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Abstract—Signaling game problems investigate communication
scenarios where encoder(s) and decoder(s) have misaligned ob-
jectives due to the fact that they either employ different cost
functions or have inconsistent priors. We investigate a signaling
game problem where an encoder observes a multi-dimensional
source and conveys a message to a decoder, and the quadratic
objectives of the encoder and decoder are misaligned due to a bias
vector. For the scalar case, Crawford and Sobel in their seminal
paper, show that under certain technical assumptions an encoding
policy must be a quantization policy at any Nash equilibrium. We
first provide a set of geometry conditions that needs to be satisfied
in equilibrium considering any multi-dimensional source. Then,
we consider multi-dimensional sources with independent and
identically distributed components and completely characterize
conditions under which a Nash equilibrium with a linear encoder
exists. In particular, we show that if the components of the bias
vector are not equal in magnitude, then there exists a linear
equilibrium if and only if the source distribution is Gaussian.
On the other hand, for a linear equilibrium to exist in the
case of equal bias components, it is required that the source
density is symmetric around its mean. Moreover, in the case
of Gaussian sources, our results have a rate-distortion theoretic
implication that achievable rates and distortions in the considered
game theoretic setup can be obtained from their team theoretic
counterpart.

Index Terms—Signaling games, multi-dimensional cheap talk,
Nash equilibrium, rate-distortion theory.

I. INTRODUCTION AND SYSTEM MODEL

In a team theoretic setup where the decision makers share
a common goal, the decision makers do not wish to hide
information to improve the performance since revealing more
information cannot lead to a degradation of system perfor-
mance. Therefore, in such setups, if there is no constraint
on messages to transmit between the decision makers such
as a power constraint or a limited bandwidth requirement, a
decision maker can always reveal more information without
causing any performance loss. On the other hand, there exist
setups where the decision makers do not share a common
goal [1]–[13]. In these studies, there are two main themes
which lead to misaligned objectives for the decision makers.
In the first theme, the decision makers employ different
costs function as their goals are inconsistent, e.g., a decision
maker wishes to mislead another decision maker [1]–[11]. The
second theme is concerned with the case when the decision
makers have subjective beliefs on probability distributions of
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U

Fig. 1. Communication setting.

unknown parameters, which leads to misaligned objectives
for the decision makers even though they employ the same
cost function [6], [12], [13]. These both lead to a game
theoretic setup where a suitable equilibrium concept such as
the Nash equilibrium and Stackelberg equilibrium is to be used
to analyze the system. In this context, Crawford and Sobel in
their seminal paper [14] introduce a cheap talk problem where
a better informed encoder communicates with a decoder, and
the encoder and decoder have misaligned objectives due to a
bias term. Here, under certain technical conditions, although
there is no restriction imposed by the system, the encoder must
employ quantization policies at any Nash equilibrium. Thus,
it is not possible to have an equilibrium with a fully revealing
encoder whereas there may exist a partition equilibrium with a
quantized encoder. This is a striking example where providing
more information to the decoder by employing a linear encoder
instead of a quantized encoder breaks the equilibrium in a
game theoretic setup. To put it differently, if the encoder
and decoder wish to operate at a Nash equilibrium, then the
encoder cannot reveal its private information completely to the
decoder.

In this paper, our aim is to investigate a multi-dimensional
extension of Crawford and Sobel’s formulation where the
encoder jointly encodes its multi-dimensional observation to a
message observed by the decoder. For the multi-dimensional
source setting, an important problem is to see whether there
exists a linear Nash equilibrium. Accordingly, we investigate
whether there exists an equilibrium with a linear encoder
for the multi-dimensional cheap talk problem with sources
consisting of independent and identically distributed (i.i.d.)
random variables. In contrast with the one-dimensional sce-
nario, having more than one dimension allows the encoder
to employ a linear encoder under certain conditions and
we completely characterize these conditions considering i.i.d.
sources.

In this paper, we consider the following multi-dimensional
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cheap talk problem where an encoder and a decoder com-
municates. The encoder knows the value of an n-dimensional
random vector M = [M1, . . . ,Mn]

T where M1, . . . ,Mn are
M-valued i.i.d. random variables.1 The encoder conveys a
message Z = [Z1, . . . , Zn]

T via an encoding policy γe(·),
i.e., Z = γe(M), where Zi is a Zi-valued random variable
for i = 1, . . . , n. The decoder directly observes Z and takes
an action U = [U1, . . . , Un]

T where Ui’s are M-valued
random variables. The aim of the encoder is to minimize
Je(γe, γd) = E[ce(M ,U)] where

ce(m,u) =

n∑
i=1

(mi − ui − bi)
2 = ∥m− u− b∥2. (1)

