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Abstract—The use of artificial intelligence is foreseen to be
pervasive in future mobile radio networks, enabling dynamic
and proactive radio resource provisioning and allocation as well
as end-to-end optimization of the network architecture. Current
approaches in mobile radio networks commonly assume having
a complete batch of data on the specific network element when
optimizing and adapting the network working configuration.
Such a pipeline is at odds with the increasing complexity and
extreme flexibility of 5G and next generation systems where
reconfiguration decisions might be taken rather frequently, and
with only few data available. In this paper, we focus on the
problem of predicting channel quality and average number of
active user equipment when a limited amount of data is available
from the cell to predict and a high number of predictions
need to be carried out simultaneously. We propose a transfer
learning framework based on one dimensional convolutional
neural networks and explore several models with different
complexity overhead for the prediction task across 100 cells.
The performance of the proposed framework is validated against
classical machine learning approaches in terms of accuracy and
computation time when varying the amount of data available
for training. Achieved results indicate that transfer learning
outperforms the “non-transfer” approaches, specifically when the
amount of data available from the cell to predict is scarce.

Index Terms—Channel quality prediction, active users predic-
tion, deep transfer learning, time series forecasting

I. INTRODUCTION

Anticipating the network performance with high accuracy
and low overhead can boost the proactive optimization of
mobile radio networks. For instance, channel quality indicator
(CQI) has been proposed for efficient resource allocation of
video streaming traffic [1]. Similarly, cell load prediction, has
been proposed to minimize network element sleeping time [2].

Traditional approaches to network performance prediction,
leverage past information from the network node to pre-
dict. This is not always feasible, since the network layout
is constantly evolving with the frequency roll out of new
cells, therefore previous performance history is not available.
Moreover, in current networks the number of cells to predict
simultaneously is in the order of hundreds and is envisaged

*At the time of writing this paper Claudia Parera was with Politecnico di
Milano and Nokia Bell Labs.

to grow in the future due to the current requirements of 5G
networks and beyond.

This calls for new and efficient ways of predicting the
network performance when limited information is available
and the performance of multiple cells needs to be predicted
simultaneously. To this end, we study network performance
on 4G Long Term Evolution (LTE) cells operating at different
frequencies (i.e. 1.8 GHz and 2.1 GHz) and located in several
urban areas. In particular, we focus on CQI and cell load active
number of user equipment (UE) Key Performance Indicators
(KPIs), since they are among the most important KPIs metrics
the operators could use to monitor the network status and
optimizing accordingly. The CQI reflects the channel status
experienced by the UEs to their respective cells, ranging from
0 to 15 in LTE. Throughout this paper, UE refers to the average
number of active user equipment per cell during measurement
period.

In this paper, we introduce a transfer learning framework
to predict the CQI and UE for the different cells across the
city. We design and test several strategies for picking candidate
cells across the city for the transfer learning task.

The proposed framework can be conveniently used by a
network operator to make educated decisions in a number of
relevant situations:

• Network optimization/management: Only a sub-GHz fre-
quency carrier is active at one cell, and the network oper-
ator needs to decide whether to activate higher frequency
carriers by anticipating their expected quality.

• Radio resource/energy management: The higher frequen-
cies carriers of cells perform duty cycling for energy
management purposes, and the network operator needs
to decide when to switch them on/off.

In a final step, we evaluate the performance of the proposed
transfer learning approach against classical machine learning
and statistical methods such as Autoarima. We use a dataset
containing CQI and UE values from 100 cells collected over
a time period of one month from a commercial mobile radio
network deployed in a medium-sized city in Northern Italy.

In the following, we summarise the main contributions of
this paper:
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• We provide deep learning architectures that significantly
outperform statistical methods, capturing the high non-
linearity of the CQI and UE.

• We introduce transfer learning to carry out predictions
across different cells in the city. Our transfer learning
method outperforms traditional machine learning meth-
ods when the amount of samples available from the target
cells is limited.

• We significantly reduce the initial amount of training
time with regard to approaches that do not use transfer
learning, specifically when the number of cells to predict
increases.

• Finally, we provide several strategies to select a set of
candidate cells across the city to build a general model
that can be transferred to the rest of the cells.

