
Interactions between Congestion Control Algorithms

Belma Turkovic∗, Fernando A. Kuipers† and Steve Uhlig ‡
∗ † Delft University of Technology, Delft, The Netherlands

‡ Queen Mary University of London, London, United Kingdom

Email: {∗B.Turkovic-2, †F.A.Kuipers}@tudelft.nl, ‡Steve.Uhlig@qmul.ac.uk,

Abstract—Congestion control algorithms are crucial in achiev-
ing high utilization while preventing overloading the network.
Over the years, many different congestion control algorithms
have been developed, each trying to improve over others in
specific situations. However, their interactions and co-existence
has, to date, not been thoroughly evaluated, which is the focus
of this paper. Through head-to-head comparisons of loss-based,
delay-based and hybrid types of congestion control algorithms,
we reveal that fairness in resources claimed is often not achieved,
especially when flows sharing a link have different round-trip
times or belong to different groups.

I. INTRODUCTION

In the wake of the growing demand for higher bandwidth,

higher reliability, and lower latency, novel congestion control

algorithms have been developed. For example, in 2016, Google

published its bottleneck bandwidth and round-trip time (BBR)

congestion control algorithm, claiming it was able to oper-

ate without filling buffers [1]. Around the same time, TCP

LoLa [2] and TIMELY [3] were proposed, focusing on low

latency and bounding of the queuing delay. Moreover, new

transport protocols such as QUIC allow the implementation

of algorithms directly in user space, which facilitates quick

development of new transport features. However, congestion
control algorithms have been typically developed in isolation,

without thoroughly investigating their behaviour in the pres-

ence of other congestion control algorithms, which is the goal

of this paper.

In this paper, we first divide existing congestion control

algorithms into three groups: loss-based, delay-based, and

hybrid. Based on experiments in a testbed, we study the

interactions over a bottleneck link among flows of the same

group, across groups, as well as when flows have different

Round-Trip Times (RTTs). We find that flows using loss-based

algorithms are over-powering flows using delay-based, as well

as hybrid algorithms. Moreover, when flows using loss-based

algorithms fill the queues, increase in queuing delay of all

the other flows sharing the bottleneck is determined by their

presence. Non-loss-based groups thus cannot be used in a

typical network, where flows typically rely on a loss-based

algorithm. In addition, we observe that convergence times

can be large, which may surpass the flow duration for many

applications. Finally, we find that hybrid algorithms, such as

BBR, not only favour flows with a higher RTT, but they also

cannot maintain a low queuing delay as promised.

In Section II, we provide an overview and classification of

congestion control mechanisms. In Section III, we (1) identify

a set of key performance metrics to compare them, (2) describe

RFC 793

Loss-based
algorithms

Delay-based
algorithms

Hybrid
algorithms

Tahoe

Reno

NewReno

SCTP

HS-TCP

H-TCP

Hybla

BIC

Cubic

Westwood

Westwood+

TCPW-A

LogWestwood+

DUAL

Vegas

VegasA

NewVegas

FAST

VFAST

LoLa

TIMELY

Veno

Vegas+

TCP AR

Africa

Compound

Fusion

YeAH

AReno

Libra

Illinois

BBR

PCC

Fig. 1: Classification of different congestion control algo-

rithms. Dotted arrows indicate that one was based on the other.

our measurement setup, and (3) present our measurement

results. Additional measurements are given in an extended

version [4].

II. BACKGROUND

Since the original TCP specification (RFC 793 [5]), numer-

ous congestion control algorithms have been developed. In

this paper, we focus mostly on algorithms designed for wired

networks. The algorithms we consider can be used both by

QUIC and TCP and can be divided into three main groups

(see Fig. 1): (1) loss-based algorithms that detect congestion

when buffers are already full and packets are dropped, (2)

delay-based algorithms that rely on RTT measurements and

detect congestion by an increase in RTT, indicating buffering,

978-3-903176-17-1 / © 2019 IFIP

161



and (3) hybrid algorithms that use some combination of the

previous two methods.

