
RoRoute: Tools to Experiment with Routing
Protocols in WMNs

Michele Segata, Nicolò Facchi, Leonardo Maccari, Renato Lo Cigno
Dept. of Information Engineering and Computer Science, University of Trento, Italy

{name.surname}@unitn.it

Abstract—Routing in wireless mesh networks is a well studied
topic, but indeed, a deeper analysis in real world deployments
shows that there are still many open issues, the real world
is complex enough so that theoretic design, simulations and
emulators can hardly encode it. This paper presents a set of
tools and best practices we developed thanks to the WiSHFUL1

experimental platform that enables the analysis of routing
protocols robustness and resilience in face of failures and other
impairments when the protocols run in real networks with all
the complexity and non-linear interactions that characterize
wireless meshes. We present results obtained with Optimized
Link State Routing (OLSR) and possible extensions to this
protocol that clearly document phenomena that are not visible or
implementable in either simulation or emulation environments.

I. INTRODUCTION

Wireless mesh and ad-hoc networks have been largely studied
in the last two decades and today they found niche applications
in which they are successful. Two examples at the opposite
extremes are “Community Networks” [1], [2] (networks made
of hundreds of nodes covering entire cities) and the small,
high-throughput home meshes. In between there are hoards of
other applications where mesh networks have been historically
used successfully (military, security, industrial, etc.).

This success was made possible mostly thanks to the research
that improved the PHY and MAC layers (IEEE 802.11 in
particular) that was not directly targeted at mesh networks, but
greatly improved their capacity. Instead, we observe that the
research targeting the upper layers (IP in particular) did not
produce much impact. Of the hundreds competing proposals for
the routing layer produced in the literature, most real networks
use just a few of them, with little degree of innovation from
classical Internet-based protocols [3].

Now that off the shelf products have links with more than
gigabit capacity for less than 100$, we need new ideas to make
networks scale from tens to hundreds to thousands of nodes,
for instance minimizing signaling overhead [4] or finding better
routing metrics [5], [6], or novel applications [7]. We also need
to ensure that these novel ideas do not remain on paper and in
simulators, as we know that the path that leads from a proposal
to code running on real devices is full of obstacles.

This work has been supported by the H2020 GA No. 645274 “Wireless
Software and Hardware platforms for Flexible and Unified radio and net-
work controL (WiSHFUL)" with the project “Pop-Routing On WiSHFUL
(POPROW)" financed in Open Call 3.

1WiSHFUL is a European H2020 project supporting an experimental
distributed testbed for wireless networks http://www.wishful-project.eu/

Starting from this observation, this paper documents and
analyses the difficulties that can be encountered in real-world
experimentation of mesh networks and the solutions that can
be put into practice. We describe our methodology and we
show that it can be effectively used to design, implement and
test layer 3 research proposals in a time-efficient manner. The
tool implementing our methodology, i.e., RoRoute, is released
as Open Source software2 to the scientific commnuity.

II. BACKGROUND AND RELATED WORK

When proposing new routing strategies and protocols, we
need to compare them to existing approaches to understand
when they perform better or worse. As an example, in previous
work we proposed an optimization of the Optimized Link State
Routing (OLSR) protocol [8] that reduces routing convergence
time when central nodes fail [9], and we have shown it can
be efficiently implemented and emulated [10], but will the
proposal stand the test of reality? Throughout this paper, we
consider this example as use case to showcase the features of
RoRoute and how it effectively helps in comparing standard
OLSR against the proposed variant: Pop-Routing [9]. As the
goal of Pop-Routing is increasing network resilience against
failures, thus often in the paper we use “killing a node” as
synonym of topology change.