The rest of this paper is organized as follows: Section II
reviews previous work in the area of CQI and UE predic-
tions. Section III describes the reference dataset as well as
the preprocessing steps followed. Section IV focuses on the
proposed deep and transfer learning approaches. Numerical
results and complexity analysis are reported in Section V.
Finally, Section VI summarizes the main contributions of this
paper and describes future research directions.

II. RELATED WORK

Techniques to anticipate the network performance have
been widely investigated in multi-fold network environments;
either to take advantage of future link improvements or to
counter bad conditions before they impact the system [3].
Techniques can be divided in two categories: (i) the ones that
use traditional machine learning or statistical approaches and
(ii) the ones that use deep learning.

In the former category, Wiener filters, cubic spline extrap-
olation and short-term average are used in [4] for CQI pre-
diction. Other studies exploit the nonlinear characteristics of
the channel. For instance, in [5] the spectrum sensing process
is modeled as a non-stationary Hidden Markov Model. In
[6], spatial and temporal correlation are taken into account to
model the CQI prediction problem as a multivariate Gaussian
Process. As for the cell load, similar kinds of studies have
been carried out. In [7] the authors use k-Means and SVM
classifiers on call detail record data to predict the cell load
in order to improve network planning. Similarly, in [8], the
authors use regression including spatio temporal features for
cell load prediction.

In the second category, the major trend is modeling the pre-
diction problem as a sequence problem using recurrent neural
network (RNN) architecture variations that have been shown
to be successful for this problem setting. As an example, in [9]
Taguchi optimization, and long short-term memory networks
(LSTMs) are used for spectrum prediction, specifically for
channel quality as well as channel occupancy. In [10] KPI
prediction is performed by stacking multiple LSTM building
blocks together. Similar to our case, cell load and channel
quality are used for results validation. Another approach has

been proposed in [11] for 5G, where convolutional neural net-
works (CNNs) and LSTMs are proposed. For a comprehensive
overview on channel quality prediction the interested reader
may refer to the survey in [3]. The same kind of algorithms
have also been used for cell load prediction. For instance, in
[12] CNNs, LSTMs and the combination of both are used
for traffic prediction evolution. As in our case, the authors
comment on the complexity overhead of their approach.

In general, most of the aforementioned works leverage past
information to anticipate future performance. Conversely, we
target the case where limited data is available from the cell to
predict and a high number of predictions needs to be carried
out at the same time. Moreover, we show that selecting data
from a “good candidate” set of cells can be used to carry out
predictions on the rest of cells across the city with improved
accuracy and decreased training time.

III. PROBLEM STATEMENT AND BACKGROUND

In this paper, we propose the application of machine learn-
ing algorithms to predict the channel quality and number of
active users in 4G LTE wireless networks. The problem at
hand can be defined as predicting future CQI or UE values
when having limited data available from the cell to predict.

Let (xi)
T−1
i=0 = {x0, x1, . . . , xT−1} be the sequence of CQI

or UE values obtained for a target cell during T hours. The
CQI and UE prediction problems can be formalized as follows:
Given no or a limited amount (i.e. t − l) of CQI or UE
observations from a target cell, (xi)

t−1
i=l , we aim to forecast

future CQI or UE values for the next hour (ŷi)
t+1
i=t . For this

purpose, we leverage CQI or UE observations from different
cells/frequency carriers chosen according to different selection
criteria.

For the task at hand, we use a dataset containing past CQI
and UE observations from a live 4G LTE network deployed
in a medium-size city in Northern Italy. The reference dataset
contains data from 100 cells working at 0.8, 1.8 and 2.1 GHz
of frequency, respectively. Each time series element reports
the hourly average of the CQI and UE. The total amount of
data is equivalent to 583 CQI or UE measurements per time
series. The data was recorded between January 8, 2017 and
February 1, 2017, for a total of 24 days and 7 hours.

The following pre-processing steps were carried out:
• Missing value and outlier detection: No missing values

and outliers were found.
• Stationary assessment: Most of the methods for time

series forecasting work under the assumption that the
time series is stationary. By using Dickey-Fuller [13] and
KPSS [14] statistics tests, we found that in the majority of
cases the data was already stationary. However, to avoid
non-stationary cases, a first order difference transforma-
tion is carried out to the whole dataset.

