
MultipathTester: Comparing MPTCP and MPQUIC
in Mobile Environments

Quentin De Coninck
UCLouvain, Belgium

quentin.deconinck@uclouvain.be

Olivier Bonaventure
UCLouvain, Belgium

olivier.bonaventure@uclouvain.be

Abstract—With the adoption of Multipath TCP by Apple for its
iPhones, there is a growing interest in using multipath transport
to seamlessly support different network interfaces on mobile
devices. In parallel, the IETF is actively developing the QUIC
protocol which could replace TCP for some types of applications
and multipath extensions for QUIC have already been proposed.
We design and implement MultipathTester, an iOS application
that enables researchers to compare the performance of different
multipath protocols on popular smartphones. Specifically, our
application compares the performance of iOS Multipath TCP
with Multipath QUIC with various traffic types and conditions.

I. INTRODUCTION

Many mobile devices such as smartphones, tablets or con-

nected cars are multihomed devices. They can be attached to

different networks such as cellular and Wi-Fi simultaneously.

This multi-homing capability enables mobile devices to switch

from one wireless network to another one without user in-

tervention. Unfortunately, TCP cannot spread connection data

over multiple network interfaces, as each connection is bound

to the 4-tuple (IPsrc, portsrc, IPdst, portdst).

Several solutions have been proposed to enable mobile

devices to switch from one network to another or use different

networks simultaneously, but only one of them, Multipath

TCP [1], has been commercially deployed, especially with

mobile devices. In a nutshell, Multipath TCP is a TCP ex-

tension that divides a connection into several TCP subflows.

Each TCP subflow carries a fraction of the TCP and the

receiver reorders the data received over the different subflows

to deliver them in sequence. Another benefit of Multipath TCP

is that it if one of these subflows fails, Multipath TCP can

seamlessly shift its connection on another subflow without

involving application intervention. This seamless handover

capability convinced Apple in 2013 to integrate Multipath TCP

to support the Siri voice-activated application, making iPhones

the largest deployment of Multipath TCP [2]. For four years,

Siri was the only application on iPhone that took advantage

of such multipath feature. But since September 2017, any

iOS11 application can now request the usage of Multipath

TCP. As of today, 97 % of the iPhones have been upgraded

to iOS11 or greater [3]. Several Android smartphones also

support Multipath TCP to seamlessly use Wi-Fi and LTE [2],

[4], but they are currently limited to specific countries.

Quentin De Coninck is a F.R.S.-FNRS Research Fellow.

Although smooth handovers are one of the key benefits

of Multipath TCP, its performance under those conditions

have not yet been analyzed in details. The first study of

those handovers [5] confirmed that the Linux implementation

of Multipath TCP could provide smooth handovers but it

did not analyze various networks environments. Most of the

scientific literature on Multipath TCP focused on its bandwidth

aggregation capabilities [6]–[8], despite the importance of

smooth handovers for mobile applications.

Recently, the networking community and the IETF have

worked on the design and implementation of the QUIC [9]

protocol aiming at providing the services of TCP, TLS and

HTTP atop UDP. QUIC is being finalized within the IETF [10]

and its first RFC is expected in July. This initial design will

support a single path for each connection. Once the initial

specification has been approved, the QUIC working group

will probably look at adding multipath support to the QUIC

protocol. An initial design for Multipath QUIC [11], [12] has

already been proposed. Similarly to Multipath TCP, Multipath

QUIC allows the simultaneous usage of multiple network paths

for a given connection. However, Multipath QUIC was only

evaluated in emulated environments [11] and its performance

in real networks has not been studied yet.

To encourage the evaluation of (Multipath) TCP and (Multi-

path) QUIC, we design and implement MultipathTester [13],

an iOS application that tests how these different protocols be-

have under various conditions. It provides two experimentation

modes. The first one generates different traffic patterns ranging

from bulk transfer to delay-sensitive request-response and

observes how Multipath TCP and (Multipath) QUIC operates

within stable network conditions. The second one requires the

user to move until it causes a network handover from Wi-

Fi to cellular networks and observes how multipath protocols

handle such changing network conditions. To our knowledge,

this is the first Internet-wide comparison of Multipath TCP and

Multipath QUIC. We believe our open measurement platform

would enable the community to study new QUIC extensions

in such mobile environments.

