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Abstract—Congestion control is an indispensable component
of transport protocols to prevent congestion collapse. As such, it
distributes the available bandwidth among all competing flows,
ideally in a fair manner. However, there exists a constantly
evolving set of congestion control algorithms, each addressing
different performance needs and providing the potential for
custom parametrizations. In particular, content providers such
as CDNs are known to tune TCP stacks for performance
gains. In this paper, we thus empirically investigate if current
Internet traffic generated by content providers still adheres to
the conventional understanding of fairness. Our study compares
fairness properties of testbed hosts to actual traffic of six
major content providers subject to different bandwidths, RTTs,
queue sizes, and queueing disciplines in a home-user setting. We
find that some employed congestion control algorithms lead to
significantly asymmetric bandwidth shares, however, AQMs such
as FQ_CoDel are able to alleviate such unfairness.

I. INTRODUCTION

The Internet has grown way beyond its original purpose of

being a research network. Today, thousands of autonomous

systems connect and exchange data. The fundamental principles

governing this data exchange are well established since decades

and defined in IETF RFCs. To this end, the current best-effort

Internet relies on CC to i) not collapse the network, and to

ii) achieve fairness for flows competing for bandwidth at a

bottleneck. For TCP, RFC 5681 [1] requires the implementation

of slow start, congestion avoidance, fast retransmit, and fast

recovery (generally known as TCP Reno). Other algorithms

improve on certain aspects of Reno, e.g., to enable higher

performance over large BDP networks. Usually, when a new

or modified CC algorithm is proposed, it is rated in terms of

TCP fairness when competing with Reno or Cubic as Linux’s

default CC algorithm. While fairness is generally a hard to

define property for Internet flows and flow-rate fairness is

a controversial metric [2], it is still widely used. In 2005,

Medina et al. [3] showed that most Internet flows halve their

congestion window on loss and are thus TCP conform, leading

to an expected flow-rate fairness [4].
Since then, the Internet landscape has drastically changed,

end-users use the Internet with increasing access speeds [5]

and content such as videos is causing a substantial fraction of

Internet traffic [6], [7]. These increasing demands have led to

a logical centralization of the content-serving Internet where

a few big players serve the majority of the content [8], [9].

In previous work [10], we have shown that CDNs specialize

in serving such content by tuning their TCP stacks beyond

RFC-recommended values in hope for higher performance and

user satisfaction. Fundamentally, such observations raise the

question of fairness, and in fact, from an economic standpoint

being unfair to a competing CP might be advantageous (e.g.,

by being able to deliver data with more than a fair bandwidth

share). While identifying a CP’s CC algorithm (e.g., via [11])

helps in understanding its principal behavior, these works do not

take into account the actual parameterization of the algorithms

which have the potential of drastically changing the fairness.

Transport protocol evolution with QUIC has the potential to

further lower the hurdle for modification in the future, given

its realization in userspace for flexible customization.

In light of these historical changes, this paper investigates the

behavior and interaction of large CPs. Thereby, we shine a light

on current practices and evaluate the question of whether actual

Internet traffic adheres to the conventional understanding of

fairness. To this end, we devise a methodology that enables us to

compare testbed results with actual Internet traffic. Specifically,

this work contributes:

• We present a testbed methodology using RTT-fairness to

study actual TCP traffic by major CPs to account for a broad

set of TCP optimizations used in practice.

• We compare fairness properties of testbed hosts to actual

traffic by six major CPs subject to different bandwidth, RTT,

queue sizes, and queueing disciplines in a home-user setting.

We find that achieving a fair bandwidth share largely depends

on the competing congestion control algorithms (Cubic vs.

BBR) and the involved network conditions.

Structure. We introduce flow-rate fairness and related works

in Section II. We then introduce our testbed methodology and

its validation in Section III. Section IV discusses the results

of our fairness study before we conclude the paper.