IV. PREDICTION APPROACHES

In this section, we describe the proposed deep transfer learn-
ing method as well as the baselines used for benchmarking.
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A. Deep Learning

Deep Neural Networks have significantly improved the state
of the art in a variety of fields such as Computer Vision
or Natural Language Processing. For instance, CNNs are
powerful feature extractors for hierarchical data since the
lower layers of the network capture more general patterns,
whereas the deeper layers extract the more specific ones.
Inspired by this fact, we use CNNs as the building blocks
of our transfer learning pipeline.

The deep learning pipeline consists of the following steps:

1) Preprocessing: First, the general time series forecasting
problem is re-framed as a supervised machine learning
problem. For this purpose, we use sliding windows of
size w = 24 by shifting the original time series one step
to the right T times. Figure 1 shows the process in detail.
The resulting supervised machine learning problem is
defined as finding the function g(x,θ) = y, x ∈ Rw and
y ∈ R that maps w hours of CQI or UE observations
to the CQI or UE value on the next hour. Each input
vector x is given by the sub-sequence (xi)

t−w
i=t−1, y is

given by yt and θ represent the neural network weights.
Then the data is divided into training, cross validation
and test sets. Before training, the data is scaled between
−1 and 1 by using a min-max scaler, which is fitted to
the training set and applied to the cross validation and
test sets.

2) Training: During training, a model g(x,θ) is created by
fitting the selected architecture on the training set.

3) Cross Validation: The cross validation set is used at a
later stage by the network to select a good combination
of hyperparameters.

4) Testing: At testing time, g(x,θ) is applied to data
coming from the same or a different frequency carrier.
The data is projected onto the original space by reversing
the scaling and first order difference transformations. It
is worth noting that the first order difference and scaling
transformations should be reversed before evaluating the
performance of our algorithms.

5) Performance Evaluation: The prediction accuracy is
measured by the root mean squared error (RMSE)
between real and predicted values in the test set (with
size Ttest = N ) defined by Eq. 1:

RMSE =

√√√√ 1

N

t+N∑
i=t

(ŷi − yi)2. (1)

Figure 2 shows the one dimensional (1D) CNN architecture
proposed in this work. It is comprised of 7 layers; the first 5
layers of the network are a combination of 1D convolutional
layers followed by a 1D max pooling layer. Finally, a flatten
layer as well as a dense layer are stacked for producing the
final output. We apply rectified linear unit (ReLU) nonlinear
transformations as the activation function. We use 256 filters
and a kernel size of 3. For the max pooling layers we use
stride s = 2 and pool size δ = 2. The dimension of the first

convolutional layer corresponds to the dimension of the feature
space, which is the window size w = 24, in our case.

B. Transfer Learning

Given a source domain DS with enough data and a target
domain DT with limited data, for the transfer learning task
on DT , we first train a model MS on DS . Then, we create
a new model MT by taking the previous model MS , freezing
its first layers and adding new layers. The weights on the new
layers of MT can be either randomly initialized or initialized
with MS weights. Finally, we retrain MT on the available
data from DT . As an example, we show in Figure 2 a CNN
architecture, where we freeze the first 2 convolutional layers
and randomly initialize and retrain the last convolutional layer.
The idea behind this is transferring the more general features
learned by the first layers of the network in a richer DS (i.e.
longer time series) to a limited DT (i.e. shorter time series).
For comparison fairness we use the same architecture for MS

and MT .
We developed and tested several transfer learning methods.

They differ in the way DS cells are chosen to train MS .
1) Transfer Frequency Model (CNN TFM): DS contains

one cell at a lower frequency in the same geographical
location.

2) Transfer Random Model (CNN TRM): DS contains 5
cells chosen randomly across the city.

3) Transfer City Model (CNN TCM): First, we cluster all
the cells across the city to identify similar groups of
cells. Then, we choose DS cells as the closest cell to
the centroid of each cluster in order to have the model as
“representative” of the whole city as possible. In Section
IV-C, we give more details on the clustering approach
and distance metric to select the closest cell.