This paper is organized as follows. Section II presents the

architecture of our measurement platform. Then, Section III

provides initial results about the usage of QUIC in real

networks with stable conditions. Section IV summarizes our

first results on how Multipath TCP and Multipath QUIC

handle handovers. Finally, Section V concludes this work.

978-3-903176-17-1 / © 2019 IFIP

221



II. DESIGN OF MULTIPATHTESTER

In this section, we introduce MultipathTester, an iOS ap-

plication aiming to evaluate the performance of multipath

protocols. Our framework enables researchers to observe how

multipath protocols behave under our different test modes

we present first. We then elaborate on our measurement

infrastructure and implementation details. We finally provide

a few statistics about the usage of our application.

A. Test Modes

MultipathTester relies on active measurements performed

by voluntary users. For this purpose, at the first run and

before performing any measurement, the application provides

a consent form describing its research purpose to the user.

Once agreed, the user can explicitly start generating active

network traffics. Two kinds of experiments are available. First,

the stable network mode benchmarks the connectivity using

different traffic patterns. Second, the mobile mode studies the

impact of network handovers on multipath protocols.

1) Stable Network Mode: During a stable network test,

the user is expected to stay at the same place so that the

smartphone remains attached to the same network during

the entire test. In these stable conditions, we benchmark the

access point(s) to check if the studied transport protocols

behaves correctly in these networks. MultipathTester monitors

the network connectivity during the test to detect user moves.

It relies on the Reachability API [14] to keep the list of

available network interfaces from the device point of view. If

during its run, the availability of one network interface changes

(e.g., Wi-FI being declared as lost by the device, cellular

just getting Internet connectivity,...), the test is interrupted and

classified as invalid.

Different traffic patterns can be used with this mode. Stable

network tests launch these traffic patterns sequentially, one

transport protocol at a time. The order of the runs are ran-

domized to avoid possible traffic correlation. MultipathTester

provides a common interface to define traffic patterns. We

currently explore four simple patterns, yet easy to explain:

ping, bulk, iperf and interactive.

Ping. This test simply sends a stream of five HTTP GET

requests for a 10-byte file, and computes the median delay.

It is mainly used to check the connectivity and to select

the server with which further experiments will be performed.

Our experiment servers are currently located on different

continents: Europe (France), North America (Canada) and

Asia (Japan).

Bulk. This test performs an HTTP GET request for a 10-

MB file, and records the download time.

IPerf. This test generates traffic similar to the iperf tool.

The client sends new data as fast as possible for a few seconds.

We currently use it to estimate the uplink bandwidth. The

downlink support is part of our future work.

Interactive. This traffic simulates a user interacting with a

voice-activated application such as Siri while listening to an

Internet radio. To achieve this, the traffic pattern follows a

bi-directional request/response fashion as shown in Figure 1.

Fig. 1: Interactive traffic.

Fig. 2: Mobility enables handover tests.

Every 100 ms, both the client and the server send a 2KB

request to the peer that replies with a 750 bytes response.

On both data streams, the receiving host returns a short

application-level acknowledgment that confirms the reception

of each 2KB chunk. The sending host then computes the delay

between the request and the corresponding acknowledgment.

With such low-volume exchanges, we do not expect any

interference with the receive nor the congestion windows.

Notice that we had to implement this traffic pattern differently

for Multipath TCP and Multipath QUIC. With (Multipath)

TCP we use two independent connections to prevent head-

of-line blocking where a lost response blocks the delivery

of the next request. With (Multipath) QUIC we use a single

connection that carries two independent data streams.

2) Mobile Mode: Our mobile tests focus on the situation

presented in Fig. 2. A user is initially connected to both Wi-

Fi and cellular networks while sending and receiving data

simultaneously using the interactive traffic pattern. Then, the

device moves away from the Wi-Fi access point. After some

time, as the Wi-Fi connectivity is fading, multipath transport

protocols switch to the cellular one. This network handover sit-

uation is one of the motivating cases for supporting multipath

in the transport layer, as they can migrate connections from

one network to another one without notifying the application.

We simultaneously evaluate multipath protocols, meaning they

compete for the network interfaces at the same time. However,

due to the low total generated traffic volume (55 KB/s uplink

and 55 KB/s downlink), we believe that the impact on the ob-

served delays should be negligible. Furthermore, running them

simultaneously enables us to evaluate protocols within the

same singular network conditions due to the device mobility.