As we use OLSR to exemplify the experiments that can be
done with RoRoute, we recall some basic concepts. The reader
can find more details in the RFCs that standardize the first [8]
and the second version of OLSR [11] and in the relevant
literature on its features as convergence speed, Multi-Point-
Relays (MPRs) selection, or Fish Eye [4], [12], [13]. OLSR is,
as the name states, a link-state routing protocol. OLSR nodes
periodically send an H message to announce its presence to
neighbors. H messages from node i contain the IP address
of the 1-hop neighbors, so that at steady state each node has
a full knowledge of its 2-hop neighborhood. MPRs can be
elected by nodes to form a “signaling backbone” that keeps
the protocol overhead to acceptable levels when the number
of nodes increases. To simplify the tests, but without loss of
generality (as Pop-Routing can be used also with MPRs) we
assume that every node periodically generates a TC message
containing the list of its destinations and re-broadcast the TC
messages it receives from other nodes. TC messages distribute

2https://github.com/AdvancedNetworkingSystems/roroute

2018 14th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

ISBN 978-3-903176-02-7 © 2018 IFIP 91

Internet

User machine Master node

Test bed

Figure 1: Experimental network setup and remote control.

the link state so that OLSR can compute the routing with
Dijkstra algorithm.

What are instead fundamental to understand experimental
results presented in Section IV are the H and TC timers: tH
and tTC respectively. In the standard OLSR implementations
these timers are constant and equal in all nodes, normally with
tH < tTC. H and TC messages have a limited validity period,
which is computed by multiplying their timer values by the
Hml and TCml multipliers, respectively. If a specific H or TC
message is not received within this time frame, routes advertised
through the missing node or link are invalidated, causing OLSR
to change its perception of the topology and update the routing.
As we have shown in [9] by proposing Pop-Routing, these
timers can be optimized with different values in each node,
depending on the node betweenness centrality, leaving the total
overhead of the protocol constant, but significantly increasing
the resilience of the networks in face of node failures.

Finding means to compare standard OLSR with Pop-Routing
had been challenging. The first and quickest approach are
network simulators like NS-3 or OMNeT++. They are powerful
means but do not run in real time and the source code used
for tests can not be reused as-is in real networks. The second
approach is given by network emulators, on which one can
test deployable code, since they set-up a virtual infrastructure
that runs the same operating system and the same software
of the target environment. Emulators like NEmu and Naxim,
or ligtweight emulators like NePA TesT [14] (built on top of
Mininet) make it possible to re-use the code in real devices,
but do not allow to emulate large networks with realistic MAC
and PHY levels.

The third approach is to use real testbeds like Community-
lab and WiSHFUL3, which allow access to remote network
resources. Testbeds provide researchers with the highest degree
of realism, as they run the real software on real hardware, on
the other hand, it is difficult to control the test environment,
making it harder to obtain reproducible results.

For this reason, this work proposes RoRoute, a set of tools
that automatizes the majority of the steps required for evaluating
the performance and the robustness of routing protocols in real
testbeds.

III. ROROUTE WORKFLOW

The goal of RoRoute is enabling us to perform the ex-
perimental analysis of different OLSR versions in terms of
network convergence time. To this goal, it must perform node

3https://community-lab.net/; http://www.wishful-project.eu/testbeds

start experiment
with input parameters

get test bed
topology

OLSR run Prince run

more repetitions?collect data

setup master node
setup test bed

nodes

no

yes

one time setup

repetition

experiment

Figure 2: Flow chart of a RoRoute experiment with standard OLSR
and Pop-Routing.

and topology setup, run the experiment, as well as logging and
retrieving the data. As the final and most important step, it
must process the data and compare the different approaches,
showing which one has the fastest convergence.

Fig. 1 shows the testbed network from a high-level per-
spective. Experiments are remotely controlled from the user
machine, which delegates the job to one testbed node, called
the master node. The user opens a single SSH connection
to the master node which, in turn, connects to the nodes
through the testbed Local Area Network (LAN). The master
node is responsible for controlling the experiment by sending
instructions to the nodes. For the setup phase (i.e., installing
the required software) the master node exploits Ansible, a tool
that enables the automation of tasks on clusters of nodes.

The control of the experiment, instead, is done through
WiSHFUL, an open source framework permitting the man-
agement of radio and network devices with a set of Unified
Programming Interfaces (UPIs). Through WiSHFUL, the master
node (a.k.a. the controller) can automatically discover testbed
nodes (a.k.a. the agents) and perform UPI calls on all or on
a subset of them. For example, there exist UPIs for setting
physical layer parameters (transmission power, bit rate), for
managing routing tables, retrieve information from nodes,
running code snippets on them, etc.