In (1), b denotes a deterministic bias vector which is common
knowledge between the players and quantifies the degree of
misalignment between the objective functions of the encoder
and decoder. On the other hand, the decoder wishes to estimate
the source random vector as accurately as possible, and thus,
its objective function does not include a bias vector. In
particular, the aim of the decoder is to minimize Jd(γe, γd) =
E[cd(M ,U)] where

cd(m,u) =
n∑

i=1

(mi − ui)
2 = ∥m− u∥2. (2)

The communication scenario is depicted in Fig.1.
Our aim is to characterize the Nash equilibrium where the

decision makers announce their policies at the same time. At
a Nash equilibrium, none of the players wishes to unilaterally
deviate from their current strategies as their cost cannot get
better by doing so. In particular, a set of policies γ∗,e and γ∗,d

forms a Nash equilibrium if [15]

Je(γ∗,e, γ∗,d) ≤ Je(γe, γ∗,d) for all γe ∈ Γe,

Jd(γ∗,e, γ∗,d) ≤ Jd(γ∗,e, γd) for all γd ∈ Γd,
(3)

where Γe and Γd are the sets of all deterministic (and Borel
measurable) functions from Mn to (Z1, . . . ,Zn) and from
(Z1, . . . ,Zn) to Mn, respectively.

We make the following assumption for the source distribu-
tion.

Assumption 1. Considering each component Mi of the source
random vector M , every non-empty open set on its support
has a positive measure.

The following is an implication of this assumption. Consider
a convex set C with a non-empty interior. Then, its centroid
E[M |M ∈ C] must be in the interior of set C. We use this
implication while proving some of the results in the paper.

An important implication of our results is related to informa-
tion theoretic limits of the cheap talk problem. This problem
can be formulated as the maximum rate of communication

1While we present general results for n-dimensional cheap talk problem
for any n ≥ 2, some of our results focus on the case of two-dimensional
cheap talk where n = 2. Nevertheless, it is also possible to generalize these
results to cheap talk with an arbitrary number of i.i.d. sources by using the
results for the two-dimensional scenario.

between an encoder and decoder in a multi-dimensional sig-
naling setup where the rate is defined as the number of distinct
messages per source symbol. This is an important problem
in communication theory where the objectives are aligned but
there may be an upper bound on the achievable communication
rate due to system requirements such as a power constraint at
the encoder and having a noisy channel. In a communication
theoretic setup with a channel, Shannon’s channel capacity
defines the maximum rate of communication and forms the
foundations of many results in information theory [16]. In
particular, one wishes to design a communication system
achieving this channel capacity in order to convey as much
information as possible. On the other hand, an interesting
question arises in a game theoretic setup: Does there exist
an upper bound on achievable rate of communication in an
equilibrium with an encoder and decoder where the encoder
and decoder have misaligned objectives? In certain cases, our
analysis gives a conclusive answer to this question for the
multi-dimensional cheap talk setup. In particular, if there exists
an equilibrium with a linear encoder, then there is no upper
bound on the maximum rate of communication. Note that
we consider the Nash setup for such an information theoretic
problem. We refer the reader to [8] for a Stackelberg setup.

II. LITERATURE REVIEW

Investigation of communication between strategic agents
which have misaligned objectives has gained a significant
attention in recent control and communication theory literature
[1]–[7], [9]–[12] in addition to a significant amount of work
in the economics literature (see [17] for a literature survey).
Research in communication between strategic agents dates
back to the seminal work of Crawford and Sobel in the eco-
nomics literature [14] which considers the Nash equilibrium
concept. In contrast to simultaneous-move nature of the Nash
equilibrium where each player announces their strategies at the
same time, one can also consider a sequential-move setup by
analyzing the Stackelberg equilibrium where there is an order
in the decision making procedure. An important line of work
in this context is the Bayesian persuasion problem initiated
by Kamenica and Gentzkow [18] where a sender makes and
announces its decision first, and commits to this information
revelation policy. An important distinction between the Nash
setup and the Stackelberg setup is the absence of commit-
ment assumption in the Nash setup. Thus, while determining
whether to use Nash or Stackelberg equilibria analysis, one
should see if this commitment assumption is reasonable or
not for the problem at hand.

