
QLRan: Latency-Quality Tradeoffs and Task
Offloading in Multi-node Next Generation RANs

Ayman Younis, Brian Qiu, and Dario Pompili
Department of Electrical and Computer Engineering

Rutgers University–New Brunswick, NJ, USA
E-mails: {a.younis, brian.qiu, pompili}@rutgers.edu

Abstract—Next-Generation Radio Access Network (NG-RAN)
is an emerging paradigm that provides flexible distribution of
cloud computing and radio capabilities at the edge of the wireless
Radio Access Points (RAPs). Computation at the edge bridges
the gap for roaming end users, enabling access to rich services
and applications. In this paper, we propose a multi-edge node
task offloading system, i.e., QLRan, a novel optimization solution
for latency and quality tradeoff task allocation in NG-RANs.
Considering constraints on service latency, quality loss, and edge
capacity, the problem of joint task offloading, latency, and Quality
Loss of Result (QLR) is formulated in order to minimize the
User Equipment (UEs) task offloading utility, which is measured
by a weighted sum of reductions in task completion time and
QLR cost. The QLRan optimization problem is proved as a
Mixed Integer Nonlinear Program (MINLP) problem, which is
a NP-hard problem. To efficiently solve the QLRan optimization
problem, we utilize Linear Programming (LP)-based approach
that can be later solved by using convex optimization techniques.
Additionally, a programmable NG-RAN testbed is presented
where the Central Unit (CU), Distributed Unit (DU), and UE are
virtualized using the OpenAirInterface (OAI) software platform
to characterize the performance in terms of data input, memory
usage, and average processing time with respect to QLR levels.
Simulation results show that our algorithm performs significantly
improves the network latency over different configurations.

Index Terms—NG-RAN; Tasks Offloading; Convex optimiza-
tion; OpenAirInterface (OAI); Testbed.

I. INTRODUCTION

Motivation: Mobile platforms (e.g., smartphones, tablets,
IoT mobile devices) are becoming the predominant medium
of access to Internet services due to a tremendous increase
in their computation and communication capabilities. How-
ever, enabling applications that require real-time, in-the-field
data collection and processing using mobile platforms is still
challenging due to (i) the insufficient computing capabilities
and unavailable aggregated/global data on individual mobile
devices and (ii) the prohibitive communication cost and re-
sponse time involved in offloading data to remote computing
resources such as cloud datacenters for centralized computa-
tion. In light of these limitations, the Edge Computing (EC)
concept has emerged, which aims to unite telco, IT, and cloud
computing to provide cloud services directly from the network
edge. EC nodes are implemented directly at the cellular Base
Stations (BSs) of a Radio Access Network (RAN), or at the
local wireless Access Points (APs) using a generic-computing
platform. This way, the edge node allows for the execution of
applications in close proximity to end users, which reduces

the end-to-end (e2e) delay and the costly backhaul bandwidth
consumption. Recently, Cloud Radio Access Network (C-
RAN) [1] has been introduced as a clean-slate redesign of the
cellular architecture where some to all of the physical-layer
communication functionalities are decoupled from distributed,
possibly heterogeneous, Radio Access Points (RAPs), i.e., BSs
or WiFi hotspots, and are then consolidated into a base band
unit pool for centralized processing. However, the centralized
C-RAN design follows a “one size fits all” architectural
approach, which makes it difficult to address the wide range of
Quality of Service (QoS) requirements and support different
types of traffic [2]. Also, a fully centralized architecture
imposes high capacity requirements on fronthaul links [3].
Therefor, Next Generation RANs (NG-RAN) [4] has been
introduced as a resource-efficient solution to address the above
issues and reduce deployment costs. It is worthy of note that,
due to the flexibility of NG-RAN architecture, mobile network
operators will have high degree of freedom to move from a
“full centralization” in C-RAN to a “partial centralization”
in NG-RAN with a specific functional splitting option to a
“distributed approach” in EC [5]—enabling rich services and
applications in close proximity to the end users.

Task offloading can enhance the performance of mobile
devices because servers in the edge cloud have much higher
computation capability than the mobile device. Therefore, en-
abling task offloading in NG-RAN can be proposed to address
limitations (e.g., storage and computing resources) in the ex-
isting RANs. Meanwhile, in some cases, processing the entire
input data in EC servers would require more than the available
computing resources to meet the desired latency/throughput
guarantees. In the context of IoT applications, transferring,
managing, and analyzing large amounts of data in an EC
would be prohibitively expensive. According to [6], [7], by
relaxing the tolerance of quality loss, service latency can
be reduced. We explore a novel dimension, Quality Loss of
Results (QLR), to represent the user service with suboptimal
networking conditions. Our key idea is motivated by the obser-
vation that in many edge applications like media processing,
machine learning, and data mining, an exact result is not
always necessary, and a suboptimal result is acceptable. As
a consequence, relaxing QLR in such applications alleviates
the required computation workload and enables a significant
reduction of latency and computing cost in NG-RAN.

