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Abstract—5G networks are primarily designed to support a
wide range of services characterized by diverse key performance
indicators (KPIs). A fundamental component of 5G networks,
and a pivotal factor to the fulfillment of the services KPIs, is the
virtual radio access network (RAN), which allows high flexibility
on the control of the radio link. However, to fully exploit the
potentiality of virtual RANs in non-stationary environments, an
efficient mapping of the rapidly varying context to radio control
decisions is not only essential, but also challenging owing to the
non-trivial interdependence of network and channel conditions.
In this paper, we propose CAREM, an RL framework for
dynamic radio resource allocation, which selects the best link and
modulation and coding scheme (MCS) for packet transmission,
so as to meet the KPI requirements in heterogeneous virtual
RANs. To show its effectiveness in real-world conditions, we
provide a proof-of-concept through actual testbed implementa-
tion. Experimental results demonstrate that CAREM enables an
efficient radio resource allocation, for any of the considered time
periodicity of the decision-making process.

Index Terms—5G technology, reinforcement learning, virtual
RAN, radio resource allocation, heterogeneous networks.

I. INTRODUCTION

The envisaged paradigm of 5G mobile technologies is aimed
to serve a broad spectrum of applications having diverse
requirements on various key performance indicators (KPIs),
ranging from high reliability and low latency to large-scale
connectivity and massive data rates [1]. To accommodate such
ambitious vision of 5G, new generation wireless access net-
works are required not only to integrate various flexible multi-
access technologies such as mmWave and massive MIMO,
but also to provide a versatile radio resource management
(RRM) system that can ensure efficient spectrum utilization
and seamless interoperability [2].

A powerful concept addressing such needs is the virtu-
alization of the radio access network (RAN), wherein the
legacy communication system is decoupled by centralizing the
softwarized radio access through virtual machines or contain-
ers running on servers at the edge of the cellular network
[3]. While this makes the network more agile and minimizes
the requirement of expensive dedicated hardware, the edge
may host several applications competing for resources, thereby
limiting the efficiency of radio functions [4]. Further, the
unification of hybrid technologies under the 5G umbrella

This work has been supported by the EC H2020 5GPPP 5GROWTH project
(Grant No. 856709.)

adds to the complexity of the problem, thereby making
the use of conventional communication theoretic approaches
often inadequate to achieve optimum traffic and resource
management, owing to intricate mathematical modeling and
complex dependencies between network and channel variables.
It has therefore become indispensable the design of innovative
solutions that can swiftly and effectively deal with the system
complexity thanks to a fully automated, data driven approach.

Recently, learning-based techniques including supervised,
unsupervised, reinforcement learning (RL), and deep learning
have shown to hold an enormous potential in addressing the
challenges of applying standard mathematical optimization
frameworks to resource allocation problems in virtual RANs
(vRANs) and in allowing an automatic system control [5].
However, it is worth noting that, while deep learning ap-
proaches are computationally intensive, the primary challenge
associated with simpler ones such as supervised/unsupervised
learning is the creation of an exhaustive dataset for training
the model. Besides, in case of rapidly changing environment,
frequent retraining of the model is required to achieve the
desired accuracy, which can be expensive when there are
stringent latency constraints. To this end, it is required to
devise a framework that is easy to train in non-stationary
environments, yet effective in making intelligent choices in an
autonomous fashion using near real-time feedback on channel
conditions and temporal variation of user demand so as to
improve performance and reliability of the network.

In this work, we leverage the advantages offered by ma-
chine learning and develop a context-aware, RL-based solu-
tion to radio resource management in heterogeneous vRANs.
Our scheme, named CAREM (Context-Aware Radio rEsource
Management), can effectively cope with time-varying operat-
ing conditions thanks to a persistent interaction between the
learning agent and its environment. The key contributions of
this work are as follows:

1) We define CAREM, a novel framework using dif-
ferential semi-gradient State-Action-Reward-State-Action
(SARSA) for periodic RRM in vRANs. CAREM effi-
ciently allocates radio resources in terms of link and
modulation and coding scheme (MCS) for packet trans-
missions while meeting two of the main KPI requirements
identified by 3GPP [6], namely, packet loss and latency.