II. BACKGROUND AND RELATED WORK

One of the key challenges in the Internet is the decentralized

resource allocation of bandwidth. However, TCP’s initial design

only prevented overloading single end-points and did not

consider the possibility that the network itself could become

overloaded and collapse upon this congestion. As centralized

algorithms are not deployable on the Internet, decentralized

CC was soon added to TCP’s design. However, the highly

distributed nature of the Internet quickly showed that there are

scenarios where the early CC often yields less than optimal

performance which has led to a plethora of research for evolved

and optimized algorithms. With the introduction of ever more

algorithms, questions about their interaction arose challenging

how these algorithms share the available bandwidth. Research

has hence also considered these aspects by investigating fairness
of CC. Well-studied fairness measures are the intra-protocol

flow-rate fairness, i.e., how well do two instances of the same
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algorithm share the available bandwidth, the RTT-fairness,

i.e., what happens if the flows have different RTTs, and the

inter-protocol fairness, where two instances of two different

algorithms are investigated.

Intra-Protocol and RTT-Fairness. For Cubic, research has

commonly found decent intra-protocol fairness and an inverse-

proportional RTT-fairness, meaning that instances with smaller

RTTs get a larger share of the overall bandwidth. These findings

have been confirmed for a large set of different network

characteristics, ranging from small (10 Mbps, e.g., [12]) to large

bottleneck bandwidths (10 Gbps, e.g., [13]) or short (16 ms,

e.g., [14], [15]) to long (324 ms, e.g., [14], [15]) RTTs.

For BBR, less research exists and the available studies partly

disagree on the properties of BBR. This is especially true for

intra-protocol fairness, as Cardwell et al. [16] claim a high

degree of fairness across the board, while Hock et al. [17]

identify scenarios where the fairness is significantly impaired.

Regarding RTT-fairness, it is commonly found that BBR has a

proportional RTT-fairness property, i.e., a flow with a larger

RTT gets a larger share of the available bandwidth [16], [18],

[19]. Hock et al. [17] generally confirm the findings but by

investigating two different bottleneck queue sizes, they find

that in scenarios with a smaller queue size (0.8× bandwidth

delay product (BDP)) flows with a smaller RTT have a slight

advantage, while in large buffer scenarios (8×BDP) the inverse

is true and flows with larger RTTs have a significant advantage.

Inter-Protocol Fairness. While the intra-protocol and RTT-

fairness of CC is important for a large scale-out of the

algorithms, the inter-protocol fairness property shines a light

on the coexisting use of different CC algorithms in the

Internet. Unfortunately, several groups of researchers have

found that BBR and Cubic do not cooperate well, as Cubic

flows dominate BBR flows in scenarios with larger buffers

(generally above 1×BDP) while the opposite is true for small

buffer scenarios [16], [17], [19].

While many studies investigate how certain algorithms affect

each other, there is missing up to date research on which are

actually used in the Internet. Moreover, many studies neglect

the parameterization and tuning potential of these algorithms

that are used in practice. To address this, this study explores

if actual Internet traffic of large content providers—which

carry the bulk of today’s Internet traffic—still adheres to the

conventional understanding of TCP fairness.

III. METHODOLOGY

CC research traditionally involves simulation or testbed
studies, which give researchers complete control over the

investigated scenarios. While this is desirable for controlled

experiments, the involved abstractions and assumptions do not

allow to completely cover real-world settings. For example,

the employed algorithms and their parameterization in real-

world systems are typically unknown. To study CC fairness in

practice, we, therefore, contact real-world Internet systems with

a testbed setup. This enables us to still control some parameters

(e.g., bottleneck bandwidth and delay) while studying the CC

algorithms as run by real systems. This way we can study

Testbed2

Testbed1

CP1

Switch

CP2

a

b

c

BottleneckClient

Fig. 1: Testbed topology with testbed and online components.

Scenario a (testbed-only), Scenario b (testbed & Internet),

Scenario c (Internet-only).

if Internet traffic by CPs still adheres to the conventional

understanding of TCP flow-rate fairness.

A. Home User (Residential Access) Scenarios

The fundamental design choice of our study is to investigate

fairness from the perspective of an end-user accessing the

Internet through a home router. Even though peering links

have been identified as possible points of congestion [20], it is

still widely believed that access links form the bottlenecks and

thus congestion happens at the network edges, more specifically

at the end-user’s access link [21]. We model this scenario in

the form of a simple dumbbell topology that is the foundation

of our testbed which we illustrate in Figure 1. The user—

represented by the client—is connected to the testbed network

via a dedicated machine serving as a configurable bottleneck

(via Linux’s traffic control (TC) subsystem). In general, the

client can request traffic from all kinds of sources, from within

the testbed and from Internet sources. For our study, we focus

on three distinct scenarios.

