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Abstract—The number of mobile devices that use video stream-
ing applications has been steadily rising year after year. Platforms
responsible for providing multimedia service face great challenges
in delivering high-quality content for mobile users. One main
problem in sharing video flows is the high energy consumption in
mobile devices, which reduces their lifetime. A video adaptation
approach with Quality of Experience (QoE) support is a key
issue to increase the user experience while watching videos as
well as reduce the energy consumption in mobile devices. In this
paper, we propose a hybrid energy-aware video bitrate adaptation
algorithm to deliver videos with high QoE and energy-efficiency
for mobile users. Simulation results show the efficiency of the
proposed algorithm compared to existing adaptation video bitrate
algorithms, reducing the number and duration of stalls, as well
as saving energy.

I. INTRODUCTION

In recent years, video streaming applications are increas-
ingly present in our daily life, due to the popularization of
video applications and the advances in video adaptation tech-
niques. According to Cisco forecasts [1], the traffic from mo-
bile devices transmitted over wireless networks will account
for more than 63% of total IP traffic by 2021. Specifically,
video traffic will represent 82% of all Internet traffic, and
video-on-demand (VoD) services, such as YouTube, Netflix,
will nearly double by 2021 [1]. This creates a demand for
content delivery mechanisms to provide Quality of Experience
(QoE) support during multimedia dissemination such as HTTP
streaming [2].

In HTTP streaming schemes, the video is divided into
multiple chunks/segments, and each one can be requested with
a different bitrate version. In general, they can be categorized
into two type: Fixed video bitrate streaming and Adaptive
Streaming. The fixed bitrate considers that users fix a video
bitrate, from the beginning to the end of video download,
which is the simplest way of implementation. On the other
hand, HTTP Adaptive streaming (HAS) services allow users
to request each segment with a different birate version. In the
beginning, the client makes an HTTP request to obtain the
meta-data of the different audio and video representations,
which is described by the Media Presentation Descriptor
(MPD) file [2]. The client requests an appropriate bitrate
version based on the available transmission resources and
device processing capabilities. The main goal of HAS systems
is to choose the adequate bitrate level for the next segments
to deliver the video with QoE support, i.e., maximizing bitrate

while minimizing the stall probability and avoiding bitrate
switches [3]. This is because poor QoE results in the viewer
abandoning the video completely [4].

In HAS systems, adaptation techniques are divided into two
categories: server-side approaches and client-side approaches
[5]. Server-side HAS approaches are the most effective adap-
tation techniques for scenarios where users want to watch the
entire video. On the other hand, mobile devices waste scarce
network and storage resources by downloading the video that
the users do not watch the whole video. As reported by
Finamore et al. [6], 60% of videos are watched for less than
20% of their duration. Based on this, our study is focused
on client-side HAS approaches, since the mobile devices are
the best network entity to quickly detect the QoE degradation
during the video player, and quickly react to the network
changes [3].

Client-side HAS approaches can be classified into rate-
based, buffer-based, and hybrid-based [7]. Rate-based algo-
rithms rely on throughput estimation from previous chunks
to request a higher video bitrate for the following chunks.
Alternatively, buffer-based algorithms take into account buffer
occupancy, where they consider different thresholds to request
the video bitrate in order to keep the buffer occupancy at
a given level. Finally, hybrid-based algorithms combine both
approaches to adapt the video bitrate, obtaining better results
due to the capacity of synchronizing the buffer occupancy and
the available network bandwidth.

In hybrid-based HAS systems, it is important to predict
the buffer empty and overload, which causes stall events and
the waste of network resources. For instance, the buffer will
be empty, as soon as the throughput of the video streaming
application is lower than the video bitrate. In this way, the
video playback cannot continue as soon as there is insufficient
data available in the buffer, resulting in a poor QoE. It is
also important to predict the connection throughput in order
to estimate the average transfer capacity and the instantaneous
throughput for VoD services.