Signaling game problems are investigated in various papers
in the literature [1]–[12]. The work in [2] investigates signaling
game setups under Nash and Stackelberg equilibria concepts
where a sender with a deterministic bias term communicates
with a receiver. A specific result in [2, Theorem 3.4] is related
to our work where it is shown that for the multi-dimensional
cheap talk problem a Nash equilibrium can be a partition
(quantized) equilibrium or a linear equilibrium by providing
specific examples. The work in [1] considers a problem under
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the Stackelberg equilibrium concept where the bias term at
the sender is modeled as a random variable. In [11], for
the one-dimensional cheap talk problem, properties related to
number of bins at the equilibrium are analyzed for certain
classes of source distributions such as a log-concave source
and a source satisfying certain assumptions at the tails of
the distribution. An important result from [11] is that for a
source distribution whose support is R and satisfying certain
assumptions, there does not exist an upper bound on the
number of bins in equilibrium, and that while equilibria are to
be quantized more bins lead to smaller expected costs both
for the encoder and the decoder. Another related work in
[5] investigates multi-stage cheap talk problems under Nash
and Stackelberg equilibria where the objectives involve mean
squared error with a deterministic bias at the encoder. As an
application, [19] applies Crawford and Sobel’s formulation to
a smart grid problem by modeling the interaction between a
consumer and an electricity aggregator as a signaling game. As
another application, strategic users in a cellular network may
wish to misreport their channel conditions to the base station
for their own benefit and the presence of strategic decision
makers leads to a signaling game problem [20].

A set of related papers investigates information theoretic
limits of communication under a Stackelberg setup where
there is a commitment assumption for one of the players
[7]–[10]. In particular, the works [7], [8] focus on the case
where the sender acts first and commits to its policy as in the
Bayesian persuasion setup. The authors provide an information
theoretic perspective on the Bayesian persuasion problem
by considering a communication setup where the encoder
makes a sequence of observations from an i.i.d. information
source. On the other hand, [9], [10] consider the case when
the receiver has a commitment assumption and derive the
information extraction capacity for such a setup. This type of
commitment assumption has applications in designing optimal
questionnaires by which information is collected from strategic
agents [21].

Multidimensional cheap talk problems have also been con-
sidered in the economics literature [22]–[24]. For instance,
[22] investigates a two-dimensional scenario where an encoder
communicates with a decoder. Different from our work, in
[22], the encoder’s preferences over different decoder actions
are primarily determined by preferences in a certain dimen-
sion. In particular, if the encoder prefers one decoder action
over the other in this dimension, then the decoder action in the
second dimension does not matter. In this case, [22] shows the
existence of an upper bound on the number of decoder actions.
In addition, the work in [23] considers a multidimensional
cheap talk problem when there are two senders referred to as
experts and a receiver referred to as a policy-maker. These
decision makers including the policy-maker have inconsistent
ideal points regarding an outcome of the game and these
ideal point vectors can be viewed as bias vectors as in our
framework. They show that if these ideal point vectors of the
experts in the multidimensional space are linearly independent,
then there exist fully revealing equilibria. While [23] studies

conditions on the existence of fully revealing equilibria, our fo-
cus instead is on the characterization of equilibrium partitions
in general; as in the case with a single encoder/sender we do
not have full revelation in general. More specifically, we focus
on a scenario with a single encoder which jointly encodes its
multi-dimensional observation and employs a single quadratic
cost function.

III. NASH EQUILIBRIA

A. Necessary Conditions for Equilibria

We first present some preliminary results which are use-
ful for providing conditions that ensure the existence of an
equilibrium with a linear encoding policy. To begin with, due
to the definition of Jd(γe, γd), we know that for a given
encoding policy z = γe(m), the decoder takes the action
u = E[M |γe(M) = z]. All such possible values of u at
the equilibria are called the set of decoder actions. While
investigating the existence of a linear equilibrium, we make
a frequent use of the following geometric definition regarding
the set of decoder actions in equilibrium.

Definition 1. We say that a non-empty set of decoder actions
forms a continuum if it is a closed and connected set (i.e.,
it cannot be expressed as the union of two or more disjoint
closed sets.)

The following lemma derives a geometry condition that any
two decoder actions at a Nash equilibrium need to satisfy.
In addition to its usefulness while deriving conditions for the
existence of linear equilibria, this result is important on its own
as it provides a necessary condition for a Nash equilibrium
in terms of the induced decoder actions. It is noted that the
following result holds regardless of the source distribution and
applies to both i.i.d. and non-i.i.d. sources.

Lemma 1. Consider n-dimensional cheap talk problem with
the source random vector M = [M1, . . . ,Mn]

T where each
element of M can have different distributions and can be
dependent or independent. Let Bα and Bβ be two bins and
let uα = E[M |M ∈ Bα] and uβ = E[M |M ∈ Bβ ] denote
their centroids which are the decoder actions taken when the
encoder reveals M ∈ Bα and M ∈ Bβ , respectively.