4) Transfer Cluster Model (CNN TCLM): We also cluster
all the cells across the city. Then, we train a model per
cluster by choosing DS cells as the 5 closest cells to the
centroid of each cluster. For instance, if the number of
clusters is 2, we will have 2 source models, MS1

and
MS2

, trained on cells from clusters 1 and 2, respectively.
For the prediction task on DT , if a cell is in cluster C,
with C = 1 or C = 2, then MSC

is chosen as source
model.

5) Transfer Hybrid Model (CNN THM): Similar to
CNN TCM. In addition, we embed the cluster informa-
tion as an input feature to the model in a different CNN
channel. The cluster label is a categorical variable added
as one-hot encoding [15].

6) Transfer Hybrid Model with Correlated Counters
(CNN THM CC): Similar to the CNN TCM but instead,
using domain knowledge, we add the correlated counters
as input features to the model. Each correlated counter
represents a new feature in a different CNN channel.

Below we use the term city models to denote CNN TRM,
CNN TCM, CNN TCLM, CNN THM and CNN THM CC,
since these models use information from other cells across
the city for transfer learning.
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Fig. 1: Sliding windows for multi-step time series forecasting
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Fig. 2: CNN architecture

C. Clustering and Distance Metric

CNN TCM, CNN TCLM and CNN THM use cell cluster
information as shown before. We identify the different cell
clusters across the city by grouping the raw time series that
represent each cell. This is done for each KPI independently.
We use k-Means [16] with the Euclidean Distance, since we
are interested in clustering based on the similarity of time
series data without taking time delay into account. After trying
different values of k (number of clusters), we chose 2 and 5
as the number of clusters. CNN TCLM 2 and CNN TCLM 5
use 2 and 5 clusters, respectively.

D. Baselines

As baselines, we use traditional time series forecasting
methods such as Autoarima and two CNNs methods, without
using transfer learning. By selecting Autoarima, as baseline,
we assess whether a deep neural network should be trained or
linear methods such as Autoarima are sufficient for prediction
task at hand. If deep learning methods achieve better prediction
error, we compare the performance of transfer learning models
(see Section IV-B) against the performance of similar models
trained on data from DT (i.e., CNN S) or trained on data from
DS and applied to DT without retraining (i.e. CNN BS). The
goal is assessing whether negative transfer will happen and
the retraining step in transfer learning is really needed. The
baseline methods are described as it follows:

1) Autoarima: Auto-Regressive Integrated Moving Av-
erage (ARIMA) introduced by Jenkins in [17].
Seasonal ARIMA models are usually denoted by
ARIMA(p, d, q)(P,D,Q)m, where coefficients p, d, q
are the order of the autoregressive model, the degree
of differencing, and the order of the moving-average
model, respectively. m refers to the number of periods
in each season and P,D,Q refer to the autoregressive,
differencing, and moving average terms of the seasonal
part of the model, respectively. By using grid search we
optimize the ARIMA coefficients (p, d, q,m, P,D,Q)
that fit our data.

2) CNN S: We train a model with limited data from the
same cell in DT .

3) CNN BS: We train a model with enough data from a
different cell in DS and use it to carry out predictions
on DT without the retraining step on DT .

V. NUMERICAL RESULTS

In this section, we first describe the experimental setup
and parameters optimization for the source and target models.
Then, we show the performance achieved by the transfer
learning method in terms of accuracy, complexity and training
times.

A. Experimental Setup

The reference dataset contains 100 time series per KPI.
Each time series contains 583 samples with 1 h of time
granularity (see Section III). Every time series is divided into
training, cross validation and test sets containing 535, 24 and
24 samples, respectively. For each of the algorithms tested,
we show the average RMSE across cells when changing the
amount of days taken from DT for training a model without
transfer (i.e., CNN S), or for retraining a model as part of the
transfer learning pipeline (i.e., CNN TFM, CNN TRM, CNN
TCM, CNN THM, CNN TCLM 2, CNN TCLM 5, CNN THM
CC).

Experiments were performed on a PC with three Intel Xeon
E5 v3/v4 CPUs, one GeForce RTX 2080Ti GPU card and 16
GB of RAM.