Additionally, energy consumption is also a key metric
for video adaptation, since multimedia services over battery-
powered mobile devices is an energy-intensive task [8]. How-
ever, current HAS schemes do not consider energy as an
important factor to adapt videos’ bitrate. As a result, the QoE,
in general, is poor in scenarios that mobile devices do not have
enough energy to playback a video in an acceptable bitrate
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level, due to the device turning off during video playback [9].
For instance, users prefer a less than excellent but acceptable
video quality when offered higher energy saving [9].

In this paper, we propose the Energy-Saving Based Adap-
tation Algorithm (ESBA). It considers the client-side and
hybrid-based techniques for video adaptation and takes into
account devices characteristics (devices’ energy and maximum
supported resolution), connection throughput (estimated by a
Machine Learning Process) and a probability of stalls (com-
puted based on buffer information) to request video segments
with different bitrates. In this sense, ESBA delivers videos with
high QoE and energy-efficiency for mobile users. Simulation
results demonstrate the efficiency of the ESBA in transmitting
adapted video with energy efficiency 50% higher than videos
transmitted by existing adaptation mechanisms for mobile and
static clients. Moreover, results also show that ESBA delivers
videos with QoE support, i.e., ESBA has equal normalized
bitrate and lower number and duration of stalls compared to
existing adaptation mechanisms in a scenario composed of
mobile and static clients.

The rest of this paper is organized as follows. Section II
outlines existing works and their main drawbacks to providing
video transmission QoE and energy-efficiency support. Sec-
tion III describes the proposed the ESBA algorithm. Section
IV discusses the simulation description and results. Finally,
Section V introduces the conclusions and future works.

II. RELATED WORK

Amour et al. [10] proposed a framework named Optimized
Quality of DASH (OQD), which considers QoE to adapt
the video bitrate. OQD implemented a Machine Learning-
based Method to predict users Mean Optimal Score (MOS)
by considering three important networks and application QoE
Influence Factors, i.e., bandwidth, video quality, and video
dropped frame. OQD selects the suitable video quality segment
based on the predicted MOS in order to maximize the band-
width usage. However, they do not use a strategy to minimize
stall events, causing a negative impact on QoE. In addition,
they do not consider energy for decision making.

Saamer et al. [11] examined how Smooth Streaming, Netflix
and Adobe OSMF react to persistent and short-term changes in
the available bandwidth in the underlying network. In this way,
they proposed an adaptation algorithm, referred as Adaptech
Streaming, which aims to detect persistent and short-term
available bandwidth variations in a timely manner in order
to provide smooth bitrate variations and avoid video freezes.

Coelho et al. [12] presented an HAS strategy, named of Va-
QoE-Adapt. It considers a pre-stall state for the decision pro-
cess about the video bitrate adaptation based on the available
transmission resources. In this way, a low bitrate representation
is accessed only under special conditions, i.e., pre-stall state,
in order to mitigate stalls events. In addition, Va-QoE-Adapt
takes decisions about bitrate switching based on QoE related
parameters to minimize playback stalls.

Zhao et al. [13] proposed a dynamic adaptive algorithm in
order to keep a high QoE for the average user’s experience.

Authors formulated QoE optimization that can be utilized
in bandwidth and buffer-based approaches. The estimated
bandwidth was captured by the weighted sliding window based
bandwidth estimator named Sliding Percentile (SP). Their
results were obtained by their empirical network traces and
show that their approach works stably under different network
conditions.

Dubin et al. [14] proposed a new crowd algorithm that
maximizes QoE in video streaming services. Their algorithm
estimates the current segment download path based on the
client’s location and speed. It predicts the future path network
bandwidth conditions based on the client’s playout buffer and
the crowd estimated bandwidth. Authors used an estimated
Mean Opinion Score (eMOS) [15] formula to measure the
QoE and their geo-predictive adaptive logic algorithm tries to
maximize it in order to obtain a better QoE.

Ayad et al. [16] investigated the detailed operations of the
different players by code level analysis and through reverse
engineering. Specifically, they presented the pseudo codes of
three open source players and devise a method to obtain the
detailed operation information, e.g., bitrate and buffer amount,
of popular streaming players whose source codes are not
publicly available. They conducted extensive experiments on
their testbed and provided suggestions based on the behaviors
of these players, including the repeated over-estimation of the
available bandwidth, unfair bitrate selection when multiple
players compete for the bandwidth, and insensitivity of Quick
UDP Internet Connections (QUIC) protocol to the varying
network bandwidth.

