
], the aim of service composition is to find a list of component services,

we call it Execution Plan (EP), that can realize each task in F and satisfy each quality
attribute in Qr.

Figure 2 shows a few of selected components services and their links with dotted
lines and circles respectively, which make up an EP for R.

4. Multi-role Cooperation (MRC) Protocol

4.1 Four roles in MRC protocol

In MRC protocol, each peer plays four roles: (1) Query originator provides
visualized specification environment [1] to help users issue composite service
requests. (2) Query decomposer receives the quality levels and converts the global
constraints Qr into local constraints and sends them to the involved task brokers. (3)

Task broker maintains the meta-data list of alternative component services, and
receives local constraints from requesting node and returns the most appropriate
component service according to the heartbeats from every component service. (4)
Execution coordinator the execution of the selected component services using
composition pattern (e.g. sequential, conditional, concurrent, loop) and return the
results to the user.

Fig. 3. A peer plays four roles in ServiceStore

4.2 MRC protocol

Our MRC protocol includes five major steps shown in Figure 3:
Step 1. Issue a composite service request. With the help of prestored composite

service templates, a user at a host specifies a composite service request R using GUI.

After query analysis,ǇF, Qr
ǈis sent to the query decomposer and F is sent to

execution coordinator.
Step 2. Decompose global QoS constraints into local ones. Through graph

analysis, the involved tasks and global QoS constraints Qr are sent to the MIP
decomposition [7]. Then the query decomposer achieves N local constraints and sends
them to the corresponding task brokers.

Step 3. Select feasible component services locally. To achieve accurate selection,
each component service sends heartbeat message with MDd(sij) indicating the states of
sij to Broker(Si). Then each corresponding task broker performs local selection and
returns the selected service candidates to the requesting peer separately. And for
efficient resource utilization, task broker updates WL(sij) of the optimal selected
candidate service(e.g. its concurrent connection plus one). The details of this step will
be described in the next subsection.

Step 4. Form executable plans. Upon the receipt of all service candidates from
the corresponding task brokers, the execution coordinator begins to compose them
into EP according to F and sends to the first component service in EP.

Step 5. Coordinate the execution of the EP. When receives an EP, a component
service checks if its function is contained in the EP. If its function exists, the

component service begins to execute and output results to the next component service
according to EP. Finally, after all component services complete their executions, the
last component service sends the results to the requesting peer (user) and each
involved task broker recovers WL(sij) of the component services in EP .

4.3 Service selection

As each task broker keeps the information of all alternative component services, upon
the receipt of local constraints, it uses them as the bound and performs service
selection for the corresponding service class independently.

Given the following parameters: (1) The received local constraints for service class
Si: Q

c(Si)= [qk(Si) | 1 ≤ k ≤ M1] ; (2)The dynamic metadata of component service sij:
MDd(sij) = <Q(sij), WL (sij)>, where Q(sij) = [qk(sij) |1 ≤ k ≤ M1] and WL (sij) = [rk(sij)| 1
≤ k ≤ M2] . We compute the utility U(sij) of the j-th service candidate in class Si as

k

M

k

ijk

ij
kiQkiQ

sqkiQ
sU ω×−

−= ∑=

1

1 minmax

max

),(),(

)(),(
)((1)

where ∑ = =1

1
1

M

k kω ,),(max kiQ and),(min kiQ represent the max and min value of the k-

th quality attribute in class Si.
Generally, the component service with the highest U(sij) is always selected as it

provides the best capability. However, with the increasing number of invocation, its
actual performance may become poor. Thus, a resource utility function UR(sij) is
needed for representing a component service’s resource utility.

k

M

k
v

v

ij
kr

kra
sUR

ij

ij ω∑=
×= 2

1 max)(

)(
)((2)

where ∑ = =2

1
1

M

k kω ,)(max kr ijv and)(kra ijv represent the max and available value of the

k-th resource (e.g. memory) in node vij (suppose sij is on the node vij).
Here three requirements need to be considered in service selection: The selected

component services (1) satisfy the global constraints; (2) achieve a large resource
utility value; (3) achieve the optimal utility. The first requirement is very essential, as
our major aim is to achieve a feasible solution for the user. The last requirement is set
the lowest priority, even if big value does please the user, it may cause the system
unstable yet for resource competition. Hence, for better stability and resource utility,
the second requirement has higher priority than the last one. We apply these
requirements in the algorithm 1.