B. Parameter Optimization

The different prediction approaches encompass different
parameters, which require fine tuning for further optimization.
Autoarima requires m = 24 to be set a priori (Section V-C).
For the CNNs, we use w = 24 h to predict the next hour. We
fix the batch size to 128, manual cross validation is carried out
in order to choose a good architecture for this problem. The
sections below show the hyperparameters selection process for
MS and MT , respectively.
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Hyperparameter Default Values
Lag Number Input 24
Number of Epochs 300

Learning Rate 0.001
Number of Layers 3
Number of Filters 256

Dropout 0

TABLE I. Default combination of hyperparameters

1) MS Parameter Optimization: In order to find the best
architecture for the CQI and UE prediction problems we
begin with the default configuration shown in Table I. We try
different combinations of hyperparameters using all available
data (i.e. 22 days). We choose the setting that performs the
best on average for the 100 available cells. Below we show
the different values tried and highlight the best configuration
for each step (see Tables II, III IV, V, VI and VII below
for more details). We can conclude that less than 300 epochs
and a learning rate smaller than 0.001 improves performance
for both KPIs. For the CQI a smaller architecture leads to
better result, whereas for UE a more complex architecture
helps reducing the error as well as adding 0.2% of dropout.

Lag input number
KPI 24 48 96
CQI 1.70 1.74 1.74
UE 1.80 1.83 1.80

TABLE II. RMSE per lag input number
Number of epochs

KPI 100 300 500
CQI 1.64 1.70 1.69
UE 1.81 1.80 1.83

TABLE III. RMSE per number of epochs
Learning rate

KPI 0.0001 0.001 0.01 0.1
CQI 1.40 1.64 1.57 1.75
UE 1.84 1.80 2.08 3.31

TABLE IV. RMSE per learning rate
Number of layers

KPI 2 3 4
CQI 1.30 1.40 1.44
UE 1.94 1.80 1.71

TABLE V. RMSE per number of layers
Number of filters

KPI 128 256 512
CQI 1.32 1.30 1.32
UE 1.71 1.71 1.73

TABLE VI. RMSE per number of filters
Dropout percentage

KPI 0 0.2 0.5
CQI 1.30 1.30 1.31
UE 1.71 1.68 1.89

TABLE VII. RMSE per dropout percentages
2) MT Parameter Optimization: To find the best architec-

ture for MT , we use the same architecture as MS to ensure
comparison fairness. We optimize the following parameters in
MT :

• Number of frozen and retrainable layers: The amount
of layers to freeze or retrain on MT largely dictates
the amount of knowledge to transfer from DS to DT .
Depending on the data, if the number of layers to retrain
is not the “optimum”, negative transfer can happen.

• Weight initialization: The weights in the retrainable layers
of MT , can be either randomly initialized or taken
from MS . This also affects the amount of knowledge
transferred from DS to DT .

We tried all possible combinations of layers to freeze and
retrain, as well as random and non random initialization. We
carried out this process on CNN TCM, where just one model
is trained for DS , since doing this for every transfer learning
model in DS and DT would be extremely time consuming
(more details about training times can be found in Section
V-E). Figure 3 shows the results for the different days taken
from DT . Results indicate that for CQI the best transfer
learning model is that which has the first 3 layers frozen, and
the last 2 are retrained. Overall, using random initialization
leads to improved performance. In contrast, we can observe
that for the UE KPI, freezing a high number of layers, which
means transferring more knowledge from DS , worsens the
performance. There is no significant difference between using
random initialization, or taking the weights from DS . This is
expected since a higher number of layers need to be retrained
on MT .

C. City Models Transfer

In this section we show the performance of the transfer
learning approach for the available 100 cells. Figure 4 shows
the average RMSE when applying the different models (see
Section IV-B for more details about the different models).
The x-axis shows the amount of samples (measured in days)
available from the target domain that was used for training or
fine tuning the models accordingly. The S curves refer to cases
where the proposed methods are applied by leveraging only
data available from the same cell. The TL curves are related to
the transfer learning scenarios, where the model is pretrained
on DS , then retrained on DT .

We can draw the following conclusions:

• All the deep learning methods, whether they use transfer
learning or not, outperform traditional forecasting meth-
ods such as Autoarima. This different is slightly more
significant when a limited amount of data is taken from
DT .

• For the CQI, the transfer learning methods outperform
CNN S, which does not use transfer learning. For UE
CNN TRM, CNN TCM and CNN THM outperform CNN
S.