(i) These decoder actions must satisfy the following neces-
sary condition at a Nash equilibrium:

2 |(uβ − uα)T b| ≤ ∥uβ − uα∥2. (4)

(ii) At a Nash equilibrium, the encoder decomposes the
complete observation space into two regions via a hy-
perplane orthogonal to (uα − uβ) and intersecting the
line connecting uα and uβ , and Bα and Bβ are subsets
of these respective regions. In particular, Bα must be a
subset of m values satisfying h(m) ≥ 0 whereas Bβ

must be a subset m values satisfying h(m) ≤ 0 where

h(m) ≜

(
m−

(
uβ + uα

2
+ b

))T

(uβ − uα), (5)
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Fig. 2. Illustration of half spaces induced by decoder actions uα and uβ in
Lemma 1 considering a two-dimensional scenario. Here, the crosses represent
the decoder actions and the arrow represents the bias vector. These decoder
actions and the bias vector lead to a line of m̄ values for which the encoder
is indifferent between reporting these observations as uα or uβ . Here, the
half spaces H1 and H2 cannot intersect with Bα and Bβ , respectively.

and h(m) = 0 defines the hyperplane on which the
encoder is indifferent between either decoder actions, i.e.,
these m values can belong to both Bα and Bβ .

(iii) At an equilibrium where the encoder uses quantization
policies, the quantization bins are always convex.

Proof Sketch. We provide a brief explanation here. For the
complete proof, see [25]. Fig. 2 illustrates the open half spaces
induced by decoder actions uα and uβ . The encoder wishes
to report the observations in H1 as uβ rather than as uα.
Similarly, the encoder wishes to report the observations in
H2 as uβ rather than as uα. Due to the centroid condition,
H2 cannot include uβ , and H1 cannot include uα. This
implies that the line of m̄ values for which the encoder is
indifferent between reporting these observations as either of
the decoder actions must be in between uα and uβ . Then, by
expressing this condition, one can obtain (4). The convexity
of the quantization bins follows from the fact that H1 and H2

for any two decoder actions are half spaces that decompose
the complete observation space.

Lemma 1 presents a geometry condition that any two
decoder actions in equilibrium must satisfy. It is important to
emphasize that this condition applies to any joint distribution
for the multi-dimensional observations. In particular, the result
of Lemma 1 holds even for joint distributions which are not
independent and identically distributed since the derivation of
the condition in Lemma 1 uses only the cost function of the
encoder and does not use the joint distribution of the sources.

Now, we focus on equilibria with continuously connected
set of decoder actions. We provide a necessary condition that
an equilibrium with decoder actions supported on a continuum
has to satisfy. An equilibrium with a continuum of decoder
actions means that the encoding policy is not a quantization
policy.

In the remainder of this subsection, we specialize to the
case of two-dimensional cheap talk problem where n = 2.

Lemma 1 implies that for decoder actions uα and uβ

satisfying (uβ − uα)T b = 0, it is possible to make their
distance ∥uα − uβ∥ arbitrarily small. On the other hand, for

M T γ̃eX
γ̃dZ

T −1
Y

U

Fig. 3. Equivalent formulation where T denotes the linear transformation
specified by X1 = b1M2 − b2M1 and X2 = b1M1 + b2M2, and T −1

denotes its inverse.

decoder actions uα and uβ with (uβ − uα)T b ̸= 0, since
the distance ∥uα−uβ∥ is lower bounded by a positive value,
these decoder actions uα and uβ cannot get arbitrarily close.
This motivates an equivalent formulation by introducing the
following transformation of variables. In particular, we define

X = T M , (6)

U = T −1Y , (7)

where

T =

[
−b2 b1
b1 b2

]
, T −1 =

1

b21 + b22

[
−b2 b1
b1 b2

]
, (8)

and X ≜ [X1, X2]
T and Y ≜ [Y1, Y2]

T respectively denote
the observation at the encoder and the decoder action in the
transformed coordinate system. The proposed equivalent for-
mulation is depicted in Fig. 3 where the linear transformation
T and its inverse T −1 is fixed, and the encoder and decoder
simply design γ̃e(·) and γ̃d(·). In this coordinate system, the
cost function of the encoder becomes

ce(m,u) = (m− u− b)T (m− u− b)

=
(
T −1T (m− u− b)

)T (T −1T (m− u− b)
)

=
(
T (m− u− b)

)T
(T −1)T (T −1)

(
T (m− u− b)

)
.