Based on our analysis of the state-of-the-art, we conclude
that an effective strategy that provides a good QoE and also
saves energy is not yet present in literature. In order to obtain
an effective strategy, it is necessary to use parameters that are
directly related to the QoE and new techniques to predict the
quality of the network, as well as to consider the device power
to provide a low frequency and time of the player stalls, and
to avoid waste of energy.

III. ESBA ALGORITHM

This section describes ESBA, which is a client-side and
hybrid-based video bitrate adaptation algorithm. ESBA takes
into account information about energy, mobile devices, net-
work, and buffer to request video segments with different
bitrate level in order to provide energy-efficiency and QoE
support. In this way, Figure 1 illustrates ESBA modules,
namely, adaptation, buffer, network, and energy modules, as
well as the communication flow. Initially, the client requests
the video content from the HTTP server. Next, the server sends
the MPD, which is an XML file that contains the information
about video segments (Ri), as well as their relationships
and information required for the client to choose between
them. Afterward, the client requests the next segment in an
appropriate bitrate version based on the decision taken by the
ESBA adaptation module. In the following, we explain each
module.
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Fig. 1: ESBA Modules

The energy module is responsible for checking the current
remaining energy of the mobile device (Denergy), and com-
puting whether it has enough energy to playback the video
at a specific bitrate level k. Specifically, the energy module
evaluates the energy required to playback the video E(K) in
a given bitrate level based on Eq. (1). The energy module
considers the number of segments (N ), the energy power
(Powerk) required to stream a video segment in the kth

bitrate level, and also the battery voltage used in the devices
(Battery V oltage). As result, higher the bitrate level requires
more energy, since the mobile device will spend more energy
to streaming the video at higher bitrate levels.

E(k) =

PN
1 Powerk ⇤ 103

Battery V oltage

(mW )

(V )
(1)

As shown in Algorithm 1, ESBA compares the energy
required to playback the video E(K) in the current bitrate
level with the device remaining energy Denergy . As soon as
the remaining energy is not enough to playback the next video
segment in the current bitrate level (Rcur), ESBA reduces the
bitrate level Rcur�1 to evaluate whether the device has enough
energy to playback the video segment with the bitrate level
Rcur�1. This happens until it reaches the minimum acceptable
bitrate level Rmin. Otherwise, ESBA also evaluates buffer and
network conditions to determine Rnext, as soon as the device
has the required energy to playback the video with the current
bitrate level.

The buffer module is responsible for computing the stall
probability (P (t � �)) based on the buffer levels recorded
in the last � seconds. In this sense, it checks the current
buffer occupancy level by means of three thresholds, named
as bs , bcont and bov . Particularly, the buffer module aims
to capture the possibility of stalls, since the player stops the
video playback as soon as the buffer level reaches the minimal
buffer threshold (bs). In addition, the buffer overload threshold

(bov) captures the situation, where the player stops to request
segments since the buffer is overloaded. Finally, the continuity
threshold (bcont) means the probability of session continuity
over the next second.

The number and duration of stalls are the most important
factor that impacts the QoE, due to the impact they directly
cause on the continuity of the video session for the user
[17]. In this way, the imminence of the video reproduction
interruption can be given by the lack of energy, by the buffer
occupation, or by the insufficient available bandwidth. In order
to mitigate stalls, buffer module calculates the probability of
stalls according to the Eq. (2), which presents the probability
of stalls based on the buffer levels recorded in the last �
seconds. The probability is calculated by the ratio of the
number of times Nbs the buffer level was below its minimum
threshold bs and the total number of observations made to the
buffer NB .