A. Loss-based algorithms

The original congestion control algorithms from [5] were

loss-based algorithms with TCP Reno being the first widely

deployed one. With the increase in network speeds, Reno’s

conservative approach of halving the congestion window

became an issue. TCP connections were unable to fully

utilize the available bandwidth, so that other loss-based al-

gorithms were proposed, such as NewReno [6], Highspeed-

TCP (HS-TCP [7]), Hamilton-TCP (H-TCP [8]), Scalable TCP

(STCP [9]), Westwood (TCPW [10]), TCPW+ (TCP West-

wood+ [11]), TCPW-A [12], and LogWestwood+ [13]. They

all improved upon Reno by including additional mechanisms

to probe for network resources more aggressively. However,

they also react more conservatively to loss detection events,

and discriminate between different causes of packet loss.

However, these improvements did not address any of the

existing RTT-fairness issues, but introduced new ones [14],

[15]. Indeed, when two flows with different RTTs share the

same bottleneck link, the flow with the lowest RTT is likely

to obtain more resources than other flows. To resolve this

issue, BIC [14] and Hybla [15] were proposed. Hybla modified

NewReno’s Slow Start and Congestion Avoidance phases and

made them semi-independent of RTT. However, the achieved

RTT-fairness meant that flows with higher RTTs behaved more

aggressively. The main idea of BIC was to use a binary search

algorithm to approach the optimal congestion window size.

However, later evaluations showed that BIC can still have

worse RTT-fairness than Reno [16]. In response, Cubic was

proposed in [16]. Since Cubic is the current default algorithm

in the Linux kernel, we will use it as a reference for loss-based

algorithms throughout this paper.

B. Delay-based algorithms

In contrast to loss-based algorithms, delay-based algorithms

are proactive. They try to find the point when the queues in the

network start to fill, by monitoring the variations in RTT. An

increase in RTT, or a packet drop, causes them to reduce their

sending rate, while a steady RTT indicates a congestion-free

state. Unfortunately, RTT estimates can be inaccurate due to

delayed ACKs, cross traffic, routing dynamics, and queues in

the network [3], [17].

The first algorithm that used queuing delay as a congestion

indicator was TCP Dual. The first improvement to this algo-

rithm was Vegas [18]. It focuses on estimating the number of

packets in the queues and keeping it under a certain threshold.

However, several issues were identified. First, when competing

with existing loss-based algorithms, Vegas flows suffer from

a huge decrease in performance [19], [20]. Second, it has a

bias towards new flows and, finally, interprets rerouting as

congestion [20]. To address these issues several modifications

to Vegas were proposed, including VegasA [20], Vegas+ [19],

FAST [21], VFAST [22], and NewVegas [23].

Recently, as low latency became important, several new

algorithms have been proposed. Hock et al. designed LoLa [2],

focusing on low latency and convergence to a fair share be-

tween flows. To improve performance in datacenter networks,

Google proposed TIMELY [3], which relies on very precise

RTT measurements. Since Vegas is used as the base algorithm

by many other delay-based and hybrid algorithms, we use it

as a reference for delay-based algorithms.

C. Hybrid algorithms

Hybrid algorithms use both loss and delay as congestion

indicators. The first hybrid algorithm was Veno [24]. It is a

modification of the Reno congestion control that extends the

additive increase and multiplicative decrease functions by also

using queuing delay as the secondary metric. To efficiently

utilize the available bandwidth in high-speed networks, many

algorithms use similar modifications based on the Vegas or

Dual network state estimations. Some of the most important

ones are Africa [25], Compound [26], and YeAH [27]. Other

algorithms modify the congestion window increase function

to follow a function of both the RTT and the bottleneck link

capacity, such as Illinois [28], AR [29], Fusion [30], TCP-

Adaptive Reno (AReno) [31], and TCP Libra [32].

