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Abstract—In 5G research, it is traditionally assumed that ver-
tical industries (a.k.a verticals) set the performance requirements
for the services they want to offer to mobile users, and the mobile
operators alone are in charge of orchestrating their resources
so as to meet such requirements. Motivated by the observation
that successful orchestration requires reliable traffic predictions,
in this paper we investigate the effects of having the verticals,
instead of the mobile operators, performing such predictions.
Leveraging a real-world, large-scale, crowd-sourced trace, we
find that involving the verticals in the prediction process reduces
the prediction errors and improves the quality of the resulting
orchestration decisions.

I. INTRODUCTION AND RELATED WORK

Unlike their fourth-generation counterparts, 5G networks
will not only transport data, but also process them. Network,
computing, and memory resources controlled by mobile net-
work operators (MNOs), will concurrently support multiple
services, under the network slicing paradigm [1], [2]. It is
universally expected [1]–[3] that vertical industries (e.g., auto-
motive or media companies) specify the requirements of their
services, i.e., which computation must be performed and the
associated target key performance indicators (KPIs). MNOs,
on the other hand, have to manage their network so as to ensure
that all target KPIs are met at the lowest cost for themselves,
a problem known as service orchestration [4], [5].

Our purpose in this paper is to study a different model of
interaction between vertical industries (henceforth verticals)
and MNOs, whereby verticals provide not only the target KPIs
but also an estimation of their expected traffic patterns. The
reason for this change is that service orchestration is greatly
simplified if the evolution of the demand to serve is known [6],
or it can be reliably predicted [7], and verticals are in a better
position than MNOs to make such a prediction. Indeed, unlike
verticals, MNOs cannot access, for technical and legal reasons,
detailed, application-layer information on the traffic flowing
through their network. It follows that, since network slices are
tailored around a single type of service1, the service-specific
predictions that verticals can make may be more useful than
predictions made by MNOs.

Our first task is therefore to compare the accuracy of the
predictions that MNOs and verticals can make based on the
information they can access. To this end, we leverage a real-
world, large-scale, crowd-sourced trace, containing mobility

1I.e., services with the same KPIs.

and traffic information about over 90,000 users in the Los
Angeles area. Thanks to its crowd-sourced nature, the trace
contains a superset of the information available to verticals and
MNOs; therefore, we can consider a state-of-the-art prediction
technique, feed it the data available to MNOs and verticals,
and check which of them yields the most accurate result.

Beyond the accuracy of predictions, we are interested in
the effect of prediction errors on the resulting orchestra-
tion decisions. Specifically, we are interested in two adverse
consequences of inaccurate predictions, namely, (i) unused
capacity, when the demand is overestimated and the network
slice is over-provisioned, and (ii) scale-up events, when the
capabilities of an under-provisioned slice must be swiftly
improved to face a higher-than-predicted demand. Our task
is to establish which of these events is more common and
how the predictions obtained by verticals and MNOs affect
them.

Finally, we compare both alternatives against a scenario
where verticals and MNOs share not only the traffic prediction
but the input information they use to make them. This serves
as a useful benchmark,a lthough it would be realistic only in
very specific scenarios, e.g., when the MNO also acts as a
vertical and provides value-added services such as video calls
or streaming.

The rest of this paper is organized as follows. Sec. II
presents the real-world dataset we use for the forecasts, while
Sec. III describes the techniques we adopt. After presenting
the metrics of interest and numerical results in Sec. IV, we
conclude the paper in Sec. V.

II. A REAL-WORLD DATASET

For our analysis, we use a real-world, crowd-sourced dataset
collected from the WeFi app [8]. WeFi provides its users with
location-specific information on the available Wi-Fi networks,
and such information is crowd-sourced from the users them-
selves. Specifically, the app tracks:

• the current time (with a one-hour granularity) and loca-
tion;

• the mobile operator and cell the user is associated with
(if any);

• the SSID and BSSID of the Wi-Fi network she is con-
nected to (if any);
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TABLE I
THE WEFI TRACE.

Metric Value
Covered area 98⇥ 79km2

Collection time March 2016
Number of records 835 million

Unique users 91,341
Unique cells 1,552

Unique BSSIDs 457,388
Unique apps 72,958
Total traffic 535 TByte
Coverage 2% (WeFi estimate)

Fig. 1. The area covered by the WeFi dataset. Colors reflect the average
download rate considering all applications; warmer colors correspond to a
higher traffic demand.

• the amount of data (uplink and downlink) used by the
currently-active application, and the identity of the appli-
cation itself.