Fig. 2 shows the flow diagram of a single experiment.
The first task is to realize a specific topology on top of the
testbed one. To this aim RoRoute exploits OLSR to obtain
the testbed topology and to realize the desired one via MAC
layer filtering. In general, the subgraph isomorphism problem
is NP-complete [15], but solving it when the host graph (i.e.,
the testbed topology) is almost a full-mesh is trivial.

Once MAC filter rules are in place, RoRoute starts the OLSR
daemon and waits for network convergence. To this purpose the
master node periodically checks that the routing table and the
topology computed by OLSR does not change for a predefined
amount of time. Once convergence is reached, RoRoute starts
the experiment.

Depending on the topology and the chosen strategy, which
can be user-defined, the master computes the nodes that should
be killed to test resilience and when, or it can be extended
to change topology in other ways. The master defines and

2018 14th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

ISBN 978-3-903176-02-7 © 2018 IFIP 92

0 5 10 15 20 25 30

0

100

200

300

400

500

600

time (s)

p
at
h
s

OLSR (broken)
OLSR (loop)

Poprouting (broken)
Poprouting (loop)

Figure 3: Typical RoRoute repetition outcome comparing standard
OLSR and the Pop-Routing enhanced version.

......

Figure 4: Line topology used for preliminary test experiments.

distributes the absolute experiment start time, all nodes are
synchronized with Network Time Protocol (NTP), and this is
key to the analysis phase.

RoRoute considers the experiment terminated after a prede-
fined amount of time. This procedure is repeated for all variants
of the protocol, and for the required number of repetitions. The
final step is data collection. Each node compresses the data
and sends its to the master node which, in turn, sends it to the
user machine.

A. Analyzing Network Evolution

RoRoute takes care of the post-processing phase, which in
our case consists in the analysis of the routing tables to count
disrupted paths due to node failure. Disrupted routes include
broken and looping paths. Broken paths are those where the
routing table of one of the nodes along the route either points
to the failed node or does not have an entry for the destination.
Paths with loops, instead, are the ones where one node appears
twice in the route, causing packets to bounce back and forth
until the Time to Live (TTL) expires.

From the point of view of performance, it is important to
measure how much time a protocol needs to recover broken
paths. For each time sample, RoRoute computes the number of
broken paths starting from the routing tables, which are stored
in a dictionary Ri

t[·] where i is the node and t the time sample.
For each timestamp h, RoRoute navigates the graph from every
source nj to every destination nk recursively, using the routing
tables of intermediate nodes. For each h, it counts the broken
routes rh (i.e., those that still include the failed node or that
contain loops). This produces an array {(T0, r0), (T1, r1), . . .},
where each entry associates a time instant to the number of
failures.

The time/failures vector can be plotted for a qualitative
analysis. Fig. 3 shows a typical RoRoute outcome comparing
standard OLSR against its Pop-Routing enhanced version on
the topology shown in Fig. 4. The topology is composed by
two long chains connected by two paths, one being shorter than
the other (and thus, preferable). The failing node is the one in

0 20 40 60 80

0

200

400

600

800

time (s)

p
at
h
s

OLSR (broken)
OLSR (loop)

Poprouting (broken)
Poprouting (loop)

Figure 5: Non converging topology due to small Hml and TCml
values.

the middle of the shortest path. Fig. 3 compares two single-
shots only. To obtain a quantitative view, we can compute the
integral of the time/failures vector for each OLSR version and
average it over multiple repetitions for statistical confidence.

IV. SAMPLE RESULTS

The main goal of our experiments is to measure the gain in
performance obtained by tuning the generation frequency of
OLSR timers according to nodes’ centrality. Before reaching
this goal we needed to properly configure OLSR and RoRoute
to obtain correct and meaningful results.