In 2016, Google developed the bottleneck bandwidth and

round-trip time (BBR) algorithm. However, several problems,

mostly related to the Probe RTT phase, were discovered: (1)

bandwidth can be shared unfairly depending on the timing of

new flows and their RTT, and (2) unfairness towards other

protocols, especially Cubic [33], [34], [35].

At the same time, a new approach to congestion control

using online learning was proposed in PCC [36]. We use BBR
as our representative for hybrid algorithms, since it is actually

deployed (in Google’s network) and implemented in the Linux

kernel (since v4.9).

III. EVALUATION

Using the metrics described in Sec. III-A and via the set-up

described in Sec. III-B, in Sections III-C and III-D we evaluate

the representatives of the three algorithm groups (Cubic, Vegas

and BBR). Additional measurements and results of all other

algorithms that have been implemented in the Linux kernel

can be found in the extended version of this paper [4].

A. Performance metrics

Sending rate represents the bit-rate (incl. data-link layer

overhead) of a flow generated by the source, per time unit.

Throughput measures the number of bits (incl. the data-

link layer overhead) received at the receiver, per time unit.

RTT (round-trip time) represents the time between send-

ing a packet and receiving an acknowledgement of that packet.

Goodput measures the amount of useful data (i.e., excl.

overhead) delivered by the network between specific hosts,

per time unit. This value is an indicator of the application-

level QoS experienced by the end-users. Additionally, we use

the goodput ratio, i.e., the amount of useful data transmitted

divided by the total amount of data transmitted.

162



Fairness describes how the available bandwidth is shared

among multiple users. We consider three different types of

fairness: (1) intra-fairness describes the resource distribution

between flows running the same congestion control algorithm;

(2) inter-fairness describes the resource distribution between

flows running different congestion control algorithms, and

(3) RTT-fairness describes the resource distribution between

flows having different RTTs. Fairness is represented by Jain’s

index [37]. This index is based on the throughput and indicates

how fair the available bandwidth at the bottleneck is shared

between all flows present. This fairness index ranges from 1/n
(worst case) to 1 (best case), where n is the number of flows.

B. Experiment setup

Each server in our testbed has a 64-bit Quad-Core Intel

Xeon CPU running at 3GHz with 4GB of main memory and

has 6 independent 1 Gbps NICs. Each server can play the

role of a 6-degree networking node. All nodes run Linux

with kernel version 4.13 with the txqueuelen set to 1000, and

were connected as shown in Fig. 2 with degree 1 ≤ n ≤ 4
(consequence of the limited number of NICs per server in

the testbed). Given that the performance of congestion control

algorithms is affected by the bottleneck link on the path,

such a simple topology is sufficient for our purposes. The

maximum bandwidth and the bottleneck (between s1 and s2)

was limited to a pre-configured value (100Mbps in the case

of TCP and 10Mbps in the case of QUIC to make sure

that the sending rate of the end-user applications is enough

to saturate the bottleneck link) with the use of ethtool. To

1

Cn

C1

2

S1

Sn

. .. .

. .

Bandwidth of the bottleneck
Clients Servers

Fig. 2: Experiment topology.

perform measurements, we rely on tshark, iperf, QUIC client

and server (available in the Chromium project [38]) and socket

statistics. From traffic traces (before and after the bottleneck),

we calculate the metrics described in Sec. III-A. All the values

are averaged per flow, using a configurable time interval. We

consider the following two scenarios:

BW scenario. Each analyzed algorithm is compared to itself

and all others. Host Ci generates TCP flows towards servers

running at Si using different congestion control algorithms.

RTT scenario with flows having different RTTs. The

purpose of this scenario is to test the RTT-fairness of different

congestion control algorithms. In addition to the setup of the

previous scenario, the delay at links between Si and node 2

is artificially increased using Linux TC (adding 0− 400ms).

We ran these scenarios five times. For all of them, the

results we observe lead to qualitatively similar interactions,

as presented in Sections III-C and III-D.