2) To provide an adaptive and self-sustaining solution, learn-
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ing in CAREM is governed by a reward signal which
acts as an evaluative feedback from the network to asses
the KPI satisfaction. A snapshot of the environment in
terms of Signal to Noise Ratio (SNR) and buffer state is
provided as input, along with the reward signal, at the
decision-making instant to make a smart and context-
aware choice. High dimensionality of context variables
is addressed using tile coding.

3) A proof-of-concept is provided in the context of vehicle-
to-infrastructure (V2I) communications, by designing a
testbed for heterogeneous radio access network and im-
plementing CAREM over 3GPP LTE and IEEE 802.11p
links using software defined radios.

Unlike Q-learning [7], which is a popular off-policy RL
approach particularly useful for episodic tasks, SARSA has
low per-sample variance, thereby making it less susceptible to
convergence problems. Also, in a continuous task setting such
as RRM where it is required to care for agent’s performance
during the exploration phase, online learning using SARSA
is preferred as it avoids high risk actions that generate large
negative reward from the environment. To the best of our
knowledge, no existing work has presented such comprehen-
sive and dynamic framework for RRM, keen on fast and
reliable data transmission in heterogeneous vRANs.

II. RELATED WORK

RL is a popular approach to radio resource provisioning,
especially if the action corresponds to a decision-making
scenario with discrete choices. RL-based schemes have been
proposed for selecting the radio access technology in hetero-
geneous networks using network-centric [8], and user-centric
approaches [9]. In [10], a policy gradient actor-critic algorithm
is studied for user scheduling and resource allocation in
energy-efficient heterogeneous networks. [11] and [12] instead
investigate RL-based dynamic spectrum access in cognitive
radio networks to minimize sensing duration.

Owing to delay-sensitivity and massive volume of data in
5G RAN, a RL-based scheduling scheme is introduced in [13],
[14] to minimize the packet delay and drop rate. [4], instead,
proposes a deep deterministic policy gradient algorithm based
on actor-critic neural network and a classifier for resource
control decisions. This is the most relevant work to ours, as it
specifically addresses a vRAN and presents an implemented
solution in a full-fledged testbed.

Advanced machine learning such as deep learning is of
interest for resource allocation problems when the size of
state-action space is large, leading to slow convergence of
RL approaches. A deep Q-network for channel selection is
proposed in [15], [16] to adaptively learn in time-varying
scenarios subject to improvement in accuracy of channel
selection and maximization of network utility. [17] envisions
an adaptive deep actor-critic, RL-based framework for channel
access in dynamic environment for single and multi-user
scenarios. Deep RL is explored for selection of suitable MCS
for primary transmissions in cognitive radio networks in [18].
In a similar setting, [19] investigates a deep learning dynamic

power control for a secondary user to coexist with the primary
user. A distributed power allocation using multi-agent deep
RL is developed in [20], which utilizes the channel state and
quality of service information as feedback.

In this work, by RRM we broadly refer to the action of
link and MCS selection such that the learning objective, i.e.,
meeting the target values of the packet loss rate and latency
KPIs, is achieved. In terms of actions, we find [9], [18], and
[4] somewhat aligned to our work. We observe, however, that
their learning objectives and KPIs are very different from ours.
Also, unlike our work, none of these studies have considered
the connectivity between a radio point of access and users over
heterogeneous links. Besides, the radio policy selection in [4]
is based on a supervised neural network classifier, which is
required to be pre-trained offline using an extensive dataset.
On the contrary, in MCS selection using CAREM, the policy is
spontaneously learned and updated over time by its continuous
interaction with the environment, thus being able to adapt
continuously to time-varying channel and network dynamics.

III. SYSTEM ARCHITECTURE

In this section, we present the system model considered
for radio resource provisioning. Although our approach and
methodology are general and can apply to any number
and type of vRAN technologies, we focus on a vehicle-
to-infrastructure (V2I) communication environment where a
cellular and a IEEE 802.11p link are available. We leverage
software defined radio (SDR) interfaces to enable point-to-
point communications between virtual radio point of access
(vRPA) and user equipment (UE). Further, we focus on the
downlink data transfers from the vRPA to a UE, although our
framework can be easily extended to uplink as well.