In Scenario a (testbed only), we investigate the out-of-box

performance of CC by simultaneously requesting traffic from

two testbed machines. This, above all, establishes a baseline and

identifies potential influencing factors on the overall interaction

of CC. Building upon this baseline, Scenario b (testbed &

Internet) then replaces one of the two testbed flows with a

flow originating from the Internet. Thus, we compare how

the Internet flows interact with the out-of-box CC algorithms.

Finally, Scenario c (Internet-only) considers the case where

both flows originate from the Internet to investigate how and

whether their interactions differ from the previous scenarios.

The common goal of all three scenarios is to judge the

bandwidth sharing behavior of different CC algorithms in

different network settings for which we consider four network

characteristics. The bottleneck bandwidth and the overall RTT
hereby give hard upper bounds (in terms of available data rate)

and lower bounds (in terms of responsiveness) on the overall

performance, while the bottleneck queue, characterized by its

queue size and queuing discipline, introduces jitter, and loss.

B. Testbed Setup

The core of our testbed consists of one machine that

represents the end-user and hence serves as the client through-

out the scenarios and another machine which represents the
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user’s access link and hence the bottleneck of the overall

connections. The latter is then used to model all connection-

specific properties like delay or bandwidth. For the scenarios

where we create flows from within our network, we deploy one

machine for each flow that is involved and configure server-

side parameters like the deployed CC algorithm on them. All

machines within the testbed use a Linux 4.13 kernel and they

are interconnected via Gigabit Ethernet to ensure that the

physical links never become a bottleneck.

Limiting Bandwidth. Most configurations, like rate-limiting,

are done on the bottleneck’s egress queues. Here, we configure

the bandwidth and queue size using a token bucket filter with

a burst size of a single frame while using different queue

management techniques. Even though Internet access links

are often asymmetrical, we disregard this fact as we are not

interested in investigating reverse-path congestion and use the

same bandwidth in both directions.

Ensuring RTT-Fairness. To reason about the main question

of this work, i.e., about the bandwidth sharing properties of

Internet flows, we employ the RTT-fairness property which

states that two flows should share the bandwidth equally if they

have the same RTT. This, in turn, means that we only consider

those cases where the different flows have the same RTT and

we consequently use fairness synonymously for RTT-fairness.

To add delay to our testbed, we use TC to perform ingress

packet processing at our bottleneck. There, we redirect traffic

to an intermediate queue disc enabling us to use NetEm to

add a delay before we release the packet for forwarding to the

actual egress queue. We do not configure any artificial jitter

using NetEm as this causes packet reordering; the additional

delay and jitter are thus only caused by the egress queue. To

have symmetric delays, we add half of the configured delay to

each ingress of the bottleneck. While care needs to be taken in

sizing the NetEm queue to not cause artificial packet loss, this

approach has the advantage that the end-host stacks are not

involved in the delay which is known to badly interfere with CC

when Linux detects queuing pressure (TCP small queues) [22].

Further, in Scenarios b and c we even have no control over

all end-hosts. To ensure that we can investigate RTT-fairness,

we set different delays for each flow to harmonize their RTTs.

To this end, we measure the minimum RTT through our testbed

(using TCP pings) when not using any artificial delays for each

flow. We then use each flow’s min RTT to configure delays

such that all flows experience the same artificial min RTT.

Limitations. Our testbed has several limitations that need

consideration. We must ensure that our traffic shaper is the

actual bottleneck of the path from the CP to our client.

Since we do not have full control over all involved entities,

we can only configure bandwidths that are sane given our

interconnection. Our testbed uses Gigabit Ethernet, our Institute

is then connected via 10 Gbps to our University’s backbone,

which in turn connects to the German research network

(DFN) via 40 Gbps which then peers at DE-CIX with all CPs

investigated in this study. Thus, shaping traffic for typical end-

user access links should render the bottleneck to our traffic

shaper. Further, we need to artificially bump up the RTTs at

Setting Parameter Space

Bandwidth 50 Mbps, 10 Mbps
RTT 50 ms, 100 ms
Buffer sizes 0.5× BDP, 2× BDP
Queueing discipline drop-tail, CoDel, FQ_CoDel

TABLE I: Study parameter space

least to the largest minimum RTT measured. For us, the CPs

typically show RTTs around 5 ms to 10 ms which enables us

to investigate a large range of RTTs.