Our Vision: Unlike the traditional approaches mentioned

2021 16th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

ISBN 978-3-903176-35-5 © IFIP 108



above, (i.e., full centralized/distributed RAN), our objective
is to design a holistic optimization solution for latency-
quality aware joint task offloading in a multi-edge NG-RAN
to minimize the UEs’ overall offloading cost. Specifically,
we consider a multi-edge node network where each RAP is
equipped with an edge node to provide computation offloading
services to UEs. The benefits brought by a multi-edge node
NG-RAN system over the single-edge NG-RAN (aka single-
cloud) system are multi-fold: (i) firstly, edge nodes may be
overloaded when serving a large number of offloading UEs.
One can reduce overloaded servers by redirecting some UEs
to offload to the neighboring node edges from the nearby
RAPs, thus preventing the resource-limited edge node from
becoming the bottleneck; (ii) secondly, any UE can opt to
offload its task to the RAP with a more favorable uplink
channel condition, saving transmission energy consumption;
(iii) finally, coordination of resource allocation to offload
UEs across multiple neighboring RAPs can help mitigate the
effect of interference and resource contention among users and
hence, improve offloading gains when multiple UEs offload
their tasks simultaneously. In this paper, a Latency and Quality
tradeoffs task offloading problem, called (QLRan), is designed
to optimize service latency and QLR under application-specific
requirements, e.g., communicating and computing demands.
Additionally, the process of task allocation across edge nodes
is formulated as an objective optimization problem. The
optimization objectives include both minimizing the average
service latency and reducing the overall quality loss.

Related Works: The NG-RAN paradigm has attracted
considerable attention in both academia and industry over the
past several years. For instance, the open source FlexRAN
platform [8] is designed to activate the dynamic functional
splitting option in NG-RAN. ORAN [9], founded by AT&T,
aims to drive the mobile industry towards an ecosystem of
innovative, multi-vendor, interoperable, and autonomous NG-
RAN, with reduced cost, improved performance and greater
agility. Meanwhile, some recent works focused on the energy
consumption and offloading decision problem to minimize an
execution delay. For instance, in [10], the authors formulate
an optimization model for NG-RAN, called Apt-RAN, to
optimize the energy consumption of the Central Unit (CU)
pool and the number of handovers, considering different
functional splits. The work in [11] minimizes the execution
delay by one-dimensional search algorithm, which finds an
optimal offloading decision policy according to the application
buffer queuing state and characteristic of the channel between
the user and the EC server.

The computation offloading decision that minimizes the
energy consumption at the user while satisfying the execution
delay of the application was proposed in [12]–[14]. The
optimization problem in [12] was formulated as a Constrained
Markov Decision Process (CMDP) while a decision on the
computation offloading in [13] done periodically in each time
slot, during which all the users are divided into two groups:
the first user group is allowed to offload computation to the
EC server while the second group has to perform computation

locally due to unavailable computation resources at the EC
server. For the femto-cloud computing systems, the cloud
server is jointly optimized the femto access points, the transmit
power, precoder and computation load distribution in [14].

Existing work has shown the feasibility to save energy
and/or reduce latency by relaxing the workload computation
accuracy requirement [6], [15], [16], either via optimization
and software-based techniques [6], [15], or hardware-based
approximation techniques [16].

Although the focus of our paper is orthogonal to this line of
work, considering different workload partitioning techniques
within the joint optimization framework, what we propose
in QLRan opens up interesting avenues for researches in the
context of NG-RAN. Most of the mentioned works consider a
single remote server as the offloading destination. In contrast,
with considering constraints on service latency, quality loss,
and edge capacity, our paper proposes an algorithmic approach
for latency and quality tradeoff task offloading in multi-node
NG-RANs. Furthermore, our work is based on real-world
NG-RAN testbed experiments that allowed us to characterize
the performance in terms of data input, memory usage, and
average processing time with respect to QLR levels.

Our Contributions: The main objective of this paper is to
design the QLRan algorithm, optimizing the trade-off between
the application completion time and QLR cost. The main
contributions of this paper are summarized as follows.
• Subjecting to transmission delay, processing delay, qual-

ity loss, and computing capacity constraints, we math-
ematically formulate and analyze the QLRan optimiza-
tion problem in NG-RAN as a Mixed Integer Nonlinear
Program (MINLP) problem that jointly optimizes the
computational task allocation, and QLR levels. The prob-
lem formulation and analysis trade off in optimizing the
service latency and the overall quality loss.

• The QLRan optimization problem is proved as a non
deterministic polynomial-time hard (NP-hard) problem.
To solve the problem efficiently, we first relax the binary
computation offloading decision variable and QLR level
to real numbers. Then, we utilize the Linear Program-
ming (LP)-based method to solve the relaxed QLRan
problem by using convex optimization techniques.

• We provide a set of tools to deploy a NG-RAN mobile
network. To explore the virtualization in the 5G system,
we assign several OpenAirInterface (OAI) [17] containers
composing of a RAN and the core of the 5G sys-
tem. Specifically, we implement a programmable testbed
to demonstrate a connection between UE, RAN, and
Evolved Packet Core (EPC) implemented in NG-RAN
virtualization environment. The real-time experiments are
carried out under various configurations in order to profile
functional splitting, the data input, memory usage, and
average processing time with respect to QLR levels.

• We provide formal proofs on the convergence and op-
timality of our algorithm and evaluate its performance
under different network conditions. In term of computing
capacity and number of tasks, the numerical results show

2021 16th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

ISBN 978-3-903176-35-5 © IFIP 109



that the latency can be reduced, while decreasing the QLR
level under practical physical constraints.