Input: Decomposed local constraints Qc = [q1,q2,…,qM1] and

metadata list of the service class S MDd(S) = {<[q1(sj),…,

qM1(sj)], [r1(sj), …, rM2(sj)]> | 1< j <L, sj∈S}

Output: Sorted list of component services Sout = {s1, s2,…}
1. Initialize list S

out

2. for all sj in S do

3. for all k, 1 ≤ k ≤ M1, that qk(sj)∈MDd(S) do

4. if qk(sj) > qk then break
5. end if
6. set k = k + 1
7. end for
8. if c then
9. add sj to Sout
10. compute U(sj) and UR(sj)
11. end if
12. end for
13. Sort Sout according to UR(sj)
14. return Sout

Algorithm 1. Local service selection

Our aim is to get a list of feasible component services from each involved task
broker for the completion of EP. All feasible component services must meet the
aforementioned three requirements. Algorithm 1 shows the service selection process.
With the decomposed QoS constraints for service class S and meta-data of S as input
parameters, the Broker(S) begins to run this algorithm. Broker(S) checks every QoS

constraint (e.g. price ≤ $2) for every candidate service. If any QoS attribute was
beyond the upper bound of the according given QoS constraint, Broker(S) would
discard that component service. Therefore, the first requirement is satisfied during
service selection. After Sout filled with all feasible component services, we sort it
according to UR(sj) of every feasible component service. For fault tolerance, each
involved task broker returns more than one candidate services.

5 Proactive failure recovery

Failure recovery is very essential in dynamic environment [12]. ServiceStore provides
a proactive failure recovery mechanism to maintain the quality of service composition
during system runtime. As task broker is very crucial in MRC protocol, we discuss
the situation when task brokers fail.

ServiceStore maintains a small number of backup task brokers for each service
class, for fault tolerance, when a peer publishes a component service, the metadata of
this component service are stored into more than one task brokers [10]1.

(1) Backup task broker computation. Applying the secure hash algorithm to the
strings formed by concatenating two or three the component service’s function name,
we can achieve different resourceIds, thus different task brokers to maintain the meta-
data list of this service class. For clarification, we give the following simple functions:

String Concatenate(String functionname, int n) : concatenate the function name for
n times. GUID SH(String functionname) : apply the secure hash algorithm to the
functionname. And these three task brokers of the service class Si with the function
name name_i are calculated as the flowing:

Broker1(Si) = SH(Concatenate(name_i, 1))

1 Current implementation keeps two additional backups.

Broker2(Si) = SH(Concatenate(name_i, 2))
Broker3(Si) = SH(Concatenate(name_i, 3))
For example, three task brokers of car rental service class are calculated by

SH(Concatenate (“carrental”,1)), SH(Concatenate (“carrental”,2)) and
SH(Concatenate (“carrental”,3)) respectively.

(2) Backup task broker selection. If one of the task brokers failed, we would
adopt the rule depicted in Figure 4.

(3) Backup task broker synchronization. As service selection depends on the
meta-data list of the candidate services, each component service periodically sends
the MDd to the task brokers (including the backup ones).

Fig. 4. A simple rule for task broker selection

6 Implementation and evaluation

The experiment is carried out on PeerSim [3] and the decentralized service overlay is
implemented based on DHT based P2P system Pastry [11,14]. Please note that we set
the same parameters during each round of simulation: 50 service functions in service
overlay, 2 composite service requests during each time unit and 3000 time units each
round of simulation lasts.

First, we evaluate the resource utility of our MRC protocol. For simplicity, we use
the number of each candidate component service’s concurrent link to measure the
resource efficiency of our selection approach. We use a 1000 nodes service overlay,
with each node provides component services whose function is selected from 50 pre-
defined functions and each function has 4 duplicates. Each composite service request
contains 3 functions. Every component service’s number of concurrent link will be
increased by one when it is selected and reduced by one after working for 80-90 time
units. Figure 5 illustrates the 4 duplicates almost have the same number of concurrent
connections during 2000 running time units.