Additionally, to ensure repeatability and independence, we

take several precautions to avoid undesired side-effects. First,

to investigate the interaction of CC, we must be actually limited

by the congestion window which is why we advertise an initial

flow-control receive window of 200 segments. In the same

way, we ensure that send and receive buffers are large enough

to fully utilize the available bandwidth and do not introduce

an undesired new bottleneck. Finally, we clear all TCP caches

after each measurement to ensure that cached metrics such as

ssthresh do not affect future measurements (testbed only).

C. Parameter Space

Selecting reasonable parameters for our testbed is chal-

lenging. We must adhere to the testbed’s limitations while

seeking to replicate a reasonable end-user environment. Table I

summarizes the parameter space which we discuss next.

Bandwidth. To ensure that the bottleneck link is within our

testbed, we have to set the bottleneck link bandwidth accord-

ingly. To identify the bandwidth provided by the individual

CPs, we performed a larger number of bandwidth tests to

determine which data rates are reliably offered by the different

CPs. We have found the lowest data rates to be around 60 Mbps.

Adding a safety margin, we choose 50 Mbps as our upper data

rate limit which according to Akamai [5] is representative for

mid-sized access links. Further, we choose 10Mbps as a lower

bound to represent a low-end connection.

RTTs. We choose 50 ms as the lower bound for the minimum

RTT and 100 ms as a representative for higher latencies, even

though we expect typical CPs to usually have much lower

RTTs to their customers. However, these increased RTTs make

it possible to reduce the relative error when we pad up the

RTTs to ensure RTT-fairness between connections.

Buffer Sizes. For the bottleneck buffer, we experiment with

different queue sizes since we know of no study that inves-

tigates typical last-mile buffer sizes. While the potential for

overly large buffers (bufferbloat) is known [23], less than

1% of the end-user flows were observed to experience RTT

variations larger than 1 sec by a major CDN [24]. Therefore,

we choose one overly large buffer in the order of 2×BDP

and, inspired by research advocating new buffer sizing rules

(
√
num_flows [25] and logwin_size [26]), one smaller

buffer size of 0.5×BDP which, for our investigated bandwidths

and delays, yields queue sizes between both proposed sizing

rules.

AQM. In addition to these parameters, we also change the

queuing discipline between a regular drop-tail queue and (FQ-)

CoDEL [27] to investigate the impact of AQM on fairness.

179



D. Fairness Metric

We rate the fairness by capturing the traffic that the client

receives for each flow. To this end, the client requests a first

flow from one machine and after 5 s a second flow from another

machine. Both flows then continue to transmit data for another

40 s before shutting down. Of the overall 45 s, we investigate

35 s starting 5 s after the second flow starts its transmission.

While this methodology is above all intended to focus on the

long term fairness between the two flows, we also examine

whether it is important which flow is started first by including

experiments with a flipped starting order. We repeat each

measurement 30 times to investigate the stability of our results.

To rate the fairness between both flows, we look at the ratio

of transmitted bytes (over the same timespan of the shorter

flow) and define our fairness measure as:

fness(a, b) =

⎧⎨
⎩

1− bytes(a)
bytes(b) if bytes(b) ≥ bytes(a)

−1 + bytes(b)
bytes(a) if bytes(a) > bytes(b)

Intuitively, fness(A,B) maps the fairness behavior of the two

flows into the range of [-1, 1] with zero indicating absolute

fairness, -1 that Flow A absolutely dominates Flow B and a

value of 1 the opposite. In between, the measure depicts the

ratio of bytes actually transmitted, e.g., 0.5 indicates that Flow B

transmitted twice the bytes compared to Flow A.

E. Testbed Validation

To investigate if our testbed produces meaningful results, we

seek to confirm known findings about the behavior of CC with

our testbed. Due to the fact that related work considers a wide

range of parameter settings and different variations of dumbbell

topologies, we do not aim to exactly replicate specific results

of related work, but rather general findings that are similar

throughout all related work. For this, we focus on Scenario a

(testbed-only) and test whether the performance of out-of-box

CC algorithms in our pure-testbed scenario is similar to the

findings of related work as presented in Section II, especially

regarding inter- and intra-protocol fairness.