Paper Organization: The remainder of this paper is orga-
nized as follows. We present the system model in Sect. II;
the QLRan problem is formulated in Sect. III, followed by
presenting a linear programming-based solution for QLRan
optimization problem; the performance evaluation is discussed
in Sect. IV; finally, we conclude the paper in Sect. V.

II. SYSTEM MODEL

In this section, we describe the network setting, quality loss
of result tradeoff, and task uploading model.

A. Network Description

We consider a multi-cell, multi-node edge system as illus-
trated in Fig. 1, in which each RAP (e.g., BS, eNodeB (eNB),
gNodeB (gNB), etc.) engages with a set S = {1, 2, .., S}
of S edge nodes (e.g., neighboring DU servers) to provide
computation offloading services to the resource constrained
mobile devices such as smart phones, tablets, and wearable
devices. In general, each edge node can be either a physical
server, a Virtual Machine (VM) or a container with moderate
computing capabilities provisioned by the network operator
and can communicate with the UE through wireless channels
provided by the corresponding RAP. Each UE can choose to
offload computation tasks to a edge node from one of the
nearby RAPs it can connect to. We denote the set of UEs
in the mobile system and the set of computation tasks as
U = {1, 2, ..., U} and K = {1, 2, ...,K}, respectively. We
denote auk ∈ {0, 1} to indicate whether the task k is generated
by UE u, and bus ∈ {0, 1} is defined to indicate whether edge
node s is available for UE u (i.e., the edge node s is in the
list of edge candidate). Then, we have,

auk =

{
1, k ∈ Ku
0, Otherwise

, aus =

{
1, s ∈ Su
0, otherwise

, (1)

where Su ⊆ S is defined as the set of edge candidates for
UE u, and Ku ⊆ K is defined as the set of tasks generated by
UE u. Furthermore, a binary variable ask is defined to indicate
whether task k is assigned to edge node s. The task k will
be successfully assigned to the edge node s only if the edge
node s is available for the generator of the task k. Therefore,

ask ≤ min{auk, aus},∀u ∈ U , k ∈ K, s ∈ S. (2)

The modeling of user computation tasks, task uploading trans-
missions, edge computation resources, and offloading utility
are presented here below.

B. Quality Loss of Result Tradeoff

Many emerging applications in cloud-based computing net-
works such as recommendation, data mining, object recog-
nition, media (e.g., video and image) processing and data
analytics expose different control parameters that allow end-
users to exploit the tradeoff between QLR and network la-
tency. For example, object recognition algorithms [18] often
require extraction of a given number of layers with different

Fronthaul 

Links

NR gNB DU

4x4 MIMO

U-LTE/LAA DU

2x2 MIMO
LTE eNB DU

2x2 MIMO RLC

MAC

PHY

RLC

MAC

PHY

PDCP RRC

UDAP

MAC

PHY

Computing

Radio Functions

Edge SDN Controller

Logical Links

CU Pool

UE 

Fig. 1. System overview of QLRan, in which the gray circle represents the
communication range of the RAP.

wavelengths and orientations from the original input images
for analysis. Therefore, by adjusting the number of layers
extracted, the achieved QLR which controls the processing
time in the object recognition can be relaxed. In recommen-
dation algorithms [19], the amount of reference data used to
make the recommendation can serve as the control knob for
achieving this tradeoff [15]. These methods are referred to as
parameter level substitution in prior work. Other techniques
of relax computing include discarding or substituting certain
different subsets of tasks in non-relax computation, to achieve
varied QLR-latency tradeoff. In this paper, we denote qk as
QLR level assigned to task k. Hence, we allow each UE u to
select different qk values to exploiting the trade-off between
processing cost and latency. We define QLR as five levels in
which level 1 refers to the strictest demand for quality, while
level 5 represents the highest tolerance for quality loss. In
practice, the set of measuring metric QLR for an application
is calculated for each application domain.

C. Task Uploading

We consider that each UE u ∈ U has one computation task
at a time that is atomic and cannot be divided into subtasks.
By taking into account the user acquired service quality (i.e.,
quality degradation), we characterize each computation task k
as a tuple of two parameters, 〈Du(qk), Cu(qk)〉, in which
Du(qk) [bits] specifies the amount of input data necessary
to transfer the program execution (including system settings,
program codes, and input parameters) from the local device to
the edge node, and Cu(qk) [cycles] specifies the workload, i.e.,
the amount of computation to accomplish the task. The values
of Du(qk) and Cu(qk) can be obtained through carefully
profiling of the task execution [20]. In Sect. IV, we will
provide more details about the modeling these metrics. Each
task can be performed locally on the UE or offloaded to a edge
node. By offloading the computation task to the edge node, the

2021 16th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

ISBN 978-3-903176-35-5 © IFIP 110



UE would save its energy for task execution; however, it would
consume additional time and energy for sending the task input.

In case UE u offloads its task k to one of the edge nodes,
the incurred delay comprises: (i) the time τupk [s] to transmit
the input to the edge node on the uplink, (ii) the time τexek to
execute the task at the edge node, and (iii) the time to transmit
the output from the edge node back to UE on the downlink.
Since the size of the output is generally much smaller than
the input, plus the downlink data rate is much higher than that
of the uplink, we omit the delay of transferring the output in
our computation, as also considered in [21], [22]. Note that,
when the delay of the downlink transmission of output data
is non-negligible, our proposed algorithm can still be directly
applied for a given downlink rate allocation scheme and known
output data size. Given limited bandwidth, the transmission
delay depends on the size of data to be transmitted.