We expect the impact of the handover to be as low as possible

on the applications, especially when they are latency-sensitive.

To encourage users to perform this test, we present it as a

Wi-Fi reachability estimator where the smartphone computes

the range of the Wi-Fi access point. The test completes when

either the operating system tears down the Wi-Fi network, or

the SSID of the Wi-Fi network changes.

222



Collect server

Test serverSmartphone

1. Fetch metadata

2. Perform tests

3. Send results

Fig. 3: The infrastructure used by MultipathTester.

B. Measurement Infrastructure

Our measurement infrastructure involves three different

nodes, as shown in Figure 3. On one side, there is the

smartphone running MultipathTester. On the other side, we

use two different servers. The test servers are contacted by the

smartphone to perform the experiments. We currently use three

test servers located in Europe, Asia and America. Second,

the collect server gathers the measurement results. Each user-

triggered measurement is carried out as follows. First, the

smartphone contacts the collect server to fetch metadata, such

as the URL of available test servers and the list of experiments

to launch. Then, once the user requests it, the application

interacts with the closest test server to perform experiments. At

the end of the test runs, the smartphone sends the test results to

the collect server. These results include primary traffic-specific

metrics (delays for interactive, download completion time and

file fetched for bulk,...), device and network information (name

and type of the network accesses, version of the application,...)

and dumps of the transport protocol states. These dumps are

periodically collected. For (Multipath) TCP, we rely on both

the TCP_INFO and the ioctl SIOCGCONNINFO interfaces.

Our (Multipath QUIC) implementation itself logs its internal

variables using a dedicated thread in a file.

On both smartphone and test servers, we use our mp-quic
implementation to serve (Multipath) QUIC [11]. This imple-

mentation is based on a old GQUIC version using a different

network format than IETF QUIC. However, except for the

QUIC connectivity, we do not expect much difference with

IETF QUIC in terms of (multipath) performance. Test servers

use the Multipath TCP implementation in the Linux kernel

4.14 [15] with default parameters (default low-RTT scheduler,

fullmesh path manager and the OLIA congestion control

scheme [16]). The smartphones use the native implementation

of (Multipath) TCP provided by the Darwin kernel [17].

On iOS, applications can explicitly request the usage of

Multipath TCP using the iOS API. Apple provides three modes

of operation for Multipath TCP, each with different objectives:

handover, aggregate and interactive. The handover mode aims

to provide seamless handover from Wi-Fi to cellular networks

for long-lived or persistent connections. The aggregate mode

uses all network connectivities to increase the throughput

of the connection. The interactive mode attempts to use

the lowest-latency connectivity and is advised for latency-

sensitive, low-volume connections. Nonetheless, the ability

to use the LTE network while the Wi-Fi one might still

be available raises concerns about cellular data consumption.

Users typically expect the device to use the Wi-Fi network

when available, even if it provides lower throughput and/or

larger latency than the cellular one. This is why Apple restricts

the aggregate mode to developer phones only. Since we want

our application to be as accessible as possible, we do not

support the aggregate mode.

When requested, the smartphone uses the interactive Mul-

tipath TCP mode. We focus on this mode rather than the

handover one as it is advised for latency-sensitive applica-

tions, which matches our interactive traffic. We inferred its

operations based on its source code [17]. The interactive mode

prioritizes the Wi-Fi network over the cellular one, marking the

latter one as a backup subflow. The iOS packet scheduler sends

data only on the Wi-Fi subflow, unless one of the following

conditions occurs.

1) The smoothed RTT of the Wi-Fi subflow is above a

threshold initially set to 600 ms, while the cellular path

is not over this threshold;

2) The Wi-Fi path is experiencing RTO, i.e., the timer has

fired and no acknowledgment was received since that

event, and the phone wants to push new data;

3) The Wi-Fi RTO value is over a threshold initially set to

1500 ms, while the cellular path is not.

Notice that the threshold values can be decreased by the

Apple’s WifiAssist application when it considers the Wi-Fi

network as ”bad”. However, this system is closed-source,

making it difficult to understand its operation.

To avoid being unfair with regard to Multipath TCP, we

configured the Multipath QUIC scheduler such as it also

advertise all cellular paths as backup ones. This prevents QUIC

from using the cellular path directly. If the smartphone notices

RTO on the Wi-Fi path or some data being in-flight for more

than 600 ms, it starts using the cellular path.