New records in the trace are created every time any of the
above pieces of information changes, e.g., the user switches
between apps. The features of the trace are summarized in
Tab. I.

Fig. 1 depicts the area covered by the trace – greater Los
Angeles – and the traffic density therein. We can observe a
higher traffic demand in the most densely-populated zones,
e.g., downtown Los Angeles, and a lower demand in rural or
wilderness areas. Also notice, in the far East and North of the
map, the Edwards and Twentynine Palms military bases, with
a much higher traffic than the surrounding rural areas.

Importantly, unlike similar datasets collected by mobile
operators [9], [10], the WeFi trace includes information on
different mobile operators and technologies (including Wi-
Fi), as well as different applications – an aspect that makes
the trace especially well-suited to study 5G networks. Indeed,
the network slicing paradigm is predicated on tailoring slices
to individual applications; in this context, knowledge on
application-specific traffic patterns is much more useful than
information on global demand fluctuations.

III. FORECASTING TECHNIQUE

Here we briefly describe the data available to MNOs and to
verticals, the prediction technique that we apply, and the output
(i.e., the predictions) that MNOs and verticals can obtain.

Input and output data. The information available to
MNOs, i.e., in machine learning jargon, the features their
forecast is based upon, include, for each cell and time period:

• the total demand (by all users, for all apps);
• the number of users covered by the cell (regardless their

activity).
In the case of the WeFi trace, time periods correspond to one-
hour time intervals. Notice that, due to technical and legal
reasons, MNOs have no knowledge of what individual users
do, i.e., which app(s) they use.

Verticals, on the other hand, only have information about
their own service2. On the positive side, they know the identity
of their users and their fine-grained location – in the case of
the WeFi trace, a 10 ⇥ 10 m2 tile. For each time period and
tile, verticals can thus keep track of:

• the traffic demand for their service;
• the number of users of their service;
• their traffic history, e.g., the amount of data they down-

loaded in the past.
For both MNOs and verticals, the quantity to predict is the

total demand of a specific app, i.e., the traffic the network
slice will process. As it is commonplace in machine learning,
we split our dataset into a training set, including the first three
weeks of the trace, and a testing set, containing the last one.

Prediction technique. The prediction task under study
belongs to the class of time-series forecasting problems. Input
data are multi-variate, i.e., the forecast must be based on the
evolution of multiple quantities – in the case of MNOs, for
example, the traffic demand of each individual cell. This rules
out the use of traditional approaches like the Holt-Winters
method adopted in [7], which requires uni-variate time series.

We therefore turn to neural networks, namely, Long Short-
Term Memory (LSTM) networks, introduced in [11] and,
since then, successfully applied in a variety of fields, from
computer vision to voice recognition. Specifically, we use
the implementation from Google’s TensorFlow [12] library,
accessed through the Keras [13] high-level front-end.

IV. NUMERICAL RESULTS

This section shows the predicted behavior of the traf-
fic demand, describes the performance metrics we consider
(Sec. IV-A), and discusses the results we obtain (Sec. IV-B).

Fig. 2 shows the actual traffic (black line), as well as the
traffic predicted:

• using the data available to MNOs (blue lines);
• using the data available to verticals (yellow lines);
• using both (green lines).

A. Performance metrics

As mentioned in the introduction, we are interested in two
main aspects, namely, the prediction accuracy and the quality
of orchestration decisions. Quantifying the prediction accuracy

2For simplicity, we assume that a service corresponds to an app, and that
each vertical only provides one service.
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Fig. 2. Actual and predicted traffic for YouTube (a), Facebook (b), and Netflix (c).

Fig. 3. Prediction error (RMSE) for different apps and scenarios.

Fig. 4. Unused capabilities and scale-up events for different apps and
scenarios.

is fairly straightforward; specifically, we resort to the well-
known RMSE (reduced mean-square error) metric, defined as:

RMSE =

vuut 1

n

nX

j=1

(yj � ŷj)
2
, (1)

where n is the number of time periods the forecast extends
across (seven days, i.e., 168 one-hour periods in our case),
while yj and ŷj are, respectively, the actual and predicted
traffic at the j

th time period. Note that all metrics are computed
separately for each app.

With regard to orchestration decisions, there are two adverse
effects we seek to minimize. The first is unused capabilities,
i.e., network slices that are over-provisioned with respect to

the actual traffic demand. We can quantify unused capabilities
as:

w =
nX

j=1

max (0, ŷj � yj) . (2)

That is, for each time period, we consider the difference
between the predicted demand (according to which the slice is
dimensioned) and the actual one; if positive, such a difference
is representative of the amount of unused capabilities.