As a first step we need to choose values for the Hml and
the TCml parameters. At the same time, these parameters
affect the reaction time to network changes, as well as the
correct convergence of the protocol. Fig. 5 shows an example
experiment outcome where Hml and TCml are too small. In
this experiment, we use the topology in Fig. 4 and set both
Hml and TCml to 3, the value recommended by the standard,
but not the default in olsrd.

Too small values of Hml and TCml combined with the high
chance of loosing control packets in the long paths of the
given topology, cause OLSR to invalidate routes by mistake.
By observing Fig. 5 the problem was easy to diagnose and to
fix.

An additional problem we encountered was “routing ran-
domness”, which is only observable in a testbed or in real
deployments. RoRoute correctly implements the experiment
topology, but still there is no guarantee on which shortest paths
the routing algorithm will compute. For example, in the case
of multiple shortest paths between a pair of nodes, we cannot
know which one will be chosen. This is a problem when we
need to perform a comparison between different algorithm
implementations, as the different experiment instances might
compute different shortest paths. To minimize this problem,
RoRoute can compute and assign random link quality multi-
pliers to the edges, reducing the chances of having multiple
shortest paths.

Fig. 6 shows this phenomenon. The figure shows the
evolution of two repetitions. First, it can be seen that the two
protocol versions being compared do not converge to the same
topology, as killing the same nodes results in a different number
of broken paths. Second, the behavior changes between different
repetitions. In Fig. 6a, the node failure causes more broken
paths in the Pop-Routing run, while in Fig. 6b happens exactly

2018 14th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

ISBN 978-3-903176-02-7 © 2018 IFIP 93

0 5 10 15 20 25

0

100

200

300

400

500

time (s)

p
at
h
s

OLSR (broken)
OLSR (loop)

Poprouting (broken)
Poprouting (loop)

(a) first repetition

0 5 10 15 20 25

0

100

200

300

400

500

time (s)

p
at
h
s

OLSR (broken)
OLSR (loop)

Poprouting (broken)
Poprouting (loop)

(b) second repetition

Figure 6: Route disruption for different repetitions within one
experiment.

the opposite. The random link quality multipliers generated by
RoRoute, however, minimize the discrepancy, so that different
protocol variants can still be compared by performing multiple
repetitions and averaging the results. As in the case of the
timers, RoRoute eased the identification of the problem.

To quantify the amount of variability we experience over a
set of repetitions, we report here some statistics of a comparison
experiment between OLSR and Pop-Routing using topologies
generated with the well known “caveman” generator. In this
experiment we run 7 repetitions for each OLSR variant,
obtaining 14 topologies to compare. Table I shows the number
of routes which differ between one repetition taken as a
reference and all the others. More formally, let Si be the
set of all shortest paths of repetition i, with S0 being the
reference repetition. We define the set of shortest paths that
differ between experiment i and experiment 0 as

di = {{ui, . . . , vi}
| {ui, . . . , vi} ∈ Si 6= {u0, . . . , v0} ∈ S0 ∧ ui = u0

∧ vi = v0 ∧ (|{ui, . . . , vi}|> 2 ∨ |{u0, . . . , v0}|> 2)}.

Table I shows the absolute count of differing paths |di|, as
well as the relative percentage with respect to all the shortest
paths, excluding self-loops and point-to-point links. Even
considering the random link quality multipliers, we experience
up to 18% different shortest paths between different repetitions.
On average, the difference is around 9.58%, which shows how
challenging it is to perform comparable repetitions in a real
testbed, and thus how beneficial can be the use of RoRoute.

V. CONCLUSIONS

In this paper we presented RoRoute, a set of tools that
automate the majority of the steps required for evaluating

run 1 2 3 4 5 6 7 8 9 10 11 12 13

|di| 72 62 54 84 88 230 242 74 84 156 200 160 156

% 5 4 4 6 6 17 18 5 6 11 14 11 11

Table I: Shortest paths statistics computed over 14 repetitions, taking
the first one as reference. The average difference is 9.58%, while the
total number of shortest paths is 1334.

the performance of different OLSR implementations in terms
convergence time. RoRoute eases resource discovery and
reservation on Fed4FIRE compliant testbeds, it simplifies
software deployment on network nodes, experiment execution,
data collection, and processing. Although its use case is very
specific, we believe it can still be a valuable tool for the
community as we are currently planning to extend it to support
generic routing protocols.