P (t��) =
Nbs(t��)

NB(t��)
(2)

The network module is responsible for estimating the
connection throughput. It is important to highlight that the
connection throughput is highly non-linear and varies with
time, and also changes abruptly when entering or leaving
a congestion hour. We must devise an accurate prediction
model to predict the dynamic nature of the traffic data. In
this way, We use artificial neural networks (ANN), with their
remarkable ability to learn from examples and derive meaning
from complicated or imprecise data, to extract patterns and
detect trends of connection throughput.

An ANN builds itself through the process of learning from
the previous experience, which is called ANN training. By
online learning, the ANN model can take into account the
changes in the environmental conditions and adapt itself to
the changes. These characteristics of the ANN have made it a

2019 15th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

ISBN 978-3-903176-13-3 © IFIP 148



potential solution for the prediction of connection throughput,
which presents complicated short and long-range temporal
dependence [10]. An ANN is formed from hundreds of single
units, artificial neurons or processing elements (PE), connected
with coefficients (weights), which constitute the neural struc-
ture and are organized in layers. The power of neural computa-
tions comes from connecting neurons in a network. Each PE
has weighted inputs, transfer function, and one output. The
behavior of a neural network is determined by the transfer
functions of its neurons, by the learning rule, and by the
architecture itself. The weights are the adjustable parameters
and, in that sense, a neural network is a parameterized system.

In our study, we used a Multilayer Perceptron (MLP) to
estimate the connection throughput and used the squashing
function as the non-linear transfer function based on Eq. (3).
An MLP is characterized by several layers of input nodes
connected as a directed graph between the input and output
layers. MLP uses backpropagation algorithm for training the
network. Based on setup experiments, our MLP consists of 5
inputs (i.e., previous connection throughputs), 3 hidden layers
with 3 nodes each, and 1 output (i.e., connection throughput).

�(x) =
1

1 + e�x
(3)

One problem in the construction of an ANN model is the
tradeoff between prediction accuracy and cost, where the cost
includes training and prediction costs, which are related to
the number of input parameters. In general, the prediction
accuracy is better with more input parameters. However, more
input parameters will lead to a higher cost in terms of pro-
cessing and time. In this way, selecting an appropriate training
size for network bandwidth prediction is another problem
in ANN construction. In our setup experiments, our training
and validation sets were generated through 26 simulations
performed in NS3 in different types of scenarios (described
in section IV), where 80% of the data was used to train a
model and 20% to validate a model.

At a specific time t, the network module computes the
average connection throughput T̂t�i� while downloading each
segment i accessed in the last i� seconds based on the observed
traffic data, where � is the duration of a segment and uses them
as the input of the trained ANN. As a result, the trained ANN
estimates the connection throughput of the next � seconds
(Tt+�). It is important to note that the average connection
throughput is calculated based on the number of bits received
while downloading a video segment at a specific interval of
time and not based on the video segment’s bitrate.

Finally, ESBA adaptation module is responsible for receiv-
ing information from other modules and collecting information
from the mobile devices in order to apply the bitrate adaptation
algorithm. Due to the limited energy resources of mobile
devices, sometimes they may not have enough energy to
playback an entire video in a given bitrate level. In this sense,
as shown in Algorithm 1, ESBA adaptation module evaluates
the energy issue to select the adequate bitrate level (lines 3, 5
and 13). In case of insufficient energy to playback a video,

ESBA reduces the bitrate level until the lowest acceptable
bitrate in order to request the bitrate quality for the next
segment (Rnext). As a consequence, it enables users to watch
videos as long as possible in an acceptable bitrate level,
improving energy-efficiency and QoE. In addition, reducing
the bitrate level increases the available throughput in the net-
work, which potentially increases the bitrate level of existing
VoD transmissions. In order to avoid waste of energy, ESBA
adaptation module does not select bitrate level higher than the
client display resolution, avoiding unnecessary download of
segments that will not be used.