C. Results: BW scenario

Intra-Fairness. Delay-based and loss-based algorithms

have the best intra-fairness properties, with an average fairness

index within 0.94 − 0.95 (Table I). Fig. 3 shows that Jain’s

index is always close to 1, indicating that all present flows

receive an equal share of the resources. In addition, delay-

based algorithms operate without filling the buffers, in contrast

to the loss-based algorithms that periodically fill the buffers

and drop packets (Fig. 3). Further, the convergence time of

loss-based algorithms is higher (≈ 20 s, compared to 5s
needed for 2 Vegas flows) and their throughput oscillates the

most from all the evaluated approaches (Fig. 3). When the

number of Cubic flows increases to 4, bandwidth oscillations

increase as well, and fairness decreases to 0.82 [4].

In contrast, hybrid-based algorithms (BBR) unexpectedly

had the worst intra-fairness properties. Fig. 3 shows that they

rarely converge to the same bandwidth, but oscillate between

30 Mbps and 70 Mbps (every probeRTT phase), even in

scenarios in which they claim a similar share of the available

resources on average. The flow that measures a higher RTT

adopts a more aggressive approach and claims more resources,

even if the measured RTT difference is very small (≤ 0.5ms).

Hence, they are not particularly stable. Unexpectedly, when the

number of flows increases to 4, the fairness index improves,

and although oscillations go down they are still present.

Inter-Fairness. As expected, flows that use delay-based

algorithms experience a huge decrease in throughput if they

share the bottleneck with loss-based flows (Fig. 4). This is

because they detect congestion earlier, at the point when

the queues start to fill. Loss-based algorithms on the other

hand continue to increase their sending rate as no loss is

detected. This increases the observed RTT (Fig. 3) of all flows,

triggering the delay-based flow to back off [19], [20].

A similar behaviour is observed when a bottleneck is

shared between flows from a hybrid and a delay-based al-

gorithm: BBR outperforms Vegas. However, the difference in

the throughput is less significant than the one observed in

the previous scenario, with the Vegas flow claiming almost

40Mbps on average (Table I). When we increase the number

of Vegas or BBR flows at the bottleneck to four, the new

flows increase their bandwidth at the expense of the BBR

flow, reducing its share from 50Mbps down to 20Mbps, and

increasing the fairness index to 0.9 − 0.94 [4]. This is a

consequence of the fact that BBR tries to operate without

filling the queues, allowing the delay-based algorithm to grow

and claim more bandwidth. Thus, we conclude that, in contrast

to loss-based algorithms, delay-based algorithms can co-exist

with hybrid-based ones.

When the bottleneck is shared between a hybrid and a

loss-based algorithm, Cubic outperforms BBR, reducing its

share of resources to as little as 8% on average (Table I),

confirming results from [39]. The fairness index at the start of

the connection is very low as Cubic claims all the available

bandwidth at the expense of the BBR flow. After the Cubic

flow fills the buffers, BBR measures an increased RTT and

163



0 20 40 60
0

50

100

150

200

t [s]

R
T

T
[m

s]

Cubic Cubic

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
h
ro

u
g
h
p
u
t
[b
p
s] Cubic Cubic

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
d
ex

2xCubic

0 20 40 60
0

1

2

3

4

t [s]

R
T

T
[m

s]

Vegas Vegas

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
h
ro

u
g
h
p
u
t
[b
p
s] Vegas Vegas

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
d
ex

2xVegas

0 20 40 60
0

2

4

6

8

t [s]

R
T

T
[m

s]

BBR BBR

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
h

ro
u

g
h

p
u

t
[b
p
s] BBR BBR

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
d

ex

2xBBR

Fig. 3: BW scenario: Comparison of average RTT, average throughput, and fairness index for representatives of the congestion

control algorithm classes groups in case the link is shared by 2 flows using the same algorithm (time unit 300ms).

TABLE I: BW scenario with 2 flows: Different metrics for representatives of the three congestion control algorithm groups

(calculated for 5 different runs).