As shown in Fig. 1, the system architecture is composed
of two interconnected blocks: the edge host (left block) and
the mobile terminal (right block). In the edge host, the vRPA
acts as road side unit (RSU) and virtual eNodeB. As RSU, it
accesses the channel using the CSMA-based scheme foreseen
by the standard [21]. As virtual eNodeB, instead, it determines
the resource blocks over the cellular link required for the
data packet transmissions depending upon the signal-to-noise
ratio (SNR) reported by the UE through the Channel Quality
Indicator (CQI). To minimize packet loss at the physical layer
over both links, data packets are modulated and encoded using
a suitable MCS, wherein the modulation order can vary up
to 256-QAM and forward error correction is employed using
LDPC or Turbo codes with coding rate of 1/2, 2/3, or 3/4
[22], [23]. At the MAC layer, an automatic repeat request error
control is in place, i.e., an unsuccessfully transmitted packet
can be resent till a maximum number of times.

The edge host provides computational resources and mobile
connectivity for services offered by the edge applications,
which are then consumed by the mobile applications running
on the mobile terminal. Connectivity between the edge host
and the mobile terminal is provided through a heterogeneous
RAN integrating the 3GPP LTE (bottom link in Fig. 1) and
IEEE 802.11p (top link) technologies, both implemented with
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Fig. 1: System architecture.

SDR solutions. The LTE RAN is based on srsLTE [24],
an open-source SDR LTE stack implementation that offers
EPC, eNB, and UE applications. It is compliant with LTE
Release 9 and supports up to 20 MHz bandwidth channels as
well as transmission modes from 1 to 4, all using the FDD
configuration. The 802.11p transceiver is implemented through
a GNU Radio flowgraph, released by the WiME project [25],
and it is interoperable with commercial IEEE 802.11p devices.

The core component of the edge host is the proposed
CAREM framework, which controls the operation of the
heterogeneous RAN. The algorithm periodically selects the
appropriate link and the MCS to be used by the selected
link for downlink packet transmission. To interact with the
host operating system network stack, both the SDR solutions
expose a tun/tap interface to which an IP address is assigned.
A router is connected to those interfaces to steer traffic over the
radio links, the host applications, and the internet, according
to the link selected by CAREM. The link selection is enforced
with dynamic modification to the Linux kernel routing table.

The srsLTE eNB has been patched to run a dedicated thread
that listens to and applies the MCS selected by CAREM. The
802.11p GNU Radio flowgraph has been modified for the same
purpose by adding an XMLRPC server block, which exposes
a remote procedure call interface to dynamically set the MCS.
Both the SDR applications have been modified to collect the
environment variables, i.e., SNR mean and variance and buffer
occupancy status at the MAC layer.

IV. THE CAREM FRAMEWORK

The joint impact of channel and network dynamics on
RRM in wireless networks is non-trivial. To comprehensively
investigate this within a machine-learning framework, it is
essential to continuously map the variations in transmission
channel and traffic load into a context, and learn to decide

on the best link and MCS for a given context using a reward
signal. The reward we use here is basically a feedback that
quantifies the goodness of the decision taken. In the sequel, we
discuss the components and RL algorithm used in CAREM.

A. Components of CAREM

The agent comprises a policy and a RL algorithm. The
policy continuously maps observation of a context from the
environment to a decision in the form of an action, while
the learning algorithm updates the policy parameters based
on actions, context, and reward values. The goal of the RL
model is to train the agent to find an optimal policy that
eventually maximizes the cumulative reward from an uncertain
environment. The single components are detailed below.

Context Space. At every monitoring slot n ∈ N, the agent
observes a context vector s(n) ∈ S, takes an action a(n) ∈
A, which has been chosen with periodicity equal to N slots,
and receives a reward value r(s(n), a(n)) as feedback. The
environment variables, namely, SNR and buffer state, influence
the choice of the link and MCS in the provisioning of radio
resources. Let γ(n) and σ(n) denote, respectively, the SNR and
the buffer state reported by the UE during the n-th monitoring
slot. Then we define the context space S ∈ R comprising
context vector s(n) := {γ(n), σ(n)},∀n ∈ N. Note that, since
the context space S is real, it has infinite cardinality.