REFERENCES

[1] L. Maccari and R. Lo Cigno, “A week in the life of three large Wireless
Community Networks,” Ad Hoc Networks, vol. 24, Part B, pp. 175–190,
Jan. 2015.

[2] D. Vega, L. Cerda-Alabern, L. Navarro, and R. Meseguer, “Topology
patterns of a community network: Guifi.net,” in IEEE 8th Int. Conf.
on Wireless and Mobile Computing, Networking and Communications
(WiMob), Oct. 2012, pp. 612–619.

[3] J. Avonts, B. Braem, and C. Blondia, “A questionnaire based examination
of community networks,” in 2013 IEEE 9th Int. Conf. on Wireless and
Mobile Computing, Networking and Communications (WiMob), Oct. 2013,
pp. 8–15.

[4] L. Maccari and R. Lo Cigno, “How to Reduce and Stabilize MPR sets
in OLSR networks,” in 8th IEEE Int. Conf. on Wireless and Mobile
Computing, Networking and Communications (WiMob), Barcelona, Spain,
Oct. 2012, pp. 381–388.

[5] C. Barz, C. Fuchs, J. Kirchhoff, J. Niewiejska, and H. Rogge, “OLSRv2
for Community Networks: Using Directional Airtime Metric with external
radios,” Computer Networks, vol. 93, Part 2, pp. 324–341, Dec. 2015.

[6] J. Tremback and J. Kilpatrick, “Althea, an incentivized mesh network
protocol,” May 2017. [Online]. Available: http://altheamesh.com/

[7] L. Baldesi, L. Maccari, and R. Lo Cigno, “Improving P2P streaming in
Wireless Community Networks,” Computer Networks, vol. 93, Part 2,
pp. 389–403, Dec. 2015.

[8] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol
(OLSR),” RFC 3626, Internet Engineering Task Force, Oct. 2003.

[9] L. Maccari and R. Lo Cigno, “Pop-Routing: Centrality-Based Tuning of
Control Messages for Faster Route Convergence,” in IEEE Int. Conf. on
Computer Communications (INFOCOM), Apr. 2016, pp. 1–9.

[10] L. Maccari, Q. Nguyen, and R. Lo Cigno, “On the Computation of
Centrality Metrics for Network Security in Mesh Networks,” in IEEE
Global Communications Conference (GLOBECOM), Dec. 2016, pp. 1–6.

[11] C. Dearlove and T. Clausen, “Routing Multipoint Relay Optimization
for the Optimized Link State Routing Protocol Version 2 (OLSRv2),”
RFC 7187, Internet Engineering Task Force, Apr. 2014.

[12] M. Goyal, M. Soperi, E. Baccelli, G. Choudhury, A. Shaikh, H. Hosseini,
and K. Trivedi, “Improving Convergence Speed and Scalability in OSPF:
A Survey,” IEEE Communications Surveys & Tutorials, vol. 14, no. 2,
pp. 443–463, March 2012.

[13] Y. Faheem and J. L. Rougier, “Loop avoidance for Fish-Eye OLSR
in sparse wireless mesh networks,” in IEEE Int. Conf. on Wireless On-
Demand Network Systems and Services (WONS), Feb. 2009, pp. 231–234.

[14] L. Baldesi and L. Maccari, “NePA TesT: Network Protocol and Applica-
tion Testing Toolchain for Community Networks,” in 12th IEEE/IFIP
Conf. on Wireless On demand Network Systems and Services (WONS),
Jan. 2016, pp. 88–95.

[15] S. A. Cook, “The Complexity of Theorem-Proving Procedures,” in 3rd
ACM Symposium on Theory of Computing, May 1971, pp. 151–158.

2018 14th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

ISBN 978-3-903176-02-7 © 2018 IFIP 94