Since (T −1)T (T −1) = (1/(b21+b22))I with I denoting identity
matrix, T b = [0, b21 + b22]

T , T m = x and T u = y, we get

ce(m,u) =
(x1 − y1)

2

b̃
+

(x2 − y2 − b̃)2

b̃
≜

cet (x,y)

b̃
, (9)

where

b̃ ≜ b21 + b22, (10)

and the common factor of (1/b̃) is canceled in the definition of
cet (x,y) for notational convenience. This implies that there is
no bias for the first coordinate whereas there is a bias of b̃ for
the second coordinate. In a similar manner, the cost function
of the decoder in this coordinate system can be expressed as

cd(m,u) = (m1 − u1)
2 + (m2 − u2)

2

=
(x1 − y1)

2

b̃
+

(x2 − y2)
2

b̃
≜

cdt (x,y)

b̃
. (11)

With this transformation of variables, the aim of the encoder
and decoder is to minimize Je(γ̃e, γ̃d) = E[cet (X,Y )] and
Jd(γ̃e, γ̃d) = E[cdt (X,Y )], respectively. The expression in
(11) shows that the cost of the decoder still involves a sum
of squared error terms in the transformed coordinate system.
This observation implies that for a given encoding policy, the
best response of the decoder is still given by the conditional
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y2

y1

yβ
×

×ỹγ

×ȳγ

Fig. 4. Illustration of the proof technique employed in Lemma 4. Here, the
horizontal solid line represents a continuum of decoder actions and the decoder
action on this continuum with the largest y1 coordinate is denoted by yβ .
Inside the dashed circles, there cannot be a decoder action due to the condition
imposed by Lemma 1. If we place decoder actions ȳγ and ỹγ on the dashed
circles, then the shaded area must be the bin for yβ , i.e., Bβ . However, the
centroid of this shaded area cannot be yβ , which is a contradiction.

mean expressions in the transformed coordinate system. We
summarize this result in the following lemma.

Lemma 2. For a fixed encoding function γ̃e(x), the optimal
γ̃d(·) that minimizes Jd(γ̃e, γ̃d) is given by E[X|Z = z].

Equipped with this transformation of variables and the cost
functions in this transformed coordinate system, we are now
ready to present our results on necessary conditions which
need to be satisfied for any equilibrium with a continuum of
decoder actions.

Lemma 3. At an equilibrium, any continuum of decoder
actions must have a constant y2 coordinate, i.e., a continuum
of decoder actions can only be supported on y2 = κ for some
κ in the support of X2.

Proof. See [25].

Lemma 3 implies that a continuum of actions is allowed
only in a specific direction that depends on the bias terms in
the original coordinate system. There exists another constraint
for such continuum of decoder actions as the next lemma
shows.

Lemma 4. Let there be a continuum of decoder actions with
a constant second coordinate, i.e., y2 = κ where κ is in the
support of X2. Then, it must be that there exist decoder actions
for all values of y1 ∈ [xL

1 (κ), x
U
1 (κ)] and y2 = κ where xL

1 (κ)
and xU

1 (κ) denote lower and upper boundaries of the support
of X1 when X2 = κ.

Proof Sketch. We briefly explain the proof technique here.
For the complete proof, see [25]. Suppose that there exists
a continuum of actions in equilibrium as illustrated in Fig. 4.
Assume, by contradiction, that this continuum of actions have
a discontinuity at yβ . Let Bβ denote the bin corresponding
to yβ , i.e., yβ = E[X|X ∈ Bβ ]. If we take the necessary
condition in (4) into account, then there cannot exist any
decoder actions inside the dashed circles in Fig. 4 in an
equilibrium. Then, considering all possible decoder actions in

an equilibrium on the two-dimensional space, it is possible
find a non-empty region of observations with yβ1 < x1 and
x ∈ Bβ . In other words, in this non-empty region, the encoder
always reports these observations as X ∈ Bβ since the
decoder action yβ induces the smallest cost for the encoder
for these observations among all possible decoder actions in
an equilibrium. Moreover, due to the decoder actions on the
continuum, there cannot exists any observations with x1 < yβ1
and x ∈ Bβ . This is a contradiction to yβ = E[X|X ∈ Bβ ]
due to Assumption 1.

Lemma 3 states that a continuum of decoder actions must
have a constant y2 coordinate and Lemma 4 states that these
continuum of decoder actions must be supported for all values
of y1 in the support of X1 given that X2 = y2. This means that
a continuum of decoder actions cannot have a discontinuity.
This type of continuum of actions can be attained by revealing
the value of X1 completely. In certain scenarios depending on
the distribution and the bias vector, revealing X1 can be an
equilibrium, as investigated in the next subsection.