Figure 2 visualizes this measure for a configuration with

10 Mbps and a min RTT of 50 ms for BBR, Cubic, and a

Cubic when activating pacing. We show a scatterplot of all

our measured values together with a kernel density estimate to

better visualize the location of the majority of our measured

data. For each combination of algorithms, we plot the results

when flow A starts first (yellow) side by side with the switched

setting when flow B starts first (violet). For the tests where

a CC algorithm performs against itself, switching which flow

starts first only mirrors the data at the 0-axis.

Our results show expected values as all algorithms generally

show a large degree of fairness to themselves (intra-protocol

fairness) with BBR showing a bit of a larger variance compared

to the others. When comparing the inter-protocol fairness, we

observe that BBR clearly monopolizes the bandwidth regardless

of which flow starts first. This confirms related work on BBR

in low-buffer scenarios [16], [17], [19]. An additional finding
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B:BBR A:BBR
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B:Cubic
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Fig. 2: Results from Scenario a for 10 Mbps, 50 ms and a

buffer of 0.5×BDP for different CC algorithm combinations.

is that pacing seems to decrease fairness when competing with

both paced and non-paced Cubic flows.

While these experiments validate that our testbed yields

meaningful results confirming known findings, we now investi-

gate Scenario b and Scenario c to study how CPs, and thus

possibly non-standard algorithms from the Internet, perform

against our known CC algorithms and against each other.

IV. CONGESTION CONTROL IN THE WILD

We base our evaluation of TCP fairness on actual Internet

traffic by six major CPs (Akamai, Amazon, Cloudflare, Edge-

cast, Fastly, and Google) in two settings: i) lab vs. CP and ii)
CP vs. CP in February 2019. Studying actual Internet traffic is

motivated by the observation that CC research often neglects

the complex parameterization possibilities. For example in a

previous study [10], we found that CDNs use different initial

window configurations and some utilize pacing. To this end,

we suspect that not only the initial windows might be different,

thus choose two URLs for Akamai (named AkamaiA (then

using IW32) and AkamaiE (then using IW16)) mapping to

these different settings. Furthermore, Cloudflare and Google

have both publicly announced to utilize BBR. Thus, we opt to

observe the performance of actual Internet traffic originating

from these six different CPs when competing against our testbed

flows in Scenario b and against themselves in Scenario c .

We obtain URLs generating large responses (the smallest be-

ing 25 MB) served by each CP by analyzing the HTTPArchive.

Since the responses can still be too small to cover our 45 s

measurement period, we make use of HTTP/2 multiplexing, i.e.,

we request the same resource multiple times (in parallel) over

the same connection enabling us to prolong the transmission

by a multiple of the original file size. This functionality is

already provided by the h2load tool in nghttp21.

A. Lab Traffic vs. Content Provider Traffic

We start by investigating Scenario b where traffic from our

testbed machines, i.e., BBR and Cubic flows, competes with

Internet traffic and hence the algorithms employed by our CPs.

Cubic Small Buffer. Figure 3 shows the results for 10 Mbps

and a min RTT of 50 ms when using a Cubic flow. We again

use our fairness measure to plot the measurement results; here,

1https://github.com/nghttp2/nghttp2
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Fig. 3: A Cubic flow originating from our testbed competes

with the content providers for traffic using a small buffer (top)

and a large buffer (bottom).

results < 0 indicate a dominance for our testbed flow while

results > 0 favor the CP. As observed in the top plot for

measurements with a small buffer of 0.5×BDP, Cloudflare and

Google clearly dominate the traffic in all instances giving little

bandwidth to our Cubic flow (unfair setting). Apart from these

two, Amazon and Edgecast struggle against our Cubic flow

even when their flow starts first (unfairness by our testbed

flow). In contrast, Fastly—at least when having a headstart—

is able to achieve rough fairness. The two Akamai flows

offer a different behavior with AkamaiE showing the highest

degree of fairness while AkamaiA is similar to Cloudflare

and Google in that it completely dominates our testbed Cubic

flow. This observed difference in behavior of the two Akamai

flows supports our initial guess that Akamai uses different

configuration parameters.

Cubic Large Buffer. When looking at the large buffer setting

in the plot below we observe a different picture. Now, the

Cloudflare and Google flows do not dominate anymore, the

fairness heavily depends on which flow was initiated first.

Similarly for Amazon, Edgecast, and Fastly, when the testbed

initiates the first flow, they struggle to gain enough bandwidth.