The transmission time of UE u when sending its task input
D(qk) in the uplink can be calculated as,

τupk =
Du(qk)

Rus
,∀u ∈ U , k ∈ K, s ∈ S, (3)

where Rus is the transmission data rate of the link between the
selected edge node s and UE u. Given the computing resource
assignment, the execution time of task k at edge node s is,

τexek =
Cu(qk)

fus
,∀u ∈ U , k ∈ K, s ∈ S, (4)

where fus denotes the assigned CPU-clock frequency on
edge s to UE u of task k.

D. System Constraints

We now introduce the following four constraints to capture
the features of a task offloading Multi-node NG-RAN system.

1) Quality loss constraint: As we described in II-B, qk
can be defined based on video resolution, e.g., in the
case of video streaming. Under these considerations,
which will be described in more details in Sect. IV
the QLR constraint for the task k is represented as,
qk = {1, 2, 3, 4, 5},∀k ∈ K

2) Assignment constraint: One computational task is sup-
posed to be the basic unit for task allocation. Hence, the
computational task must be assigned to one node node,∑

s∈S
ask = 1,∀k ∈ K. (5)

3) Service latency constraint: The maximum tolerable
service latency for an AR navigation application is
250 ms [23]. Whereas, the maximum tolerable service
latency for video streaming application can be as much
as 1 sec. We use parameter τmax

k to denote the maximum
tolerable service latency for the task k. In order to
ensure that the task can be completed in time, the service
constraint is as,

τupk + τexek ≤ τmax
k ,∀k ∈ K. (6)

4) Capacity constraint: The demand for capacity (i.e., GPU,
CPU, and memory) is affected by the service latency and

the expected quality. The total demand received by a edge
node cannot exceed its capacity. We defined Bmax

s as the
capacity of edge node s, and B(qk) as the demand from
task k with QLR qk. Hence, the capacity constraint is
model as, ∑

k∈K
B(qk)ask ≤ Bmax

s ,∀s ∈ S. (7)

III. PROBLEM FORMATION

In this section, we mathematically formulate the QLRan
optimization problem, which optimizes the trade-off between
the service latency and quality loss while offloading tasks in
NG-RAN edge nodes. Due to the intractability of the problem
and the need for a practical solution, we then present a step-
by-step solution based on linear programming-based solution,
which is employed to transform the QLRan problem to convex
optimization problem.

A. Latency and Quality Tradeoffs Problem

For a given A = {ask|s ∈ S, k ∈ K},the the set of selected
edge nodes, and Q = {qk|k ∈ K}, the set of selected QLR
levels, we define the system utility as the weighted-sum of all
the UEs’ offloading utilities,

Jk(A,Q) = δττk + δqqk
∑

s∈S
ask,∀s ∈ S, k ∈ K, (8)

where τk = (τupk + τexek ), 0 ≤ δτ ≤ 1 and 0 ≤ δq ≤ 1 denote
the weights of latency consumption time and QLR levels for
task k, respectively. Note that we define the latency and quality
tradeoffs utility, Jk(A,Q) of task k as a linear combination
of the two metrics because both of them can concurrently
reflect the latency-quality tradeoff of executing a task, i.e., both
higher longer computation completion time and high accuracy
of result lead to higher computational cost. To meet task-
specific demands, we allow different UEs to select different
weights, which are denoted by δτ and δq , in decision making.
For example, a UE with low accuracy application demand
would like to choose a larger δq to save more computational
cost. On the other hand, when a UE is running some delay-
sensitive applications (e.g., online movies), it may prefer to
set a larger δτ to reduce the latency. We now formulate the
Latency and Quality Tradeoffs (QLRan) problem as a system
utility minimization problem, i.e.,

P1 : min
A,Q

∑
k∈K

Jk(A,Q) (9a)

s.t :
ask ∈ {0, 1}, q ∈ {1, 2, 3, 4, 5},∀s ∈ S, k ∈ K, (9b)∑

s∈S
(τupk + τexek )ask ≤ τmax

k ,∀k ∈ K, (9c)∑
k∈K

B(qk)ask ≤ Bmax
s ,∀s ∈ S (9d)∑

s∈S
ask = 1,∀k ∈ K, (9e)

The constraints in the formulation above can be explained as
follows: constraint (9b) ensures that the task can be completed
in time that cannot exceed than required maximum time
deadline,τmax

k ; constraint (9c) implies that the demand for

2021 16th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

ISBN 978-3-903176-35-5 © IFIP 111



capacity (i.e., GPU, CPU, and memory) is affected by the
service latency and the expected quality. Therefore, the total
demand received by a edge cannot exceed its capacity, Bmax

s .
where B(qk) is defined as the demand, memory usage, from
task k with QLR level qk; finally, constraint (9d) implies that
each task must be assigned as a whole to one edge node.

Proposition 1. P1 is an NP-hard problem.