MultipathTester also integrates basic visualizations on most

interesting variables for the user, either while running the test

or when looking at results. The application contains ∼9250

lines of code (without comments), whose ∼ 7000 are Swift,

1000 are Objective-C and ∼1250 are Go code.

C. Usage Statistics

Since the first public release of MultipathTester on March

8th, 2018 until April 30th, 2019, we collected 1098 test runs

coming from 264 unique devices. 43% of the runs are mobile

tests. The distribution of test loads between Europe, Asia and

America is 65%, 17% and 18%, respectively. MultipathTester

has been used in 72 different mobile carriers and 288 different

Wi-Fi SSIDs.

III. STABLE NETWORK RUNS

In this section, we briefly describe some interesting results

obtained during stable network tests. We first provide single-

path findings and then expand on multipath ones.

223



1.000.4 0.5 0.6 0.7 0.8 0.9 2.0 3.0 4.0 5.0

Ratio (Duration QUIC IPv4 / Duration QUIC IPv6)

0.0

0.5

1.0
CD

F
American server

Fig. 4: In America, we observe that IPv6 offers better results

than IPv4, probably due to NAT64.

IPv6 Connectivity. Proportionally, the American server

observes the largest proportion of IPv6 compatible hosts, with

65% of smartphones having an IPv6 address. In comparison,

the European one only observes 43% of the devices with IPv6

addresses, and on the Asian one, this number drops to 29%.

However, we also observe that having an IPv6 address does

not guarantee QUIC connectivity using IPv6. On the European

server, if we select the devices having both IPv4 and IPv6

addresses, we observe a QUIC connectivity success rate of

89% using IPv4, but this rate decreases to 58% over IPv6.

When digging into the tests where the IPv4 QUIC handshake

succeeded but not the IPv6 one, we notice two kinds of error

equally balanced. The first one is simply the QUIC handshake

in IPv6 that timeouts. Most of the times, this happens when

IPv6 is provided by the Wi-Fi network. Indeed, this issue

arose in 12 different Wi-Fi networks, while only 2 different

cellular ones suffered from such timeouts. The second error

cause is the QUIC client that encounters a ”no route to host”

error while trying to send the packet to an IPv6 address.

This typically occurs when the smartphone selects the Wi-

Fi network as its default interface while it only provides IPv4

connectivity, even though an IPv6 address is present at the

cellular interface. Such routing issue is probably due to a bad

interaction between iOS and the QUIC implementation.

Performance of QUIC using IPv4 vs. IPv6. When QUIC

is usable over both IPv4 and IPv6, we do not observe much

difference in terms of performance using the different traffic

patterns on the European server. However, on the American

one, we see better results with IPv6 than with IPv4. For in-

stance, Figure 4 provides the ratio of the download completion

times of a 10MB file between QUIC IPv4 and QUIC IPv6.

In 75% of the measurements, using IPv6 leads to shorter

completion times than using IPv4. Using the same test set

and looking at the interactive traffic pattern, we observe lower

maximum experienced delays with QUIC IPv6 than QUIC

IPv4. This might be related to the high deployment of IPv6 in

American networks, where the IPv4 connectivity is provided

by NAT64. Other studies [18]have shown that IPv6 was faster

than IPv4 in mobile networks.

Usage of QUIC on unofficial ports. QUIC usually runs on

port 443, but some middleboxes might expect other protocols

such as DTLS on this port and could interfere with QUIC

[9]. To detect the presence of such middleboxes, we also run

our ping traffic with QUIC on the non-standard port 6121 to

observe if it experiences connectivity issues. Globally, we do

Reason RTT Thres. Under RTO RTO Thres. Other
Test (%) 2.2% 67.0% 11.0% 19.8%

TABLE I: Multipath TCP reason to start using the cellular.

not observe much difference using port 6121 and the standard

443 one.

Performance of MPQUIC vs. MPTCP. When the smart-

phone can use both Multipath TCP and Multipath QUIC,

we observe similar performance for each protocol with our

different traffic patterns. This is expected as we applied the

same scheduling strategy preferring the Wi-Fi network on

both protocols. However, especially with the iperf traffic

pattern, we notice that when the network offers a large upload

bandwidth, i.e., over 50 Mbps, Multipath TCP achieves a much

higher throughput than Multipath QUIC. This is probably

related to the implementation overhead. Multipath TCP in the

Darwin kernel is much more optimized than the gomobile
framework making the link between Swift code and the

mp-quic implementation written in Go.