B. Main Results

In this subsection, we present our main results on the
existence of linear equilibria. In order to establish our main
results, we employ Lemma 3 and Lemma 4 together with an
interesting result from the literature known as Kagan-Linnik-
Rao Theorem [26, Theorem 5.3.1]. This theorem characterizes
conditions under which E[M1−αM2|M1+βM2] is a constant
for i.i.d. M1 and M2 where α and β are non-zero constants.

Theorem 1. Consider multi-dimensional cheap talk problem
with sources M1 and M2 which are i.i.d. with the correspond-
ing bias terms b1 and b2.

(i) For b1 = 0 and/or b2 = 0, there always exists an
informative equilibrium with a linear encoder where the
encoder completely reveals the source(s) corresponding
to zero bias term(s).

(ii) For |b1| ̸= |b2|, there exists an informative equilibrium
with a linear encoder if and only if the source distribution
is Gaussian.

(iii) For b1 = b2, there exists an informative equilibrium with
a linear encoder if and only if the source distribution is
symmetric around its mean, i.e., denoting the density of
M1 by f(·), we have that f(µ+x) = f(µ−x) for almost
all x where E[M1] = µ.

(iv) For b1 = −b2, there always exists an informative equi-
librium with a linear encoder regardless of the source
distribution.

Proof Sketch. In the case of zero bias term(s), it is easy to
verify that revealing the corresponding source(s) leads to a
Nash equilibrium. This is a consequence of the fact that M1

and M2 are independent, and thus, the problem decouples into
two one-dimensional cheap talk problems where one or both
of the problems involve an encoder with a zero bias. In this
case, an equilibrium may be attained without joint encoding
of the sources due to the decoupled nature of the problem. In
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the following, we treat the remaining cases where b1 ̸= 0 and
b2 ̸= 0.

As mentioned earlier, main ingredients in the proof are
Lemma 3 and Lemma 4 of this paper and Kagan-Linnik-Rao
Theorem. From Lemma 3 and Lemma 4, we know that a
continuum of actions must have a constant y2 coordinate and
must be supported for all values of y1 in the support of X1

given that X2 = y2. To conclude the results, we use conditions
when E[X2|X1 = x1] = E[b1M1+b2M2|b1M2−b2M1 = x1]
is a constant from [26, Theorem 5.3.1]. In particular, in the
case when |b1| ̸= |b2|, it is required to have a Gaussian
distribution so that E[X2|X1 = x1] is a constant. This
implies that if |b1| ≠ |b2| and the source distribution is
not Gaussian, then there does not exist a linear equilibrium.
On the other hand, if the source distribution is Gaussian,
one can employ independence of X1 and X2 to show the
existence of a linear equilibrium in this case. In the case of
b1 = b2, [26, Theorem 5.3.1] states that E[X2|X1 = x1] is
constant if and only if the source distribution is symmetric.
Moreover, in the case of b1 = −b2, [26, Theorem 5.3.1]
implies that E[X2|X1 = x1] is constant regardless of the
source distribution. In these cases, if the encoder reveals X1

completely, then the best response of the decoder yields a
single continuum of decoder actions. The best response of the
encoder to this single continuum of decoder actions is given
by revealing X1 completely as otherwise the performance of
the encoder degrades. Hence, it follows that revealing X1

completely leads to a Nash equilibrium when b1 = b2 and
the source distribution is symmetric, or when b1 = −b2.

Remark 1. Theorem 1 shows that depending on certain con-
ditions there exists an informative equilibrium with a linear
encoder even for large values of |b1| and |b2|. On the other
hand, in the case of one-dimensional cheap talk, when the
source distribution has bounded support, there exists an upper
bound on the number of bins in equilibrium. In addition, if the
bias term is large, this upper bound may even be equal to one,
which means that there does not exist an informative Nash
equilibrium. Hence, even though an equilibrium in the case
of one-dimensional scenario can be non-informative, in the
case of two-dimensional scenario with the same bias as in the
one-dimensional scenario in both dimensions, it is possible to
obtain an informative equilibrium when the source distribution
is symmetric.

Remark 2. In the case of a Gaussian source, the problem
decouples into two one-dimensional cheap talk problems. In
particular, X1 = b1M2 − b2M1 and X2 = b1M1 + b2M2

become independent random variables when M1 and M2 are
i.i.d. Gaussian. In fact, due to Darmois-Skitovich Theorem
[26, Theorem 3.1.1], X1 and X2 are independent only when
M1 and M2 are Gaussian. As a result, the problem reduces to
obtaining equilibria for decoupled two one-dimensional cheap
talk problems where an encoder wishes to convey X1 with a
zero bias and another encoder wishes to convey X2 with a
bias of b̃. From [11, Theorem 4], we know that in the case
of one-dimensional cheap talk with a Gaussian source, for

any N ≥ 1, there exists a unique equilibrium with N bins.
Thus, for two-dimensional cheap talk problem with a Gaussian
source, there exists an equilibrium where the encoder reveals
X1 completely and applies a signaling game policy to X2 with
an arbitrary number of bins.