Algorithm 1: ESBA Algorithm
Result: Rnext

1 Rnext  Rcur

2 Ecur  (Eq.1)
3 if Denergy > Ecur then
4 if bcont < B(t) < bov then
5 if Tt+� < f(Rcur) and Rcur < Rmax and

Denergy > Ecur+1 then
6 Rnext  Rcur+1

7 end
8 else
9 if bs < B(t) < bcont then

10 if Tt < f(Rcur) and Rcur > Rmin then
11 Rnext  Rcur�1

12 else
13 if Tt < f(Rcur) and Rcur < Rmax and

Denergy > Ecur+1 then
14 Rnext  Rcur+1

15 end
16 end
17 else
18 if B(t)  bs and Rcur > Rescape then
19 if P (t��) < ⇥ then
20 Rnext  Rmin

21 else
22 Rnext  Rescape

23 end
24 end
25 end
26 end
27 else
28 if Rcur > Rmin then
29 Rnext  Rcur�1

30 end
31 end

ESBA takes into account the probability of stalls based on
the buffer occupancy level B(t) (lines 4 and 9), as well as the
estimated throughput Tt+� (lines 5, 11 and 14) computed by
the Buffer module and Network module, respectively. In case
of the buffer occupancy reaches an interval equal to or less
than a minimum threshold (bs) (line 18), the frequency of such
event occurs is checked (line 19). If that event happens for at
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least the number of times of a pre-stall threshold (⇥) (line
21), then the return of the ESBA algorithm Rnext will have
a bitrate equal to a low-quality bitrate level, named escape
mode, to avoid stall events (line 22). Otherwise, the bitrate
of the next segment will be Rmin, the minimum acceptable
bitrate, which higher than escape mode representation (line
20).

IV. EVALUATION

This section describes the methodology and metrics used
to evaluate ESBA, Adaptech, and VA-QoE HAS protocols.
Afterward, we evaluate the impact of the different number of
static and mobile clients on QoE and energy efficiency.

A. Scenario Description
We implemented ESBA on the network simulator 3 (NS-3)

environment and conducted 33 simulations runs with different
randomly generated seeds, and the results show the values
with a confidence interval of 95%. The NS-3 simulation
environment is responsible for controlling parameters related
to the scenarios (i.e., simulation area, number of nodes,
mobility, etc.) and to the network (i.e., bandwidth, loss model,
power model, etc.). Table I summarizes the main simulation
parameters.

We deployed 20 and 30 static or mobile nodes in order to
evaluate the impact of node density and mobility. Each client is
equipped with an 802.11n radio in a shared a wireless channel
of 120 Mbps. We have conducted simulations with three
adaptation algorithms, namely, ESBA, VaQoE-Adapt [12], and
Adaptech [11]. Specifically, ESBA performs the adaptation
decisions by using the low-quality representation and taking
into account devices characteristics (devices’ energy and maxi-
mum supported resolution), connection throughput (estimated
by an MLP) and the probability of stalls (calculated by the
Eq. 2), such as introduced in Section 3. On the other hand,
VaQoE-Adapt does not consider devices’ characteristics and
only takes into account connection throughput (calculated by
an exponential moving average of the flow), the probability of
stalls and low-quality representation. Finally, Adaptech only
takes into account connection throughput (also calculated by
moving average) and the probability of stalls.

TABLE I: Simulation Parameters

Parameters Values
Simulation Area 150 m2

Number of Clients 20 and 30
Mobility Model Static nodes and random way point
Node Speed 1-3 m/s
Request Distribution Zipf distribution
Videos Sequence Big Buck Bunny
Video Duration 280-630 seconds
Representation rates 1, 2.5, 5, 8 Mbps

Clients consider the scootplayer to request videos from the
HTTP server, and also to watch the videos. The HTTP server
distributes video content for each client request, where we
considered seven versions of Big Buck Bunny video down-
loaded from the video library with different video duration,

varying from 280s to 630s. We encoded the videos using H.264
codec at representation rates of 2.5 Mbps, 5 Mbps, 8 Mbps,
and an additional representation rate of lower quality 1 Mbps.
The different numbers of video’s duration represent scenarios
where a user watch the whole video, and also scenarios that
a user watch a part of the video. The client request ratio
follows a Zipf-like distribution, where the video of shorter
duration is more priority than those of longer duration. The
relative probability of requesting the ith most popular video
is proportional to ⌦

i↵ , where ⌦ is a normalizing constant, and
↵ is an exponent that varies from a trace to trace. That is, the
request distribution does not follow the strict Zipf’s law (with
↵ = 1), but follows a more general Zipf’s like distribution.