IV. MOBILE EXPERIMENTS

In this section, we focus on the performance of multipath

protocols when the user moves. MultipathTester currently uses

only the interactive traffic pattern while the user moves. This

section is split into two parts. We first focus on the interactive
mode of iOS Multipath TCP and evaluate whether it achieves

its low-latency goal. Then we provide a first comparison of

the performance of Multipath QUIC with Multipath TCP.

A. Multipath TCP and its Interactive Mode

We consider here a dataset of 231 experiments performed

between April 23rd, 2018 and April 30th, 2019. Our mobile

dataset includes 44 distinct cellular networks and 84 different

Wi-Fi ones.

Multipath TCP often waits for Wi-Fi RTO before
using cellular. The Multipath TCP interactive mode follows

the algorithm described in Sect. II-B to decide when the

smartphone should start using the cellular backup path. Thanks

to the periodic collection of Multipath TCP internal state, we

can infer which condition triggered the usage of the cellular

path by the smartphone. Table I shows that two-third of the

tests started to use the cellular because new data arrived while

the Wi-Fi subflow was experiencing an RTO. This might be

related to our interactive traffic pattern that generates

data every 100 ms. In comparison, handovers caused by high

smoothed RTTs are rare. This might be related to the high

initial threshold of 600 ms. Notice that the reason for 20%

of the cellular switches cannot be determined using the three

first conditions. We suspect that WifiAssist has declared the

Wi-Fi network as ”bad” and decreased the RTT and RTO

thresholds. However, these thresholds are not exposed by the

Darwin kernel, making impossible to confirm this hypothesis.

A Multipath TCP handover is not an abrupt process. As

the smartphone moves away from the Wi-Fi access point, its

performance will eventually decrease, leading to a network

224



Fig. 5: Example of a possible network handover.

−100 0 100 101 102

Delta Time with First Phone Cellular Packet (s)

0.0

0.5

1.0

CD
F

wrt. last WiFi packet sent
wrt. last WiFi packet received

Fig. 6: Duration of the WiFi to cellular handover.

handover to the cellular network. However, this switch is

not necessarily instantaneous. Consider the situation shown in

Fig. 5. The connection starts over the Wi-Fi network, and after

some time, it experiences retransmissions due to weaker signal.

The phone then decides to use the cellular path to retransmit

the lost request as it experienced an RTO on Wi-Fi, while

still retransmitting the packet over the Wi-Fi path too. These

retransmissions might eventually succeed, leading to reusing

the Wi-Fi path. Therefore, there is a time interval during

which both Wi-Fi and cellular networks are still functional

and being used by the connection. We call this transient state

the handover duration.

The ability of using both networks concurrently enables the

smooth handover. To quantify its duration, we measure the

delay between the first data packet sent on the cellular network

and the last activity observed on the Wi-Fi network. The end of

the Wi-Fi liveliness can be measured as either the transmission

time of the last packet (data or TCP acknowledgment) sent by

the phone or the reception time of the last packet received.

The advantage of the second metric is that it provides a

better view about the actual availability of the Wi-Fi network.

Figure 6 shows when smartphones move, they simultaneously

use the Wi-Fi and cellular networks. Indeed, only 10% of

the test runs experiences an abrupt switch from Wi-Fi to the

cellular network, i.e., the Wi-Fi stopped working before the

smartphone started to use the cellular path. This corresponds

to the negative values in Figure 6. On the other hand, 58%

of the experiments observe a handover duration of at least 10

seconds. This illustrates that in mobile scenarios, the network

handover is not an abrupt process.

Multipath TCP network handovers can affect the ap-
plication. The main objective of the interactive mode of

Multipath TCP is to enable the application to automatically

use the lowest-latency interface while keeping the usage of the

cellular one as low as possible. To this end, we focus on the

maximum delay observed by the sending host for both upload

and download streams of the interactive traffic pattern, i.e.,

101 102 103 104 105

Maximum application delay (ms)

0.0

0.5

1.0

CD
F

Upload stream
Download stream

Fig. 7: Multipath TCP maximum observed application delays.

two maximum delays are collected per test and per protocol.