In contrast, when the CP initiates the first flow, a generally

fairer distribution is achieved. For Amazon and Fastly, we

observe a bi-modal distribution of the traffic shares, one that

more closely matches the testbed-first case and another that

tends to favor the CP. What is very interesting to see is that

both Akamai flows are completely dominated by the testbed

Cubic flow, no matter which flow is started first.

BBR Small Buffer. Things start to significantly differ when we

configure our testbed flow to utilize BBR as shown in Figure 4.

As can be seen in the upper plot, showing the fairness under

a small buffer setting, the testbed BBR flow dominates the

flows of Amazon, Edgecast, and Fastly. The same is true for

AkamaiE while AkamaiA shows an interesting behavior, as part

of the experimental iterations also show the clear dominance
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Fig. 4: A BBR flow originating from our testbed competes

with the content providers for traffic using a small buffer (top)

and a large buffer (bottom).

BBR@2BDP BBR@.5BDP Cubic@2BDP Cubic@.5BDP
QSize Retrans QSize Retrans QSize Retrans Qsize Retrans

AkamaiA 43 175 14 1244 60 22 16 80
AkamaiE 42 210 13 967 59 24 12 70
Amazon 53 468 12 836 66 30 12 31
Cloudflare 40 22 13 1319 57 40 12 166
Edgecast 53 377 12 810 64 33 12 41
Fastly 53 442 11 741 65 31 12 41
Google 40 215 15 760 55 50 14 184

TABLE II: Average queue size (QSize) and retransmissions

(Retrans) of the testbed originating flows for the 10 Mbps,

50 ms scenario with the testbed flow starting first.

of the testbed flow while about half of the iterations either

show a very fair result (when the testbed is started first) or

a dominance of the Akamai flow (when Akamai is started

first). The observed characteristics hereby seem to be stable in

that the behavior seems to switch between two distinct states.

Cloudflare shows a wide range of observed fairness ratios

from dominating the testbed flow to the opposite. For Google,

however, our testbed flow always clearly loses to the CP.

BBR Large Buffer. In the large buffer scenario, the flows of

most CPs show very similar behavior in that the testbed flow

dominates the competition. The effect is hereby most visible

when the testbed flow starts first while it is slightly ameliorated

when the CP is the first flow. The degree of unfairness is

hereby similar in most cases with Cloudflare being the only

real exception as it achieves a balanced fairness level when

the CP flow is started first.

Retransmissions. In addition to only looking at the resulting

fairness, we also consider key characteristics of the bottleneck

buffer and the participating end-hosts. In this case, we observe

the queue size of the bottleneck buffer, which we measure

using a simple eBPF program on the bottleneck machine, and

the amount of retransmissions of the testbed flow, which we

also measure using an eBPF program on the corresponding
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Fig. 5: AkamaiE, Amazon, and Cloudflare competing against the other content providers in the 10 Mbps, 50 ms setting. Amazon

performs similar to Edgecast and Fastly, Cloudflare is similar to Google. Top row shows 0.5×BDP, bottom row 2×BDP.

testbed machine, i.e., Testbed1 in Figure 1. We present these

characteristics in Table II. What can be seen is that for a

testbed Cubic flow, Cloudflare and Google cause significantly

higher retransmission counts than the other CPs. What is very

interesting is that Cloudflare induces very few retransmissions

for the BBR testbed flow in the large buffer scenario but the

most retransmissions in the small buffer scenario.

Higher RTT and Higher Bandwidth. When we investigate

our other settings with larger RTTs we observe no qualitative

difference in fairness for all but AkamaiA. AkamaiA’s bimodal

fairness distribution in the 50% BDP setting shifts towards

the testbed dominating all measurements. When increasing the

bandwidth, testbed BBR flows still dominate but the fairness

focusses for Cloudflare and Google, especially for smaller

buffer sizes; the larger buffer generally leads to a larger

distribution of the fairness. Especially, Amazon, Edgecast,

and Fastly can claim slightly more bandwidth on average.

Looking at changes for testbed Cubic flows, we observe no

significant difference when competing against Cloudflare and

Google. For the others, we observe a slight trend towards more

bandwidth for the CPs. Again, AkamaiA stands out in the small

queue setting and behaves like AkamaiE when increasing the

bandwidth. We validated AkamaiA’s behavior over several days

(repeating the same 30 measurements for the different settings)

and were able to consistently observe the same changes.