• For CQI, CNN TCLM 2, CNN TCLM 5 and CNN THM
are the models that perform the best according to RMSE
values. In contrast, for UE, CNN THM CC is the model
with the best performance.
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Fig. 3: MT Parameter Optimization
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Fig. 4: City Models

D. Frequency vs. City Models Transfer

In this section, we compare the city models performance
with the CNN TFM performance. The CNN TFM requires that
data from the same location, at a higher frequency, as such, it
cannot be used when the higher frequency is turned off. More
information is available in Section IV-B. Figure 5 shows the
average RMSE over 100 cells when the higher frequency is
active. We can observe the following:

• In cells where both layers are active CNN TFM achieves
comparable performance to CNN TCLM 2 for CQI and
CNN THM CC for UE.

• In addition, the amount of models to train when using
CNN TFM to carry out predictions on n cells from DT

is 2 ∗ n, whereas with the city model approaches this
number decreased to 5+n in the worse case (see Section
V-E for more details on model complexity).

E. Complexity Analysis

We compare all the approaches in terms of amount of
parameters to find and training times.

1) Trainable Parameters: Table VIII shows the total
amount of parameters found during training by each of the
deep learning approaches with and without transfer learning.
The lower the amount of parameters to find, the lower the
training time. We use n = 100 to denote the number of cells,

and c to denote the number of clusters when using CNN
TCLM. In Table VIII, it can be observed that CNN TRM,
CNN TCM, CNN THM and CNN THM CC are the methods
with the smallest number of trainable parameters to be found
since, for each of them, just one model is trained on DS .

2) Cell Training Time: Given n cells to predict, training,
retraining and inference can be carried out either in parallel
or sequentially. In this section, we show the training and
retraining times per cell, operations are carried out in parallel.
For transfer learning, we first train MS on DS and after that,
for each of the n cells on DT , we create n MT models that
are retrained at the same time. Once the retraining step is
completed, we use the n MT models to carry out predictions
simultaneously. If we do not use transfer learning (i.e., CNN
S) we only train n models on DT at the same time. We believe
that the possibility of training and retraining different models
in parallel is one of the strengths of our transfer learning
approach, specifically for use cases where there is a central
entity and retraining can be performed per network node at
the same time. Figures 6a and 6b show the average training
time without transfer learning (i.e., CNN S), the initialization
step of transfer learning by training a model on DS (i.e., CNN
SCM, CNN SRM, CNN SCLM, CNN SHM, CNN SRM) and
during the retraining step of transfer learning (i.e., CNN TCM,
CNN TRM, CNN TCLM, CNN THM, CNN TRM). We can
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Fig. 5: Frequency vs. City models

Model Total Parameters (CQI) Total Parameters (UE)
CNN S n ∗ 20, 049 = 20, 044, 900 n ∗ 591, 873 = 59, 187, 300

CNN TFM n ∗ 200, 449 + n ∗ 2, 561 = 20, 301, 000 n ∗ 591, 873 + n ∗ 590, 849 = 118, 272, 200

CNN TRM 1 ∗ 200, 449 + n ∗ 2, 561 = 456, 549 1 ∗ 591, 873 + n ∗ 590, 849 = 59, 676, 773

CNN TCM 1 ∗ 200, 449 + n ∗ 2, 561 = 456, 549 1 ∗ 591, 873 + n ∗ 590, 849 = 59, 676, 773

CNN TCLM 2 2 ∗ 200, 449 + n ∗ 2, 561 = 656,998 2 ∗ 591, 873 + n ∗ 590, 849 = 60, 268, 646

CNN TCLM 5 5 ∗ 200, 449 + n ∗ 2, 561 = 1,258,345 5 ∗ 591, 873 + n ∗ 590, 849 = 62, 044, 265

CNN THM 1 ∗ 204, 289 + n ∗ 2, 561 = 460, 389 1 ∗ 595, 713 + n ∗ 590, 849 = 59, 680, 613

CNN THM CC 1 ∗ 205, 825 + n ∗ 2, 561 = 461, 925 1 ∗ 598, 785 + n ∗ 590, 849 = 59, 683, 685

TABLE VIII. Trainable parameters

make the following observations:
• Training times for CQI are lower than for UE as the

network architecture is smaller.
• In Figure 6a the transfer learning retraining step (for CNN

TCM, CNN TRM, CNN TCLM, CNN THM, CNN TRM)
is 1 second faster than training a model without transfer
learning (i.e., CNN S). This is reasonable since during
the retraining step we freeze the first layers of the model
and we just need to find parameters for the retrainable
layers, which are less. The retraining step for the UE
(see Figure 6b) is less than a second faster as we freeze
less layers when retraining on DT .