Despite the interactive mode, Figure 7 shows that more than

60% of the test cases have a maximum application delay that

is longer than a second for both data streams. To exemplify

our results, imagine that the download stream represents an

Internet radio while the upload one simulates a voice-activated

application such as Siri. With the median value at 2.6 s, this

means that the user would have experienced a music stall

in 50% of the experiments if the playback buffer was not

at least 2.5-second long. Similarly, with 70th percentile of

6 s, the Siri application would have been unresponsive for

at least 6 s, possibly raising a connectivity error to the user.

From our experiments, we observe that upload connections

tend to have lower application delays than download ones,

especially between percentiles 50th and 90th. This is likely

because the phone has a better view of the network, as it

is easier for it to detect a weak Wi-Fi than the server. As

in the upload connection, the phone is sending the data, it

can adapt its packet scheduler thanks to its local information.

On the opposite, the server needs to rely on retransmissions.

We also observe a tail reaching hundreds of seconds. This is

due to the iOS implementation of Multipath TCP that does

not support the Multipath TCP ADD_ADDRESS option [1] for

privacy reasons. Our test servers have both IPv4 and IPv6

addresses. With the happy eyeballs process, if the connection

starts on the Wi-Fi using IPv6 while the cellular is IPv4-only,

the transfer remains stuck on the Wi-Fi. Note that this issue

does not occur in the converse situation (IPv4 Wi-Fi with IPv6-

only cellular), as the iPhone includes a NAT64 daemon.

B. Comparison with Multipath QUIC

With the built-in support of Multipath TCP in iOS and

Multipath QUIC provided by our application, MultipathTester

can compare how both protocols handle network handovers

when the user moves. Here, we study a subset of the pre-

viously described dataset where both protocols were usable.

This dataset contains 104 experiments, involving 40 cellular

networks and 61 Wi-Fi ones.

To compare their performance, we consider the maximum

delay experienced by each of the protocol over the same

run. We then compute for each mobile test the ratio between

the maximum delay of Multipath TCP and Multipath QUIC.

Figure 8a shows that when Multipath QUIC uses the same

scheduling strategy as Multipath TCP, we do not observe a

clear trend in favor of one protocol over the other. Each of

them tends to start using the cellular interface at the same

225



10−2 10−1 100 101 102

Max delay ratio (MPTCP / MPQUIC)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F 
ov

er
 m

ob
ile

 te
st

s
Upload
Download

(a) Ratio of max delays between
MPTCP and MPQUIC.

101 102 103 104 105

Multipath TCP (ms)

101

102

103

104

105

M
ul

tip
at

h 
Q

U
IC

 (m
s)

(b) Upload stream max delays.
Each point represents a test.

Fig. 8: The performance of the two protocols mainly depend

on the network conditions.

time. In addition, Fig. 8b indicates that for a same test run,

we can observe very different experienced maximum delays

between Multipath TCP and Multipath QUIC. This result is

both surprising and encouraging. Although Multipath TCP

is included in iOS11, it does not seem to detect handovers

better than our application. This indicates that smartphone

applications that will include Multipath QUIC in the future

could reach similar handover efficiencies as Multipath TCP.

As Multipath TCP is implemented in the kernel, applications

cannot easily tune it according to their needs. As explained

earlier, Apple does not support the utilization of both Wi-Fi

and cellular for bulk transfers with Multipath TCP. However,

this limitation does not exist for UDP. An iOS11 application

that uses Multipath QUIC could thus use both Wi-Fi and

cellular simultaneously. It could also easily use another packet

scheduler such as those that were proposed for Multipath

TCP or a different congestion control scheme. MultipathTester

could thus enable a wide range of multipath experiments.

V. CONCLUSION

In this paper, we presented MultipathTester, an iOS ap-

plication acting as a measurement platform to compare the

performance of Multipath TCP and (Multipath) QUIC. Our

application enables users to perform two kinds of experiments.

First, the stationary mode evaluates how the studied protocols

behave in real Wi-Fi and cellular networks under stable

network conditions. We notably noticed some connectivity

issues with QUIC using IPv6, but in America we observed

better performance using IPv6 rather than IPv4. Second, the

mobile mode evaluates the impact of network handovers on

a delay-sensitive application running atop Multipath TCP

and Multipath QUIC. We learned that the Wi-Fi to cellular

handover process often takes more than a second and that with

similar scheduling strategies, Multipath TCP and Multipath

QUIC achieves similar results.