We can also consider n-dimensional i.i.d. Gaussian sources.
In this case, one can apply an orthogonal transformation of
variables in a similar manner to the two-dimensional case
where random variables in each dimension are independent.
Under this transformation of variables, there remains a bias
term only for a single random variable. Due to [11, Theorem 4]
and independence of the random variables in the transformed
coordinate system, it follows that there exists an equilibrium
where the encoder applies a quantization policy to this remain-
ing random variable with any number of bins. Thus, we obtain
the following result.

Theorem 2. If the source distribution is n-dimensional i.i.d.
Gaussian, then there exists an equilibrium with a linear
encoding policy where the encoder reveals all or a subset
of (n− 1) dimensions completely in a transformed coordinate
system, and applies a signaling game policy for the remaining
dimension with any number of bins.

Proof. See [25].

IV. LARGE DIMENSIONS AND A RATE-DISTORTION
THEORETIC FORMULATION OF CHEAP TALK

We have analyzed the multi-dimensional cheap talk problem
where the bias vector at the encoder can be arbitrary. In
the special case that the components of the bias vector are
the same leads to an important problem from an information
theoretic perspective. In this case, the problem is to convey an
i.i.d. source with a certain bias and the bias is the same for
each source component. In other words, the encoder observes
independent copies from a random source and wishes to
introduce the same bias for each independent copy. In such a
problem, one may wish to obtain information theoretic limits
of the communication. In a sense, this problem is a game
theoretic counterpart of rate-distortion theory that is studied
in a classical communication theoretic setup. Our findings
reveal that if the distribution is Gaussian, then there always
exists a linear equilibrium where the sender completely reveals
(n−1) dimensions in a transformed coordinate system. For the
remaining dimension, the encoder has to employ a quantization
policy with an arbitrary number of bins including the case
with one bin. This result holds because the problem can be
transformed into decoupled problems consisting of a team
theoretic problem for conveying a (n − 1)-dimensional i.i.d.
source without any bias and a one-dimensional cheap talk
problem with a certain bias in the remaining dimension. If
we increase the number of observed sources at the encoder,
the effect of employed policy for this remaining dimension
becomes negligible. This implies that the problem of finding
achievable rate and distortion pairs is asymptotically equiva-
lent to obtaining achievable rate and distortion pairs for a team
theoretic setup in a transformed coordinate system.
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The problem of interest is in fact can be more generally
expressed in a rate-distortion theoretic formulation. The aim is
to find the achievable rate and distortion region. In particular,
we have the following problem:

Problem 1. Consider the n-dimensional cheap talk problem
with i.i.d. sources and b = b1 = · · · = bn. We say that a
tuple of rate and distortion pairs (R,De, Dd) is achievable at
a Nash equilibrium if there exists a sequence of encoders and
decoders that leads to a Nash equilibrium with the following
properties:

(i) The encoder is given by γe
n : Mn → Z(n) with |Z(n)| ≤

2Rn where |Z(n)| denotes the cardinality of Z(n).
(ii) The decoder is given by γd

n : Z(n) → Mn such that

lim
n→∞

E
[∑n

i=1(Mi − Ui − b)2
]

n
≤ De, (12)

lim
n→∞

E
[∑n

i=1(Mi − Ui)
2
]

n
≤ Dd. (13)

Then, the problem is to determine if a given tuple (R,De, Dd)
is achievable at a Nash equilibrium.

If the bias term is zero in this problem, then we obtain
a team theoretic problem since the corresponding distortion
values are identical at the encoder and decoder. We denote
the corresponding rate and distortion values by RT and DT ,
respectively, where the subscript refers to the fact that the setup
is team theoretic.

While we leave the study of Problem 1 for general sources
for future work, the Gaussian case is completely solvable.
Our result in the previous section shows that if the source
distribution is Gaussian, one can apply a suitable transforma-
tion of variables to obtain an equivalent problem for which
the encoder has bias only for a single random variable. The
following theorem uses this idea to relate achievable rate and
distortion values of the original problem to that of a team
theoretic problem. Before presenting the theorem, we note
that at a Nash equilibrium we have E[

∑n
i=1(Mi−Ui−b)2] =

E[
∑n

i=1(Mi−Ui)
2]+b2n. Thus, we have the same rate region

for any De value satisfying De ≥ Dd + b2.