Action Space. The action space comprises choices for the
selection of the appropriate link and MCS. Given that the
network supports heterogeneous connectivity, namely, IEEE
802.11p and LTE, and several MCSs can be supported over
each link, we map a link-MCS pair {ζ(n),m(n)} for the n-th
monitoring slot into a single action denoted by a(n). Note that
an action is selected at the beginning of every decision period
of duration N slots, and it is applicable to all subsequent N
monitoring slots. Let the number of MCS supported over the
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two available links be i and j respectively, then the action
space is given by A := {a(n) ∈ [0, i + j − 1]}, such that
a(n) = {0, 1, · · · , i − 1} when the first (e.g., IEEE 802.11p)
link is selected with MCS varying from 0 to i − 1, and
a(n) = {i, i+1, · · · , i+j−1} when the second (e.g., cellular)
link is selected with MCS varying from 0 to j − 1. The
advantage of such definition of an action is that it limits the
action space to a subset of discrete positive integers with low
cardinality, and facilitates simultaneous selection of link as
well as MCS with a single action. We have considered i and
j to be 6 and 10 (resp.), thus the action set cardinality is 16.

Reward. Given a traffic flow, we consider as KPIs the
packet loss rate at the MAC layer and the latency observed
during a packet transmission within the system. To meet the
KPI requirements at the UE, it is required to provide the traffic
flow with radio resources such that the observed KPIs do
not exceed their target values (hereinafter also referred to as
thresholds). Besides meeting the KPI thresholds, it is essential
to keep the observed KPIs as close as possible to the respective
KPI thresholds for optimum utilization of network resources:
substantially better values than the target ones would indeed
translate into a waste of resources. To this end, the choice of
reward function should be such that it equally accounts for
both the KPIs and its value increases as the observed KPIs
approach the KPI thresholds and vice versa.

Let the observed packet loss rate, target packet loss rate,
observed latency, and target latency be denoted with xo, xth,
lo, and lth, respectively. We define the reward value r as the
sum of two reward components, namely, packet loss rx(·) and
latency rl(·). Thus, at the n-th monitoring slot, we have:

r(s(n), a(n)) = rx(s
(n), a(n)) + rl(s

(n), a(n)) (1)

where the packet loss and latency components are given by:

rx(s
(n), a(n)) = 1− erf(xth − xo),

rl(s
(n), a(n)) = 1− erf(lth − lo)

if the target KPIs are met, and by:

rx(s
(n), a(n)) = erf(xth − xo),

rl(s
(n), a(n)) = erf(lth − lo)

otherwise.
Since the maximum and minimum value of the erf function

lies between +1 and −1, we have: −2 ≤ r(s(n), a(n)) ≤ 2.
Our choice of erf for estimating individual reward components
is motivated by its shape, which takes 0 value at the origin, and
gradually increases (decreases) and saturates to the maximum
(minimum) value in the positive (negative) direction. Conse-
quently, for the individual reward components, in the positive
region of operation, i.e., when the KPI threshold is met, the
reward value is positive and it further increases to saturate
to +1 as the observed KPI approaches its target KPI value.
Likewise, in the negative region of operation, i.e., when the
KPI threshold is not met, the value of the individual reward
components is negative, which further reduces and saturates to
−1 as the observed KPI moves away from the KPI threshold.

Note that, since the reward function is the sum of the packet
loss and latency components, it seeks to improve the overall
system performance by equally accounting for both KPIs.

It may be recalled that the agent’s goal in RL is to eventually
maximize the cumulative reward measured as the sum of
immediate reward and future rewards in the long run. Here,
we adopt our definition of cumulative reward observed during
slot n as the differential return G(n) defined in [26], i.e.,

G(n) = r(n+1) − r(π) + r(n+2) − r(π) + r(n+3) − r(π) · · ·
(2)

where, π(s) : S → A, denotes the radio policy that maps
the context space into actions, r(π) being the average re-
ward conditioned on initial state s(0), and subsequent actions
a(0), a(1), · · · , a(n−1) taken according to π. Assuming that
agent’s interaction with the environment since n = 0 has been
over k slots, then the average reward is given by [26],

r(π) = lim
k→∞

1

k

k∑
n=1

E[r(n)|s(0), a(0:n−1) ∼ π] . (3)

Thus, differential return essentially represents the gain in the
reward value compared to average reward of the policy.