Proof. A special case, where δτ = 0, δq = 1, is considered,
which means that the goal is to minimize the sum of QLR
levels. Here, q̂k is defined as the quality gain in the result
of task k. It represents the opposite of QLR. Therefore, the
goal of minimizing the sum of QLR levels can be transformed
into maximizing the sum of quality gains. For simplicity,
Constraint (9c) is removed. In addition, Constraint (9d) is
relaxed by assuming that the resource requirement of task k
is exactly equal to its quality gain q̂k. Besides, we assume
that each UE can generates only one task and one edge node
in each coverage area. We define âk to indicate whether the
task k is assigned to the edge node, and B to represent the
resource capacity of the edge node. Hence, The optimization
problem in (9) can be simplify as,

P̂1 : max
∑

s∈S
q̂kâk (10a)

s.t.
∑

k∈K
q̂kâk ≤ B, (10b)

âk ∈ {0, 1}. (10c)

Problem P̂1 is a classic subset sum problem that has proved to
be an NP-complete problem [24]. Hence, P1 can be classified
as NP-hard problem. The proof is completed.

Next, we will propose a approach to solve P1 based on
Linear Programming-based (LP) optimization. With the help
of the linear programming solver (e.g., MOSEK [25]), the
system can make an efficient task allocation decision with a
balanced multi objective optimization in a short time.

B. Linear Programming-based Solution

The key challenge in solving the optimization problem in
P1 is that the integer constraints ask ∈ {0, 1} and q ∈ [1, 5]
make P1 a MIP problem, which is in general non-convex and
NP complete [26]. Thus, similar to works in [7], [27], we first
relax the binary computation offloading decision variable, ask,
and QLR level, qk, to real numbers, i.e., 0 ≤ ask ≤ 1. Then
we will discuss the convexity of P1 with the relaxed optimiza-
tion variables ask and qk. Then, we consider the following;
D(qk) = ydqk + zd, C(qk) = ytqk + zt, B(qk) = ybqk + zb,
and xsk = qkask. The parameters yd, zd, yt, zt, yb, and zb
can be estimated by offline profiling of the NG-RAN testbed,
as detailed in Sect. IV.

The LP problem for the primal problem is given by,

P2 : min
A,Q,X ,t

δτ t+ δq
∑

s∈S
xsk (11a)

s.t :
0 ≤ ask ≤ 1, 1 ≤ qk ≤ 5, t ≤ τmaxk ,∀s ∈ S, k ∈ K, (11b)
0 ≤ xsk ≤ 5ask,∀s ∈ S, k ∈ K, (11c)
qk − 5(1− ask) ≤ xsk ≤ qk∀s ∈ S, k ∈ K, (11d)∑

s∈S

(
yd
Rus

+
yt
fus

)
xsk +

(
zd
Rus

+
zt
fus

)
ask ≤ τmax

k ,

(11e)∑
s∈S

ask = 1,∀k ∈ K. (11f)

Proposition 2. Constraints (11c) and (11d) are equal to the
constraint xsk = askqk.

Proof. Case 1: (ask = 0, and qk ∈ [1, 5]). Form con-
straints (11c) and (11d), we can conclude the follows,

xsk ≤ 0, xsk ≥ 0, and xsk ≤ qk, xsk ≥ qk − 5, (12)

After solving (12), we can get xsk = 0.
Case 2: (ask = 1, and qk ∈ [1, 5]).

xsk ≤ 5, xsk ≥ qk, and xsk ≥ qk, xsk ≥ 0, (13)

From (13), we can conclude xskqk = qk. From Case 1 and
Case 2, we prove that the constraints (11c) and (11d) are equal
to the constraint xsk = askqk. The proof is complete.

IV. PERFORMANCE EVALUATION

Testbed experiments and simulation results are provided
here to show the effectiveness of the QLRan algorithm.

A. Testbed Experiment

We present here our QLRan testbed including the architec-
ture, configuration, and experiment methods. Finally, we ana-
lyze the performance of QLRan in terms of CPU processing
time and latency.

1) Architecture: We conducted experiments on a testbed
consisting of several components, i.e.,
• End users: For our experiment we use a Samsung Galaxy

S9 running on Android 10 that acts as the UE.
• Edge nodes: To simulate the edge node, we use a Asus

Laptop equipped with an Intel Pentium III processor
running Ubuntu 18.04. The cloud is represented by the
more powerful desktop PC Intel Xeon E5-1650, 12-core
at 3.5 GHz and 32 GB RAM.

• Network: The structure of OAI mainly consists of two
components: one, called oai, is used for building and
running gNB units; the other, called openair-cn, is re-
sponsible for building and running the Evolved Packet
Core (EPC) networks, as shown in Fig. 2(a). The Openair-
cn component provides a programmable environment to
implement and manage the following network elements:
Mobility Management Entity (MME), Home Subscriber

2021 16th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

ISBN 978-3-903176-35-5 © IFIP 112



HSS P-GW-C P-GW-U

S-GW-C S-GW-UPCRF

MME

DU

DU

gNB

Edge-EPC Node

USRP B210

Edge-EPC 

Node

CU-DU 

Node

IP
 Lin

k
U

S
B

 3

UE

Edge-EPC 

Container

CU-DU

Container

UE 

Container

Bridge 

(Ansible APP.)

FSO1 FSO2
0

10

20

C
P

U
 (

A
v
g

) CU

DU

FSO1 FSO2
0

1000

2000

M
e

m
o

ry
 (

M
B

)

CU

DU

(a) (b) (c) (d)

Fig. 2. (a) NG-RAN configuration; (b) OAI testbed setup; (c) OAI-emulation setup; and (d) CPU-Memory utilization versus different functional splitting
options.