• There are no noticeable differences between the transfer
learning models in terms of retraining time per cell.

• The total transfer learning training time, which is com-
prised of training time on DS plus the retraining time on
DT with limited data, is going to be considerably higher
than not using transfer learning. However, the training
step on DS can be performed in the best case only
once, or in the worst case significantly less often than
retraining, depending on the use case requirements.

3) Total Training Time: If predictions are carried out
sequentially, training, retraining and inference per cell are
performed one after each other. In Table IX we show the total
training time if predictions are performed for a batch of 100
cells taking 7 days data from DT . We can conclude:

• The transfer learning approaches, specifically the city
models (i.e., CNN TCM, CNN TRM, CNN TCLM, CNN
THM, CNN THM CC) are faster than the CNN S, which
does not use transfer. However, this is not the case for
CNN TFM, since for each cell on DT a model has to be

trained on DS .
• Among the transfer learning approaches, CNN TCM,

CNN TRM and CNN THM CC are the fastest models for
both KPIs, with training times around 3 and 16 minutes,
respectively.

• We are able to make predictions for 100 cells with
averages of 2.95 minutes for CQI, and 16.66 minutes
for UE, when training on DS every time a prediction is
carried out on DT . If we just consider the retraining time
we can make predictions for 100 cells with averages of
2.78 minutes and 15.98 minutes.

• In terms of scalability, higher gains are expected when the
number of cells to predict is considerably higher than 100.
For instance, considering n = 30000 for CQI, using CNN
S the total training time would be 21.83 hours, whereas
using CNN TCM for the same amount of cells the training
time would be 13.91 saving 8 hours of training.

VI. CONCLUSIONS

We proposed a transfer learning framework designed to
predict CQI and UE in the challenging case where the amount
of data available from a given cell is limited, and a high
number of predictions need to be carried out in a short period
of time. The proposed framework was tested on a dataset from
a commercial 4G LTE network, showing how transfer learning
can be carried out across cells working at different frequencies,
or situated in different locations around a city.

The obtained results show that the proposed deep transfer
learning methods are particularly effective in terms of training
time when the amount of cells to predict is high. Therefore,
we can conclude there are several advantages in terms of
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Fig. 6: Training Times per Cell in Seconds

Model Total Training
Time in Minutes (CQI)

Total Training
Time in Minutes (UE)

CNN S n ∗ 2.62s = 4.36m n ∗ 10.98s = 18.3m

CNN TFM n ∗ 2.66s+ n ∗ 1.76s = 7.36m n ∗ 11.14s+ n ∗ 10.24s = 35.63m

CNN TRM 1 ∗ 11.04s+ n ∗ 1.77s = 3.13m 1 ∗ 41.77s+ n ∗ 9.99s = 16.67m

CNN TCM 1 ∗ 10.57s+ n ∗ 1.67s = 2.95m 1 ∗ 40.74s+ n ∗ 9.59s = 16.66m

CNN TCLM 2 2 ∗ 10.38s+ n ∗ 1.77s = 3.29m 2 ∗ 41.55s+ n ∗ 10.27s = 18.50m

CNN TCLM 5 5 ∗ 9.39s+ n ∗ 1.74s = 3.18m 5 ∗ 41.49s+ n ∗ 9.97s = 20.06m

CNN THM 1 ∗ 11.04s+ n ∗ 1.83s = 3.23m 1 ∗ 43.95s+ n ∗ 10.35s = 17.96m

CNN THM CC 1 ∗ 10.80s+ n ∗ 1.75s = 3.08m 1 ∗ 43.35s+ n ∗ 10.14s = 17.62m

TABLE IX. Sequential training time

performance and scalability on using transfer learning for
network performance prediction. Future work will include the
application of the proposed algorithms to predict a longer
lookahead in the future and with a higher number of cells.
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