Takeaway. As indicated by our results, fairness largely depends
on the available buffer size. Generally, it seems that the CC
algorithms employed by the CPs are achieving better fairness
with off-the-shelf algorithms when more buffer size is available.
However, large buffers can cause jitter and generally inflate
the latency. Yet in small buffer settings, BBR currently claims
nearly all bandwidth and shows a large variability in fairness
and performance when competing with other BBR flows causing
unpredictable performance.

While it might seem advantageous at first glance that

algorithms like BBR claim more bandwidth, it could actually

be bad for CPs. In the web, CPs often compete with 3rd party

resources loaded on the same website. When the CP claims

all bandwidth, it may negatively affect the web page loading

behavior since they could cause reduced performance for the

competing flows of the other resources. Thus, CPs should

interact fair with their competitors which is the focus of the

next part of our study, i.e., how two CP flows interact.

B. Content Provider vs. Content Provider

For investigating the interaction between the different CPs,

we now deploy Scenario c where both flows are requested

from the CPs. The rest of the testbed configurations remain

unchanged. Figure 5 shows the results for AkamaiE, Amazon,

and Cloudflare flows competing against the other CPs in a

scenario with 10 Mbps, a min RTT of 50 ms and a small (top)

or large (bottom) buffer size. Due to the similarity of the results,

Amazon also serves as a representative for Edgecast and Fastly,

while Cloudflare also represents Google. Once more using

our fairness measure, results < 0 indicate a dominance of the

explicitly mentioned CP while results > 0 favor the competing

CP mentioned on the x-axis.

Small Buffers. Starting with the upper row, i.e., with the small

buffer scenario, we rarely observe cases where the CPs achieve

a good level of fairness. Especially Cloudflare (right) seems to

dominate most of the other CPs with the only exception being

when it is forced to compete with Google and AkamaiA. In the

former case, Google generally dominates Cloudflare when it

starts first while we observe large range fairness results when

Cloudflare is the first flow. The most interesting observation

can be made for AkamaiA as the bi-modal behavior observed

before is again visible when it is started first and forced to

compete with Cloudflare. Here, roughly half of the results

indicate significant domination by AkamaiA.
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Fig. 6: AkamaiE, Amazon, and Cloudflare competing against the other content providers in the 10 Mbps, 50 ms, 2× BDP setting

using CoDel (top) and FQ_CoDel (bottom). Amazon performs similar to Edgecast and Fastly, Cloudlfare is similar to Google.

For the scenarios where we focus on AkamaiE (left)

and Amazon (middle), it is obvious that they are massively

dominated by Cloudflare and Google. The same holds when

they compete against a first flow originating from AkamaiA,

while the behavior is much fairer when the AkamaiA flow

is started second. When interacting, Amazon, Edgecast, and

Fastly show a rather high degree of fairness. When AkamaiE

competes against Edgecast and Fastly, a large range of observed

fairness values can be seen, ranging from medium dominance

of Edgecast and Fastly to total domination of AkamaiE. The

latter, i.e., total domination of AkamaiE, is above all visible

when competing against Amazon.

Large Buffers. Things again change when we focus on the

bottom row using a larger buffer. Regarding Cloudflare (right),

we observe that the strict dominance is less profound than

in the small buffer scenario yet still favoring it. When the

Cloudflare flow starts first, there is a higher degree of fairness

when competing against Amazon, Edgecast, and Fastly, yet they

struggle when Cloudflare’s flow starts first. However, Cloudflare

does not seem to cooperate well with the two Akamai flows

or Google, as it dominates them in all these scenarios.

A generally decent amount of fairness can be observed

in several scenarios involving Amazon (middle). Especially

when competing against Cloudflare, Edgecast, and Google,

high fairness levels are achieved. In contrast to that, we can

again see very poor fairness for the Akamai flows if they are

started first, while we observe a large range of values when

they compete against an Amazon flow starting first. When the

AkamaiE flow is the first contester (left), it is dominated by the

other CPs while it seems to be able to better claim bandwidth

when it enters as the second flow.

Takeaway. As observed earlier, larger buffers seem to enable
a better level of fairness even though they are still far
from being equal in most cases. This is especially true for

Cloudflare/Google which dominate most of the other CPs in
the small buffer scenario while there are reasonable fairness
values for most CPs in the large buffer setting.