B. RL in CAREM using differential semi-gradient SARSA

In the absence of any prior knowledge of the environment,
here we exploit the concept of experience-based learning using
sample sequences of context, actions, and rewards observed
from the actual interaction of RL agent with the environment.
SARSA, an acronym for quintuple (St, At, Rt, St+1, At+1),
is an on-policy algorithm where learning of the RL agent at
time t is governed by its current state St, choice of action At,
reward Rt received on taking action At, state St+1 that the
RL agent enters after taking action At, and finally the next
action At+1 that the agent chooses in new state St+1 [26].
Given a context vector, the key steps involved in the learning
of the SARSA approach are: (i) estimation of action values,
(ii) selection of best action, and (iii) update of the action-value
estimates. These are further elaborated as follows.

Action value estimation. The goodness of taking an action
in a given context is quantified using action values. If action a
is taken in state s under policy π, then its action value qπ(s, a)
is defined as expected differential return conditioned on state
s, and action a following policy π. Mathematically,

qπ(s, a) = Eπ[G(n)|s(n) = s, a(n) = a] . (4)

Apparently, a policy π can be better than any other policy π′ if
qπ(s, a) ≥ qπ′(s, a). Since the context vector comprises SNR
and buffer state, context space S is real and an uncountable
number of states are possible. Consequently, tracking action
values corresponding to different contexts is not scalable.
To overcome this problem, we use a practical method for
action value estimation using function approximation. This
yields a parametric approximation of action value function
q̂π(s

(n), a(n), w) =
∑m
i=1 wixi(s

(n), a(n)), where w ∈ Rm
and x(s(n), a(n)) denote the weight and feature vector, respec-
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tively. Here, feature vector xi(s(n), a(n)) is generated using
tile coding [27], which converts a point in the 2-dimensional
context vector into a binary feature vector such that vectors of
neighboring points have a high number of common elements.

Action selection. The estimation of the action values is
followed by an ε-greedy action selection policy [26], which
selects the best action so as to maximize the cumulative reward
over infinite time horizon. We set ε to 0.1 and the ε-decay
factor to 0.99. Thus, if the context at the beginning of a
decision-making period is s(n), and the action value estimates
for all possible actions an = 0 · · · |A| in s(n) are obtained
as q̂π(s

(n), an, w), the greedy action a∗(n) is chosen with
probability 1 − ε such that a∗(n) = argmaxa q̂π(s

(n), an, w).
The ε parameter decays by a factor of 0.99 in the subsequent
decision period, i..e, it starts from 0.1 and reduces to 0 as
the number of iterations grows. This favors higher exploration
while the environment is still unfamiliar; with progression
of time, instead, it allows for further exploitation of the
environment knowledge gained during the exploration, so as
to maximize the expected return.

Action value update. Action values satisfy the recursive
Bellman equations given as,

qπ(s, a) =
∑
r,s′

p(s′, r|s, a)[r − r(π) +
∑
a′

π(a′|s′)qπ(s′, a′)]

(5)

where p(s′, r|s, a) = Pr{s(n) = s′, r(n) = r|s(n−1) =
s, a(n−1) = a}, with π(a′|s′) being the probability of tak-
ing action a′ in state s′ under policy π. This fundamental
property forms the basis of the update of the action values
of the present context, based on an error term defined as
the difference between a target action value and the current
action value. Details on Bellman equation and the derivation
of the update rule can be found in [26]. Here we consider
the temporal difference learning in which the target action
value for the present context is the bootstrapping estimate of
the action values of the immediate next context, given by,
r(s(n), a(n))− r(π) + q̂π(s

(n+1), a(n+1), w). Since the differ-
ence in action value estimates of successive contexts drives the
learning procedure, the error is termed as temporal difference
error δ. Subsequently, δ updates the average reward r(π) and
weight vector w using gradient descent. Note, however, that
the bootstrapping target itself depends on the weight vector.
Consequently, it is biased and does not produce a true gradient
descent, hence this is referred to as a semi-gradient method.

The workflow of CAREM RL algorithm is presented in
Algorithm 1. Parameters including decision-making period N ,
weight vector for learning of action values w, the average
reward estimate r(π), and step sizes α, β for update of
weight vector and average reward (resp.) are initialized at
the start of the algorithm. After observing the context vector,
reinforcement learning takes place using differential semi-
gradient SARSA, as discussed above. For periodic-decision
making (i.e., N > 1), the mean reward and weighted mean
context observed over the last decision period are used for
learning the action values in the subsequent decision period.