We applied well-known objective QoE metrics, namely,
normalized bitrate, number of stall events and their duration. In
addition, we considered energy metrics, i.e., average current
consumption and the number of devices without energy to
playback the entire video in order to evaluate the performance
of ESBA, Adaptech, and VA-QoE algorithms in scenarios
composed of static and mobile clients. These metrics have
a significant influence on the QoE, where unexpected values
could result in the viewer abandoning the video service
completely. The stall events indicate the number of times the
buffer was emptied, and thus the video stopped playback. The
stall duration measures the time duration when the playback
of the video is temporarily stopped. In addition, it is important
to analyze the normalized bitrate µn, which is computed based
on Eq. (4). This is because it is possible to identify whether
there is or not a waste of energy while the client is requesting
a video segment/chunk.

µn =

Pn
i=0(Ri ⇤Di)

Ts ⇤Rmb
(4)

where, i represents the i-th segment, Ri is the function
that returns the segment bitrate i, Di represents the segment
length i, Ts represents the duration of the session and Rmb

the maximum bitrate supported by the playback device.

B. Results

Figure 2 shows the QoE and energy results for video
delivered by ESBA, Adaptech, and VaQoE-Adapt in a sce-
nario composed of 20 and 30 static clients. By analyzing
the results of Figures 2a and 2b, we conclude that ESBA
significantly reduced the number and duration of stalls events,
i.e., ESBA reduced from 38 and 23 to 4 stall events compared
to Adaptech and VaQoE-Adapt in the scenario with 20 static
clients, while it reduced from 42 and 23 to 6 in the scenario
with 30 static clients. On the other hand, ESBA reduced the
duration of stall events from 100 s and 40 s to 20 seconds
compared to Adaptech and VaQoE-Adapt in the scenario with
20 static clients, and similar behavior happens for the scenario
with 30 static clients. The performance of ESBA is due to
it combines information about the mobile device, network,
buffer, and energy issues for decision making, which increases
the available throughput without compromising the QoE. For
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Fig. 2: QoE and energy results for scenario with 20 and 30 static clients

instance, devices with low energy to playback videos must
request the minimum acceptable bitrate of 2.5 Mbps, increas-
ing the available throughput in the network and reducing the
stall events for other clients. Moreover, ESBA predicts the
connection throughput by considering an ANN. On the other
hand, VaQoE-Adapt and Adaptech consider moving average
for throughput estimation, which is less accurate than the ANN
considered by ESBA.

In terms of energy consumption, ESBA provides energy-
efficiency compared to Adaptech and VaQoE-Adapt, as shown
in Figure 2c. Specifically, ESBA reduced the energy con-
sumption by 60% and 70% compared to VaQoe-Adapt and
Adaptech, respectively. This is because ESBA considers a
module responsible for checking the device battery as the first
step of the adaptation algorithm, decreasing or limiting the
quality of the segment if necessary. This is because users prefer
a less than excellent but acceptable video quality when offered
higher energy saving [9]. On the other hand, VaQoe-Adapt and

Adaptech do not consider energy issues for decision making,
thus in most situations, they download a larger number of
packets (sometimes unnecessarily) for higher bitrate level,
which consumes more energy. As a consequence, using ESBA
only 3% of devices did not have enough energy to playback
the entire content, while 29% and 21% of devices are without
enough energy to playback the entire video using Adaptech
and Va-QoEAdapt algorithms, as shown in Figure 2d.

Figure 2e shows the normalized bitrate for each video
delivered by ESBA, Adaptech, and VaQoE-Adapt in a scenario
composed of 20 and 30 static clients. Observing that, we
conclude all algorithms deliver video segments with almost
the same bitrate levels. This is because they consider similar
metrics to request video segments with a given bitrate level.
For instance, some clients using Va-QoEAdapt or ESBA
requested video segments with the minimal bitrate level, i.e.,
escape mode representation, as soon as they detect that there is
not enough connection throughput to request video segments
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with higher bitrate level. In addition, ESBA considers energy
information to make decisions, and thus the clients requests
low-quality bitrate segments as soon as a given device do not
have enough energy to play a whole video.