Fig. 5. Concurrent connections of each service duplicate

Second, we evaluate the max and average hops when discovering a component
service in different size service overlay. As the expected number of routing hops in
DHT based P2P system Pastry is O(logN) [14], in Figure 6 although the service
overlay size grows from 500 to 20000, the number of average hop increased very
slowly and only few hops reach the max number.

Fig. 6. Max and average hops for discovering a component service

Third, we measure the average composite service session setup time with different
service overlay size and different function number of each request. Figure 7 illustrates
the average composite service session setup time when the function number is 3, 5, 10,
20 and the service overlay size varies from 50-20000. Thanks to parallel service
selection, with the increasing service overlay size and function number in each
request, composite service setup time increases slowly and doesn’t multiples with the
function number.

Fig. 7. Composite service session setup time

7 Conclusion and future work

In this paper, we have presented a P2P service composition framework called
ServiceStore. The main contributions are: 1) ServiceStore provides a fully
decentralized architecture implemented by using distributed task brokers as
coordinators; 2) ServiceStore provides a simple MRC protocol for service
composition; 3) Our evaluation shows that ServiceStore scales well with service
overlay size increasing and achieves good resource efficiency.

Since the task broker is a critical role in MRC protocol and the failure recovery
needs more time especially near the end of composite service execution, in the future
we will integrate behavior prediction into our service composition framework which
can help us to improve system stability.

Preference

1. Svend Frolund and Jari Koistinen.: Quality of service specification in distributed object
systems design. Distributed Systems Engineering Journal, 5(4), December (1998).(QML,
which is a language for the description of QoS using XML.)

2. Gnutella. http://gnutella.wego.com/.
3. PeerSim. http://peersim.sourceforge.net/
4. B. Benatallah, M. Dumas, Q.Z. Sheng, and A.H. Ngu.: Declarative Composition and Peer-

to-Peer Provisioning of Dynamic Web Services, Proc. Int’l Conf. Data Eng. (ICDE), pp.
297-308. Feb. (2002).

5. Benatallah, B., Sheng, Q., and Dumas, M.: The Self-Serv environment for web services
composition. IEEE Internet Computing, 7(1), pp. 40–48, (2003).

6. Business Process Execution Language for Web Services Java Run Time (BPWS4J).
http://www.alphaworks.ibm.com/tech/bpws4j.

7. Farnoush Banaei-Kashani, Ching-Chien Chen and Cyrus Shahabi.: WSPDS: web services
peer-to-peer discovery service, In Proc. of the 5th Int’l Conference on Internet Computing
(IC), pp. 733-743. Las Vegas, Nevada, June (2004).

8. G. L. Nemhauser and L. A.: Wolsey, Integer and Combinatorial Optimization, Wiley-
Interscience, New York, NY, USA, (1988).

9. Mohammad Alrifai and Thomass Risse.: Combining Global Optimization with Local
Selection for Efficient QoS-aware Service Composition, In Proc. of the 18th Int’l World
Wide Web(WWW), Madrid, Spain, April (2009).

10. Xiaohui Gu, Klara Nahrstedt, and Bin Yu.: SpiderNet: An Integrated Peer-to-Peer Service
Composition Framework, In Proc. of the 13th Int'l Symp. on High-Performance Distributed
Computing (HPDC), IEEE Computer Society, pp. 110-119. Honolulu, Hawaii, (2004).

11. PeerSim-Pastry, http://code.google.com/p/peersim-pastry/
12. B. Raman and R. H. Katz.: Load Balancing and Stability Issues in Algorithms for Service

Composition, Proc. of IEEE INFOCOM 2003, San Francisco, CA, April (2003).
13. Distributed hash table, http://en.wikipedia.org/wiki/Dist-ributed_hash_table.
14. Antony Rowstron and Peter Druschel.: Pastry:Scalable, distributed object location and

routing for large-scale peer-to-peer systems, Proc. of the 18th IFIP/ACM International
Conference on Distributed Systems Platforms(Middleware). Heidelberg, Germany,
November (2001).

15. D. Ardagna, B. Pernici.: Global and Local QoS Constraints Guarantee in Web Service
Selection, 3rd IEEE International Conference on Web Services (ICWS), pp.805-806.
Orlando, FL, USA, July (2005).