Theorem 3. Consider multi-dimensional cheap talk problem
with i.i.d. Gaussian sources where the bias term b is the same
at each dimension. Suppose that a rate and a distortion pair
(RT , DT ) is achievable for the team theoretic problem with
a zero bias. Then, for the game theoretic problem with a
non-zero bias, the following rate and distortion values are
achievable:

R = RT , (14)

De ≥ DT + b2, (15)
Dd ≥ DT . (16)

Proof. See [25].

In rate-distortion theory, an important concept is the rate-
distortion function. In a classical communication theoretic
setup, this is defined as the infimum of rates R such that

(R,D) is achievable. A similar definition of rate-distortion
function in a game theoretic setup yields

R(De, Dd) ≜ inf{R | (R,De, Dd) is achievable}. (17)

By using the result of Theorem 3, we can upper bound the
rate-distortion function for the Gaussian case, as stated in the
following.

Theorem 4. Consider multi-dimensional cheap talk problem
with i.i.d. Gaussian sources where the bias term b is the same
at each dimension. The rate-distortion function for such a
setup is upper bounded by the following:

R(De, Dd) ≤
1

2
log2

σ2

min{Dd, De − b2} (18)

if 0 ≤ min{Dd, De − b2} ≤ σ2. On the other hand, we have
R(De, Dd) = 0 if min{Dd, De − b2} > σ2.

Proof. See [25].

Remark 3. A related result can be found in [11, Theorem 8].
Here, it is shown that for one-dimensional cheap talk having
more bins in the quantized encoding policy leads to reduced
distortion values if the source distribution is log-concave. In
other words, a large rate leads to better expected costs for both
of the players under a log-concave source assumption, which
holds for a Gaussian source.

Remark 4. For multi-dimensional i.i.d. Gaussian sources, we
know that there exists an equilibrium where the encoder
reveals (n−1) dimensions and applies a signaling game policy
for the remaining dimension Xn with an arbitrary number of
bins. Since the Gaussian distribution is log-concave, from [11,
Theorem 8], it follows that the expected costs of both players
reduce when the number of bins for the quantization policy
applied to Xn is increased. In addition, it is also possible to
have an equilibrium with infinitely many bins applied to Xn

due to [11, Theorem 13]. This implies that an equilibrium
where X1, . . . , Xn−1 are revealed and a quantization policy
with infinitely many bins applied to Xn corresponds to a
payoff dominant Nash equilibrium [27].

V. CONCLUSION

We have analyzed a quadratic multi-dimensional cheap talk
problem. First, we have derived general necessary conditions
for a Nash equilibrium considering any joint source distribu-
tion. In particular, we have shown that decoder actions at a
Nash equilibrium need to satisfy a geometry condition that
essentially prevents any two decoder actions being arbitrarily
close to each other depending on their difference as vectors and
the bias vector. Then, we have derived conditions under which
a linear equilibrium exists considering i.i.d. sources. In partic-
ular, we have proven that if the bias vector has components
which are not equal in magnitude, then there exists a linear
equilibrium if and only if the source distribution is Gaussian.
On the other hand, if the bias vector has components equal
to each other, then there exists a linear equilibrium if and
only if the source distribution is symmetric. In contrast, if the
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components are equal in magnitude with different signs, then
there always exists a linear equilibrium regardless of the source
distribution. This complete characterization of conditions that
ensure existence of linear equilibria has implications on the
information theoretic limits of the cheap talk problem. If there
exists a linear equilibrium, then there is no upper bound on
the maximum rate of communication arising from the biased
nature of the encoder. As future work, we plan to investigate
information theoretic limits in the remaining cases when there
does not exist a linear equilibrium.
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[4] M. O. Sayın, E. Akyol, and T. Başar, “Hierarchical multistage Gaussian
signaling games in noncooperative communication and control systems,”
Automatica, vol. 107, pp. 9–20, 2019.
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[25] E. Kazıklı, S. Gezici, and S. Yüksel, “Signaling games in higher di-
mensions: Geometric properties of equilibrium solutions,” arXiv preprint
arXiv:2108.05240, Aug. 2021.

[26] A. M. Kagan, Y. V. Linnik, and C. R. Rao, Characterization Problems
in Mathematical Statistics. New York: John Wiley & Sons, 1973.

[27] J. C. Harsanyi and R. Selten, A General Theory of Equilibrium Selection
in Games. Cambridge, Massachusets: MIT Press, 1988.

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

               ISBN 978-3-903176-37-9 © 2021 IFIP