1 2 3 4 5

QLR

5

6

7

8

9

M
e
m

o
ry

 u
s
a
g
e
 (

M
b
it
s
)

×10
4

1080p(60fps)

1080p(30fps)

720p

480p

360p

1 2 3 4 5

QLR

10

15

20

A
v
g
. 
C

P
U

 %

1080p(60fps)

1080p(30fps)

720p

480p

360p

1 2 3 4 5 6

Bit rate (Mbps)

10

15

20

25

30

A
v
g
. 
C

P
U

Experiment result

Fitted curve

1 2 3 4 5

QLR

0.1

0.15

0.2

0.25

0.3

0.35

0.4

L
a
te

n
c
y
 (

s
)

1080p(60fps)

1080p(30fps)

720p

480p

360p

(a) (b) (c) (d)

Fig. 3. (a) Memory usage for Various QLR levels in video streaming; (b) CPU usage for Various QLR levels in video streaming (c) Relation between a
video’s bitrate and CPU consumption in video streaming; and (d) Latency in facial recognition.

Server (HSS), Serving Gateway (S-GW-C), PDN Gate-
way (P-GW-C), and Policy and Charging Rules Func-
tion (PCRF). We use WiFi as well as LTE to act as our
physical link between the UE and the edge. The edge
is connected to the cloud through Ethernet. As shown in
Fig. 2(b), the UE and RAN are implemented in hardware,
conventional cell phone, and USRB 210, while EPC core
is implemented in software.

2) Function Splitting Options (FSOs): In this part setting,
We create an operational gNB, i.e., the main element of a
RAN, based on the NG-RAN architecture and using open-
source software OAI emulation, in which all RAN components
are deployed using Docker containers that can be hosted on
cloud infrastructure as show in Fig 2(c). Specifically, we run
two instances of lte-softmodem which split the base station
into two roles. One of these splits is based on the Remote
Radio Unit (RRU)/Radio Cloud Center (RCC) split from C-
RAN architecture. The other split is closer to the L1 using
the F1 interface. In both configurations, we use a real UE to
simulate traffic. CPU averages are recorded over the course
of a minute. Initial memory footprints are taken in Fig. 2(d).
We observe that the CU consumes more CPU and memory in
FSO 1 when compared to the DU. However, the trend inverses
for FSO 2. The CPU and memory consumption is less in the
CU than the DU. This is because in FSO 2, PDCP is running

in the CU while the heavier functions (e.g., RLC, MAC,and
RF) are running in the DU. One of the key observations from
these experiments is that the CPU consumption of the CU
is reduced by nearly 21% when we move from Option 1 to
Option 2, as lower PHY layer functions such as FFT and
IFFT are moved to DU side. However, higher PHY operations
like turbo encoding/decoding operations still reside in the CU
for both the splits. Similarly, nearly 47% of the CU memory
footprint is reduced for Option 1 when compared to Option 2.

B. Application Profiling

To test QLRan, we consider two applications: video stream-
ing and facial detection in smart surveillance cameras. These
two tasks are both video-based tasks that require varying
degrees of qualities.

Video streaming application: Video streaming is run on
two Dell Workstations each with two Xeon E6-1650 pro-
cessors. Each workstation is equipped with 32GB of RAM
running Ubuntu 18.04. In our experiments, a prerendered
movie of one minute is streamed between these two computers
using ffmpeg, a video transcribing and streaming application.
On the other end, a ffplay is used to receive and render
the video stream. Four different video resolutions are used:
360×240, 480×360, 960×720, and 1920×1080. Additionally
for the highest resolution of 1920 × 1080, 30 fps as well as

2021 16th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

ISBN 978-3-903176-35-5 © IFIP 113



1 2 3 4 5

QLR

100

150

200

250

300
L
a
te

n
c
y
 (

m
s
)

δ
t
 / δ

q
=50

δ
t
 / δ

q
=100

δ
t
 / δ

q
=150

0.5 1 1.5 2 2.5

Computing Capacity of Edge Node (GB)

0

50

100

150

200

250

300

L
a
te

n
c
y
 (

m
s
)

δ
t
 / δ

q
=50

δ
t
 / δ

q
=100

δ
t
 / δ

q
=150

4 6 8 10 12

Number of Tasks

1000

2000

3000

4000

5000

6000

L
a
te

n
c
y
 (

m
s
)

δ
t
 / δ

q
=50

δ
t
 / δ

q
=100

δ
t
 / δ

q
=150

(a) (b) (c)

Fig. 4. Service latency performance versus: (a) Scalar weight; (b) Computing capacity; and (c) Number of computational tasks.

60 fps is used as well as a stereographic stream for 60 fps for
potential 3D reconstruction applications.

Facial recognition application: In addition to network
streaming, a basic facial detection and recognition application
is tested against the very same resolutions in the network
stream. The facial recognition algorithm is based of the
popular and simple dLib library available for python [28].