Even though a higher level of fairness can be noted for

the large buffer, it comes with the problem of larger queue

sizes and hence also with increased delays. Ideally, we would

have a scenario with a smaller queue but still the high level of

fairness. As AQMs like CoDel are designed to keep the delay

(and hence the queue) small, we are interested in whether they

can help to achieve the desired combination of small delays

and high level of fairness. This is why we investigate the effect

of AQMs on the whole situation in the following section.

C. Can CoDel Improve Fairness?

AQMs inherently change the behavior of a queue which is

why they have a significant impact on the overall performance.

Generally, they have two possible forms of feedback to which

flows might respond: i) dropping packets and ii) using ECN.

In our work, we only consider the first case of feedback, i.e.,

packet drops because it requires no end-to-end support. For

this, we repeat the experiments from before but activate CoDel

and its flow-queuing variant FQ_CoDel on the intermediate

bottleneck machine. In the following, we further concentrate

on the case with a queue size of 2×BDP because CoDel’s

effect on small queues is likely to be diminishing. Hence,

Figure 6 only shows the results for a queue size of 2×BDP in

the otherwise unchanged scenarios previously used in Figure 5,

i.e., for 10 Mbps and a min RTT of 50 ms. We again choose

AkamaiE, Amazon, and Cloudflare as the showcase CPs.

CoDel. The main observation that can be made is that

CoDel (top) seems to achieve a very high level of fairness

when Amazon competes with Edgecast and Fastly and when

Cloudflare competes with Google. Apart from that, there

are above all very bad fairness values when other CPs are
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competing against Amazon or Cloudflare with tendencies

looking like the small buffered scenario with a FIFO queue.

For the AkamaiE flow, the application of CoDel comes in

hand with a clear domination of Akamai when competing

against Amazon, Edgecast, and Fastly. What is more, when it

is started first, Akamai also dominates Cloudflare and Google,

while there are again two regions of values when Cloudflare

and Google are started first; one where Akamai dominates and

one where the other two dominate. Finally, when looking at

the performance against AkamaiA, the two-regional effect is

again visible and now for both cases. AkamaiE starting first is

hereby characterized by a dominance of AkamaiE half of the

time and a fair behavior the other half, while this is the exact

opposite if AkamaiA is started first.

FQ_CoDel. Shifting towards the flow-queuing variant (bottom),

which is designed to produce a fair queuing, we observe a

tremendous increase in fairness. Now, throughout all mea-

surements, fairness is close to the equilibrium and we only

observe slight variations. When looking at AkamaiE we see the

largest variation relative to the others with AkamaiE slightly

dominating most of the others. Looking at Amazon, we see

a slight advantage that diminishes for Edgecast and Fastly. In

the Cloudflare case, Amazon, Edgecast and Fastly get slightly

less bandwidth while Google is very fair and the Akamai’s

again showing a slight bimodal pattern.

Takeaway. Combining the findings of this section with our
previous observations that Amazon, Edgecast, and Fastly use a
similar algorithm and that Cloudflare and Google use BBR, it
can be said that CoDel above all seems to improve the intra-
protocol fairness in large buffers. This is bad news for the
heterogeneous Internet, as scenarios with different algorithms
suffer from severe unfairness. Luckily, the flow-queuing variant
enables a large degree of fairness even in heterogeneous
settings. Thus, it seems to again stand that the technologies to
enable a fair and performant Internet are available and only
need to be deployed at the bottlenecks.

V. CONCLUSION

In this work, we empirically investigated the fairness of

content providers in the Internet. With the help of our testbed,

we are able to investigate actual Internet traffic subject to RTT-

fairness when competing under lab-controlled properties of a

bottleneck. Generally, we find there is only limited fairness

in the Internet today. Some content providers interact well

with each other, while others do not which is likely reflected

in their choice of congestion control algorithm. We find that

the bottleneck buffer size significantly impacts the fairness

enabling it to invert observations when going from small

to large. This demands research to shine a light on actual

configurations of bottleneck buffer sizes in the Internet to then

investigate, e.g., the impact on web performance when content

is served from a diverse set of content providers. Still, there

is a silver lining: State-of-the-art AQMs such as FQ_CoDel

put the fairness control back into the network operator’s and

possibly the end-user’s hand, however, require deployment on

millions of devices.
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