While the experimentation with Multipath TCP is limited to

the API exposed by iOS, there is no restriction with Multipath

QUIC. We expect that our platform could be used to evaluate

new QUIC extensions. For instance, a possible next step

could be to include a Forward Erasure Correction extension to

QUIC [19] and assess how applications could leverage it when

experiencing network handovers. Once Multipath TCP will

be integrated in the mainstream Linux kernel, we could also

extend MultipathTester to the Android platform and explore

how the smartphones’ vendors tune their multipath algorithms.

Artifacts. Our iOS application, the traffic pattern imple-

mentations in Go and the collection server are available at

https://github.com/multipathtester.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and our shepherd Brian

Trammell for his valuable comments.

REFERENCES

[1] A. Ford et al., “TCP Extensions for Multipath Operation with Multiple
Addresses,” RFC 6824, Internet Engineering Task Force, January 2013.

[2] O. Bonaventure and S. Seo, “Multipath tcp deployments,” IETF Journal,
vol. 12, no. 2, pp. 24–27, 2016.

[3] D. Smith, “iOS Version Stats,” May 2019. [Online]. Available:
https://david-smith.org/iosversionstats/

[4] Z. Cao, “Multi-path transport deployment on smartphone apps,” March
2019, presentation at IETF104, MPTCP working group.

[5] C. Paasch et al., “Exploring mobile/wifi handover with multipath tcp,”
in CellNet’12. ACM, 2012, pp. 31–36.

[6] S. Deng et al., “Wifi, lte, or both?: Measuring multi-homed wireless
internet performance,” in IMC’14. ACM, 2014, pp. 181–194.

[7] A. Nikravesh, Y. Guo, F. Qian, Z. M. Mao, and S. Sen, “An in-
depth understanding of multipath tcp on mobile devices: measurement
and system design,” in Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking. ACM, 2016, pp.
189–201.

[8] Y.-C. Chen et al., “A measurement-based study of multipath tcp perfor-
mance over wireless networks,” in IMC’13. ACM, 2013, pp. 455–468.

[9] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The quic transport
protocol: Design and internet-scale deployment,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication.
ACM, 2017, pp. 183–196.

[10] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and
Secure Transport,” Internet Engineering Task Force, Internet-Draft draft-
ietf-quic-transport-20, Apr. 2019, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-20

[11] Q. De Coninck and O. Bonaventure, “Multipath quic: Design and
evaluation,” in Proceedings of the 13th International Conference on
emerging Networking EXperiments and Technologies. ACM, 2017,
pp. 160–166.

[12] Q. D. Coninck and O. Bonaventure, “Multipath Extensions for
QUIC (MP-QUIC),” Internet Engineering Task Force, Internet-
Draft draft-deconinck-quic-multipath-02, Mar. 2019, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-deconinck-quic-multipath-02

[13] Q. D. Coninck, “Multipathtester,” 2019. [Online]. Available: https:
//itunes.apple.com/us/app/multipathtester/id1351286809?mt=8

[14] Apple, “Reachability,” 2016. [Online]. Available: https://developer.apple.
com/library/archive/samplecode/Reachability/Introduction/Intro.html

[15] C. Paasch, S. Barre et al., “Multipath tcp in the linux kernel,” 2009-2018,
http://www.multipath-tcp.org.

[16] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, “Mptcp is not
pareto-optimal: performance issues and a possible solution,” IEEE/ACM
Transactions on Networking (ToN), vol. 21, no. 5, pp. 1651–1665, 2013.

[17] Apple, “Xnu kernel source code,” 2018. [Online]. Available: https:
//opensource.apple.com/source/xnu/

[18] A. Dhamdhere, M. Luckie, B. Huffaker, A. Elmokashfi, E. Aben et al.,
“Measuring the deployment of ipv6: topology, routing and performance,”
in Proceedings of the 2012 Internet Measurement Conference. ACM,
2012, pp. 537–550.

[19] F. Michel, Q. De Coninck, and O. Bonaventure, “Quic-fec: Bringing the
benefits of forward erasure correction to quic,” in 2019 IFIP Networking
Conference (IFIP Networking) and Workshops. IEEE, 2019.

226