For both applications, we have chosen QLR 1 to represent
the best networking conditions while a QLR of 5 represents
the worst network conditions. Using the top utility, we were
able to log in 1 second intervals the CPU consumption as
well as the memory consumption of the process on the server
streaming the video. Note that in both Figs. 3(a) and 3(b) we
witness a linear increase in both memory and CPU consump-
tion which can be expressed in the following equations,

B(qk) = −10.4qk + 95.9, C(qk) = −5.2qk + 33.3,∀k ∈ K.
(14)

In Fig. 3(c), since we downsampled the video resolutions
ourselves, we are able to extract the exact average bitrate for
various stream profiles to arrive at an equation,

D(qk) = 4.30x+ 2.75, ∀k ∈ K, (15)

where x represents the achievable bit rate in Mbps.
Similarly—as shown in Fig. 3(d)—as video resolutions in-
crease in facial recognition application, so does processing
time. Hence, the QLR processing time can be modeled as,

T proc = −0.08qk + 0.51, ∀k ∈ K. (16)

C. Numerical Result

We consider a NG-RAN system consisting of 100 m ×
100 m cell with a RAP in the center. The mobile devices,
N = 25, are randomly located inside the cell. The chan-
nel gains are generated using a distance-dependent path-loss
model given as L[dB] = 140.7 + 36.7 log10 d[km], where d
is the distance between the mobile device and the BS, and
the log-normal shadowing variance is set to 8 dB. The other
network parameter values are listed in Table I.

TABLE I
CONFIGURATION PARAMETERS FOR SIMULATION.

yd,zd 4.3, 2.75 Capacity [GB] 1.5
yt, zt −5.24, 3.31 δτ/δq [50, 100, 150]
yb,zb −10.41, 95.9 Data Rate [Mbps] 2

U , K, S 10, 10, 20 Delay Tolerance[ms] 300
Bmax
s [GB] 3 QLR [1, 2, 3, 4, 5]

In general, the computational tasks can be classified into
two different categories: (i) approximatable, tasks that can
be approximated to achieve significant savings in execution
time, with however a potential loss of accuracy in the result;
and (ii) non-approximatable, tasks whose execution without
any approximation is necessary for the success of the appli-
cation, i.e., if any approximation technique were applied on
these tasks, the application would not generate meaningful
results. We refer the interested readers to the work in [29],
which introduces a light-weight online algorithm that selects
between these tasks to enable real-time distributed applications
on resource-limited devices. Accordingly, we consider video
streaming, and facial recognition applications, which can be
consider as approximatable tasks, for profiling. The reason for
choosing these task applications is that they can highly benefit
from the collaboration between mobile devices and edge plat-
form. In the experiments, the impact of the variation of service
quality, which can be defined in video streaming and facial
recognition applications as increasing the resolution levels, on
the service latency and the amount of resource consumption
are explored. fus = 1000 Megacycles,∀u ∈ U , s ∈ S.

1) Impact of Parameters δt and δq: As mentioned in
Sect. III, the scalar weights δt and δq refer to the optimization
tendency toward service latency and quality, respectively.
When δt/δq is higher, the task allocation strategy is latency
sensitive; otherwise, it is quality sensitive. For QLRan opti-
mization problem, we tune the ratio of the scalar weights,
δt/δq , from 50 to 150, and compare the results in Fig. 4(a).
When the density of edge nodes is high, as illustrated in Fig. 4,
the average service latency in case of QLRan algorithm is
around 300 ms when the QLR level is 1 and δt/δq = 50. The
service latency decreases with the tolerance of quality loss.

2021 16th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

ISBN 978-3-903176-35-5 © IFIP 114



Besides, QLRan show good performance when the algorithm
is acting towards the latency optimization. For example, when
the QLR level increases to 4, the average latency of QLRan
would drop up to 220 ms,200 ms, and 180 ms, for δt/δq = 50,
100, and 150, respectively.

2) Impact of Computing Capacity of Edge Nodes: For the
two tasks we have tested, memory usage, B(qk), becomes
a performance bottleneck. We have noticed that computing
capacity requirements (e.g., CPU/GPU) can be satisfied as
long as the memory requirements are met. Therefore, the
performance is evaluated with varying memory sizes. As
shown in Table I, the memory size of a edge node node is
set to Bmax

s = 1.5 GB by default, with δt/δq = 50, 100, and
150 are chosen as examples to evaluate the service latency and
QLR with different memory capacities settings. The memory
size of each edge node is tuned from 0.5 to 2 GB. As shown
in Fig. 4(b). When the memory capacity of QLRan increases,
the service latency decreases. In details, the service latency
decreases by around 12%.

3) Impact of Increasing Number of Tasks: For compu-
tation task, we consider the face detection and recognition
application for airport security and surveillance [30], which
can highly benefit from the collaboration between mobile
devices and edge platform. Fig. 4(c) shows the performance
of different schemes versus the number of tasks. In this figure,
the parameter of task data input is a random variable following
a linearity increasing with QLR levels. It can be seen that the
case δt/δq = 50 has better performance compared to the other.

V. CONCLUSIONS

In this paper, we highlight QLRan algorithm, latency-quality
tradeoffs and task offloading in multi-node next generation
RANs. Our algorithm is designed to minimize average service
latency while reducing the overall quality loss. We considered
the constraints on service latency, quality loss, and edge node
capacity and formulate the task allocation process as a objec-
tive optimization problem, where a tradeoff is maintained be-
tween the service latency and quality loss. As it is proved to be
an NP-hard problem, we propose a Linear Programming (LP)-
based approach that can be later solved by using convex
optimization techniques. For computation task, we consider
video streaming and facial recognition applications which can
be the building blocks of many cloud-based applications. We
evaluate our solution with simulation results show that the
performance of QLRan algorithm significantly improves the
network latency over different configurations.