Figure 3 shows the normalized bitrate for each video
segment received by a specific client for a video duration
of 300s delivered by ESBA, Adaptech, and VaQoE-Adapt
in a scenario composed of 30 static clients. Values closer
to 1 means content delivery with a high QoE, while values
above 1 indicate a waste of energy since there is no need to
request a higher segment quality than the supported device,
consuming unnecessary network resource shared with other
clients. By analyzing the results of Figure 3, we can conclude
that VaQoE-Adapt and Adaptech are not aware of the video
quality supported by the device since some segments have
the normalized bitrate higher than 1. This causes waste of
energy, network, and CPU resources since the client requested
segments with the bitrate higher than the supported by client’s
device. Moreover, we can also observe that ESBA and VaQoE-
Adapt delivered some segments with the minimal bitrate level,
i.e., escape mode representation. This is because the available
bandwidth is not favorable to request high bitrate level for such
segments, and thus the minimal bitrate level is requested.
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Fig. 3: Normalized bitrate for each video segment in a scenario
composed of 30 static clients

Figure 4 shows the QoE and energy results for video
delivered by ESBA, Adaptech, and VaQoE-Adapt in a scenario
composed of 20 and 30 mobile clients. By analyzing the re-
sults, we conclude that ESBA also outperforms Adaptech and
VaQoE-Adapt algorithms to deliver adapted videos with better
QoE and energy-efficiency. In addition, the scenario with 30
clients has also worst QoE and energy performance than the
scenario with 20 clients, since there are more clients requesting
videos and consuming network resources. By comparing the
QoE results of Figures 2 and 4, i.e., scenarios with and without
node mobility, we observe that node mobility reduced the
number and duration of stalls events in 20% regardless the
adaptation algorithm. This is because node mobility leads
to more packet loss ratio, reducing the accuracy of any
mechanism to predict the connection throughput, which is an
important metric for the adaptation mechanisms. It is important
to highlight that the connection throughput prediction used
by ESBA is still performing well in the scenario with node

mobility since it considers an ANN to learn from the previous
experience. On the other hand, comparing the energy results of
Figures 2 and 4, we observe that results are almost the same.
This is because although the mobile scenario has larger packet
retransmissions, the quality of the segments is generally lower,
which requires a smaller number of packets to download a
video segment.

From our performance evaluation analysis, we conclude that
ESBA significantly reduces the energy consumption, number,
and duration of stalls to deliver multimedia content using
adaptive bitrate streaming techniques compared to Adaptech
and VaQoE-Adapt algorithms. In addition, ESBA keeps the
normalized bitrate level similar to Adaptech and VaQoE-Adapt
algorithms.

V. CONCLUSION

In this paper, we introduced a hybrid energy-aware video
bitrate adaptation algorithm to deliver videos with high QoE
and energy-efficiency for mobile users, named ESBA. It takes
into account devices characteristics (devices’ energy and max-
imum supported resolution), connection throughput (estimated
by a Machine Learning Process) and the probability of stalls
(computed based on buffer information) to request video
segments with different bitrates. In this way, ESBA improves
the energy-efficiency, while keeps a high QoE in an HAS
system. Simulation results demonstrate the energy-efficiency
of the ESBA, especially in scenarios where the user’s device
has not enough power to playback multimedia content in
the video quality requested. For instance, ESBA transmitted
adapted video with energy efficiency 50% higher than videos
transmitted by Adaptech and VA-QoE. Moreover, results also
demonstrate that ESBA delivers videos with satisfactory QoE,
i.e., ESBA has a high normalized bitrate and lower number
and duration of stalls compared to Adaptech and VA-QoE.

A further investigation is necessary to look into other
scenarios, using a higher number of nodes, and comparing
with other strategies such as cache strategies, in order to define
which one is better in a different set of situations.
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