The second adverse effect is represented by scale-up events,
i.e., under-provisioned slices whose capabilities have to be
swiftly extended to cope with unforeseen increases in traffic.
As discussed in [14], such events have the potential to decrease
the QoS/QoE of all services supported by the MNO. The
quantity u expresses the number of time periods in which
such events happen:

u =
nX

j=1

1[yj>ŷj ]. (3)

B. Results
Each of the plots in Fig. 2 refers to one of the three most

used apps in the trace: YouTube, Facebook, and Netflix. As
one might expect, the traffic demand exhibits clear weekly
and daily patterns, e.g., morning and evening peaks. However,
the magnitude of traffic peaks is not consistent throughout all
days, e.g., see the peaks around periods 60 and 160 in Fig. 2(a).
This feature of traffic patterns makes prediction harder; indeed,
we can observe that these higher-than-usual peaks are never
properly predicted, regardless of the scenario.

Fig. 3 shows the prediction error (RMSE, as defined in
(1)) associated with different services and scenarios. A first
fact to notice is that the prediction error is, in general, fairly
small: a testament to the effectiveness of the LSTM prediction
technique, as well as to the overall regularity of the traffic
demand. It is perhaps even more interesting to observe that
the RMSE changes significantly across apps; comparing Fig. 3
to Fig. 2, we can conclude that more numerous and irregular
peaks are associated with a higher prediction error.

The effect of shifting the task of traffic prediction from
the MNO (first group of bars in Fig. 3) to the vertical (second
group of bars) is also inconsistent across services. The vertical
seems to be better than the MNO at predicting YouTube, but
the opposite is true for Facebook; as for Netflix, no significant
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difference can be observed. The third group of bars refers to
the benchmark scenario where MNOs and verticals share their
information and jointly predict the demand: in this case, the
resulting error is close to the lowest of the errors yielded by
the other two scenarios.

Fig. 4 focusses on the impact of the traffic prediction on
orchestration decisions. The x-axis therein shows the total
unused capabilities, i.e., the w-metric defined in (2), while
the y-axis shows the frequency of scale-up events, i.e., the u-
metric defined in (3). Each dot corresponds to a combination
of app (identified by its color) and scenario (identified by the
marker used), e.g., the red square corresponds to the vertical
making predictions about YouTube traffic.

A first observation we can make is that scale-up events are
much more common than unused capabilities. Indeed, scale-
up events happen in around 10% of time periods (i.e., roughly
twice per day), while unused capabilities account for less than
2% of the total. This is unwelcome news, since scale-up events
are, in most real-world cases, a more serious issue than unused
capabilities, and far more likely to result in a violation of
target KPIs and/or higher costs for the MNO [14]. This seems
to disagree with the low RMSE values summarized in Fig. 3;
however, it is worth recalling that any underestimation of the
demand, no matter how slight, leads to a scale-up event. For
the same reason, the Netflix app (green markers) is associated
with almost the same number of scale-up events as Facebook
and YouTube, in spite of the much lower RMSE.

Even more interestingly, there is a remarkably consistent
relationship between the different scenarios. MNO predictions
yield the highest number of scale-up events and the lowest
amount of unused capabilities; moving to vertical and joint
predictions has the effect of reducing the scale-up events in
exchange for a small increase in unused capabilities. It is
important to remark how this happens for all apps, in spite
of the different levels of prediction accuracy (Fig. 3) they are
associated with. In other words, while involving the verticals in
traffic prediction does not necessarily improve the predictions
accuracy per se, it does yield better orchestration decisions,
with a healthier balance between scale-up events and unused
resources.

V. CONCLUSION AND FUTURE WORK

We considered the orchestration problem in 5G networks
based on network slicing. After remarking that good orches-
tration decisions depend on accurate traffic predictions, we
investigated whether verticals are in a better position than
MNOs to make such predictions. Using a real-world, large-
scale, crowd-sourced trace, we found that, while the prediction
error is not consistent throughout different apps, involving the
verticals in the prediction leads to a slightly higher amount of
unused capacity and, more importantly, to a lower frequency
of scale-up events.

A first direction to extend our work is considering additional
prediction techniques, including generalizations of the Holt-
Winters method. Furthermore, we can couple the predictions
with actual orchestration algorithms, including state-of-the-art

approaches taken from the literature as well as purpose-built
ones.
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