Acknowledgment: This work was supported by the US Na-
tional Science Foundation under Grant No. ECCS-2030101.

REFERENCES

[1] A. Younis, T. Tran, and D. Pompili, “Energy-efficient resource alloca-
tion in C-RANs with capacity-limited fronthaul,” IEEE Trans. Mobile
Comput., vol. 20, no. 2, pp. 473–487, 2021.

[2] I. A. Alimi, A. L. Teixeira, and P. P. Monteiro, “Toward an efficient C-
RAN optical fronthaul for the future networks: A tutorial on technolo-
gies, requirements, challenges, and solutions,” IEEE Commun. Surveys
Tuts., vol. 20, no. 1, pp. 708–769, 2017.

[3] A. Younis, T. X. Tran, and D. Pompili, “Fronthaul-aware resource
allocation for energy efficiency maximization in C-RANs,” in proc. IEEE
ICAC, pp. 91–100, 2018.

[4] 3GPP TS 38.300 V2.0.0, “NR; NR and NG-RAN overall description;
Stage 2,” Release 15, 2017.

[5] A. Younis, T. X. Tran, and D. Pompili, “On-demand video-streaming
quality of experience maximization in mobile edge computing,” in Proc.
IEEE WoWMoM, pp. 1–9, 2019.

[6] Y. Li, Y. Chen, T. Lan, and G. Venkataramani, “MobiQoR: Pushing the
envelope of mobile edge computing via quality-of-result optimization,”
in Proc. IEEE ICDCS, pp. 1261–1270, 2017.

[7] A. Younis, T. X. Tran, and D. Pompili, “Energy-latency-aware task
offloading and approximate computing at the mobile edge,” in Proc.
IEEE MASS, pp. 299–307, 2019.

[8] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Konto-
vasilis, “FlexRAN: A flexible and programmable platform for software-
defined radio access networks,” in Proc. CoNEXT, pp. 427–441, 2016.

[9] O-RAN alliance, “O-RAN use cases and deployment scenarios,” White
Paper, 2020.

[10] H. Gupta, M. Sharma, B. R. Tamma, et al., “Apt-RAN: A flexible split-
based 5G RAN to minimize energy consumption and handovers,” IEEE
Trans. Netw. Service Manag., vol. 17, no. 1, pp. 473–487, 2019.

[11] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in Proc. IEEE
ISIT, pp. 1451–1455, 2016.

[12] M. Kamoun, W. Labidi, and M. Sarkiss, “Joint resource allocation and
offloading strategies in cloud enabled cellular networks,” in Proc. IEEE
ICC, pp. 5529–5534, 2015.

[13] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Joint allocation of
computation and communication resources in multiuser mobile cloud
computing,” in Proc. IEEE Workshop SPAWC, pp. 26–30, 2013.

[14] O. Munoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,” IEEE Trans. Veh. Technol., vol. 64, no. 10,
pp. 4738–4755, 2015.

[15] P. Pandey and D. Pompili, “MobiDiC: Exploiting the untapped potential
of mobile distributed computing via approximation,” in Proc. IEEE
PerCom, pp. 1–9, 2016.

[16] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger, “Dop-
pelgänger: A cache for approximate computing,” in Proc. MICRO,
pp. 50–61, 2015.

[17] EURECOM, “OAI.” Available: http://www.openairinterface.org/, 2020.
[18] V. Kshirsagar, M. Baviskar, and M. Gaikwad, “Face recognition using

eigenfaces,” in Proc. IEEE ICCRD, pp. 302–306, 2011.
[19] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collab-

orative filtering recommendation algorithms,” in Proc. ACM WWW,
pp. 285–295, 2001.

[20] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation parti-
tioning for latency sensitive mobile cloud applications,” IEEE Trans.
Comput., vol. 64, no. 8, pp. 2253–2266, 2014.

[21] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 974–
983, 2014.

[22] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task
offloading and resource optimization in proximate clouds,” IEEE Trans.
Veh. Technol., vol. 66, no. 4, pp. 3435–3447, 2016.

[23] M. Noreikis, Y. Xiao, and A. Ylä-Jaäiski, “Qos-oriented capacity plan-
ning for edge computing,” in Proc. IEEE ICC, pp. 1–6, 2017.

[24] C.-P. Schnorr and M. Euchner, “Lattice basis reduction: Improved
practical algorithms and solving subset sum problems,” Mathematical
programming, vol. 66, no. 1-3, pp. 181–199, 1994.

[25] MOSEK Aps, The MOSEK optimization toolbox v 9, 2019.
[26] E. D. Andersen and K. D. Andersen, “Presolving in linear program-

ming,” Mathematical Programming, vol. 71, no. 2, pp. 221–245, 1995.
[27] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in mobile

edge computing: Task allocation and computational frequency scaling,”
IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584, 2017.

[28] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of Machine
Learning Research, vol. 10, pp. 1755–1758, 2009.

[29] P. Pandey and D. Pompili, “Exploiting the untapped potential of mo-
bile distributed computing via approximation,” Pervasive and Mobile
Computing, vol. 38, pp. 381–395, 2017.

[30] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman,
“Cloud-vision: Real-time face recognition using a mobile-cloudlet-cloud
acceleration architecture,” in Proc. IEEE ISCC, pp. 59–66, 2012.

2021 16th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

ISBN 978-3-903176-35-5 © IFIP 115