Algorithm 1 Workflow in CAREM framework

1: Define N , Initialize α, β ∈ (0, 1]
2: Initialize w ∈ Rm arbitrarily, w ≥ 0, r(π) = 0
3: Initialize context s0, and action a0
4: for the h-th decision period, h = 1, 2, · · · do
5: for n = 1, 2, · · · , N do
6: if h = 1 then
7: if n = 1 then
8: s(n) = s0, a

(n) = a0
9: else

10: Observe s(n), a(n) = a0
11: else
12: if n = 1 then
13: s(n) = s(h), a(n) = a(h)

14: else
15: Observe s(n), a(n) = a(h)

16: Take action a(n), and evaluate reward r(s(n), a(n))
17: r(s(h), a(h)) =

∑N
n=1 r(s

(n), a(n))/N . Find mean
reward over the h-th decision period

18: s(h+1) =
∑N
n=1 yns

(n)/
∑N
n=1 yn, such that yn > 0

and yN > yN−1 > · · · y1 . Find weighted mean of
context observed over the h-th decision period

19: Compute action values q̂π(s(h+1), , w) for all possible
actions in s(h+1)

20: Choose a(h+1) as a function of s(h+1) using the ε-
greedy policy

21: δ ← r(s(h), a(h)) − r(π) + q̂π(s
(h+1), a(h+1), w) −

q̂π(s
(h), a(h), w) . Evaluate temporal difference error

22: r(π)← r(π) + βδ . Update average reward estimate
23: w ← w + αδ∇q̂(s(h), a(h), w) . Update weights
24: s(h) ← s(h+1)

25: a(h) ← a(h+1)

The weights yn in the weighted mean context are assigned
such that the latest context has the highest weight. Although
they can be arbitrarily set, in our experiments, we fix them as
1, 2, . . . , N , in accordance with the temporal sequence of the
monitoring slots.

V. PERFORMANCE EVALUATION

We now evaluate the performance of CAREM using our
testbed implementation. We have considered a non-stationary
evolution of wireless channel and network dynamics. However,
since the monitoring intervals are small (on the order of
100 ms), there exists some correlation between consecutive
states, hence it is fair to assume that Markovian property
holds between consecutive states. We evaluate two cases:
(a) N = 1, corresponding to per-slot (i.e., 100 ms) decision
making, and N = 10 where a decision is made every second.
We first discuss the variation of the KPI values observed in
our testbed implementation. Since this is a limited scenario, we
also execute CAREM over a longer time horizon using Matlab
simulations (lasting about 40 hours) in a heterogeneous vRAN
environment and analyze its average performance. Based on
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Fig. 2: Variation of KPIs observed over time using the testbed implementation: (a) N = 1, (b) N = 10.

the obtained results, we discuss the convergence of the reward
for the two above operational settings and the variation of the
KPI values with respect to time and the context variables.

A. Testbed-based KPIs assessment

Using our testbed, we measured the variation of the KPI
values over time, when decision making is done at N = 1
and N = 10. According to the 3GPP specifications for 5G
[6], the KPI thresholds are set at 0.1 s for latency and 0.01 for
packet loss. The results, presented in Figures 2a and 2b, show
that, except for an initial exploration period, the KPI values
remain below their respective thresholds, thereby satisfying the
performance requirements. Compared to N = 1, packet losses
and latency are higher for N = 10 (note the different y-axis
scale in the two plots), as the action executed by the CAREM
framework during a decision making interval may not be the
optimum choice for all the slots in that interval. Also, owing
to the higher values of observed packet losses and latency, the
low reward values lead to larger exploration time for N = 10.

B. Convergence of the CAREM RL algorithm

We further study the performance of CAREM using vRAN
simulations designed in Matlab. First, we evaluate the perfor-
mance of CAREM in terms of convergence of reward values
on time-sequenced context. The variation of reward values as
a function of time, under both N = 1 and N = 10 decision-
making operational settings, is depicted in Fig. 3. Note that
the reward values shown in Fig. 3 are per monitoring slot,
consequently the plot is spiky. When averaged over multiple
iterations, smoother convergence is observed. Although the
variation in the reward is higher for N = 10, it converges
faster with respect than for N = 1. This may seem to
contradict our previous observation on the testbed results
where N = 10 has a higher exploration time. However, it is
important to note here that the limited scenario of the testbed

0 5 10 15
Time [s]

104

0

0.4

0.8

1.2

1.6

2

R
e
w

a
rd

 v
a
lu

e

N = 1, per slot decision

N = 10, periodic decision

Fig. 3: Convergence of the reward for N = 1, and N = 10.

implementation cannot represent a wide range of variations
in the network and channel conditions. Consequently, given
a quasi-stationary scenario, the N = 10 setting may spend a
longer time exploring the solution space, but it converges faster
in the presence of a non-stationary environment over a longer
time horizon. This is primarily due to the averaged values
of context variables and reward that are used, which tends
to smoothen sharp variations thereby expediting the learning
process. It follows that, in comparison to N = 1 decisions,
periodic ones with N > 1 not only reduce the computational
efforts in the system, but they also lead to faster convergence
of reward values, and hence rapid learning.
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Fig. 4: Variation of KPIs with SNR: (a) N = 1, (b) N = 10.
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Fig. 5: KPI variation with buffer state: (a) N = 1, (b) N = 10.

C. Variation of KPI values with SNR

Figures 4a and 4b depict the variation of the observed
latency and packet loss averaged over context variable SNR,
for N = 1 and N = 10 decision making, respectively. In
both the cases, latency is almost constant with respect to
SNR. This may be surprising, as one would expect that, with
the increase in SNR, the number of possible retransmissions
required for successful packet reception at the UE, and hence
the observed latency, should reduce. However, in this case the
retransmission delay in the network is much less as compared
to the queueing delay at the buffer; consequently, the impact of
the SNR on the observed latency is negligible. Unlike latency,
we observe that an increase in SNR causes the packet loss to

reduce for both N = 1 and N = 10, which is as expected.
Additionally, note that the values of packet loss in Figures 2a
and 2b may exceed the threshold during the learning phase,
but when averaged over SNR, they fall below the threshold,
thereby meeting the KPI requirements.

D. Variation of KPI values with buffer state

Similar to SNR, next we average the KPI values over the
other context variable. The variation of packet loss and latency
with respect to buffer state for different decision-making
periodicity are presented in Figures 5a and 5b, respectively.
As discussed earlier, since the latency is largely governed
by the buffer state, we observe a linear increase in latency
as the number of packets in the buffer increases. It may be
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noted that, since we have considered a single-UE scenario
in our implementation, an increase in the vRPA buffer state
values does not significantly add to the packet losses. Also,
the packet loss measured in case of N = 10 in Figures 4b
and 5b is always higher in comparison to that obtained for
N = 1 in Figures 4a and 5a, because in the former case, the
corresponding actions are computed based on averaged context
and reward values and they need not necessarily be optimal
for all slots in a decision period. Nevertheless, the attained
KPI values always meet the required threshold once learning
is completed.

VI. CONCLUSIONS AND FUTURE WORK

We proposed CAREM, a novel RL-based framework that ef-
ficiently allocates radio resources in terms of link and MCS for
packet transmissions in heterogeneous vRANs. The framework
has been designed so that the resource utilization is optimized
with respect to dynamic and non-stationary environment, with
minimum computation efforts. We also provided a proof-of-
concept of our solution, leveraging an LTE and an IEEE
802.11p SDR implementation. We have evaluated CAREM
under two operational settings, with different decision-making
periodicity. Results show that, as the learning process of the
model saturates, actions are always chosen so that both the
observed KPIs, latency and packet loss, satisfy their target
values. Finally, we remark that CAREM is a promising starting
point to the development of 5G heterogeneous networks,
where different radio technologies can be fully exploited to
maximize the network performance and robustness. Addition-
ally, it can effectively and swiftly adapt to the underlying
channel-network dynamics for context-aware RRM in vRANs.

Future work will focus on extending the framework perfor-
mance evaluation in the case of additional SDR technologies
and multiple UEs connected to the vRAN, and it will compare
CAREM to existing RRM schemes for vRANs.
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