Protocol Group Algorithm Average Average Average Average Average Average
goodput goodput ratio RTT sending rate throughput Jain index
[Mbps] [%] [#packets] [ms] [Mbps] [Mbps]

TCP

Loss- vs. Loss-based
Cubic 44.98 93.57 76.65 48.77 46.59

0.95
Cubic 43.15 93.78 78.32 50.98 46.59

Delay- vs. Delay-based
Vegas 43.81 94.81 1.66 48.65 45.47

0.94
Vegas 42.72 94.76 1.68 49.79 44.38

Hybrid vs. Hybrid
BBR 44.98 92.32 3.21 52.18 46.70

0.86
BBR 42.72 94.39 3.24 46.89 44.36

Loss-based vs. Hybrid
Cubic 82.29 94.27 70.37 90.91 85.05

0.59
BBR 7.56 88.86 174.38 8.87 7.89

Loss- vs. Delay-based
Cubic 87.73 94.34 67.16 97.30 90.66

0.52
Vegas 1.74 91.57 139.79 2.00 1.82

Delay-based vs. Hybrid
Vegas 38.37 94.34 4.55 37.31 39.83

0.84
BBR 48.56 94.68 4.25 61.65 50.37

adopts, as a consequence, a more aggressive approach (Fig. 3).

However, packet loss triggers Cubic’s back-off mechanism, al-

lowing BBR to measure a lower RTT estimate. Consequently,

BBR reduces its rate, allowing the Cubic flow to claim more

bandwidth again. Moreover, when we increase the number of

Cubic flows to three, the throughput of the BBR flow drops

close to zero. Similarly, even three BBR flows are not able

to compete with one Cubic flow, with each of them claiming

approximately 5% of the total bandwidth on average [4].

Delay. Even if one loss-based algorithm is present at the

bottleneck, the observed delay is determined by it, nullifying

the advantages of delay-based and hybrid algorithms, namely

the prevention of the queue buildup. BBR, as well as Vegas,

which claim to be able to operate with a small RTT, suffer

from a huge increase in average RTT (by more than 100 ms,

Table I) when competing with Cubic (compared to 1 − 5ms
without Cubic). However, when a link is shared between a

hybrid and a delay-based flow, both of them are able to

maintain a low RTT. In such scenarios, hybrid algorithms, such

as BBR, due to their more aggressive approach compared to

164



0 20 40 60
0

100

200

300

t [s]

R
T

T
[m

s]
BBR Cubic

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
h
ro

u
g
h
p
u
t
[b
p
s]

BBR Cubic

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
d
ex

BBR & Cubic

0 20 40 60
0

100

200

300

t [s]

R
T

T
[m

s]

Vegas Cubic

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
h
ro

u
g
h
p
u
t
[b
p
s]

Vegas Cubic

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
d
ex

Vegas & Cubic

0 20 40 60
0

2

4

6

8

t [s]

R
T

T
[m

s]

Vegas BBR

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
h

ro
u

g
h

p
u

t
[b
p
s] Vegas BBR

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
d

ex

BBR & Vegas

Fig. 4: BW scenario: Comparison of average RTT, average throughput and fairness index for representatives of the congestion

control algorithm groups in case the link is shared by 2 flows using different algorithms (time unit 300ms).

delay-based algorithms, determine the RTT. Vegas flows, as

a consequence, suffer from a small increase in RTT (from

1.68ms to 4.55ms, Table I).

Summary. In terms of fairness, the only combination that

works well together is delay and hybrid algorithms. In such

a scenario, delay is low and the throughput fairly shared, the

more flows the fairer the distribution of resources. Hybrid, as

well as delay-based algorithms, suffer from a huge increase in

the observed delay if even one loss-based algorithm is present

at the bottleneck making them unusable in typical networks

consisting of many different flows. We observe that the most

popular TCP flavour, Cubic, is prone to oscillation and has a

high convergence time (≈ 20s). Further, we observe that BBR

is not stable, reacting to very small changes in the observed

RTT, which was not previously reported in the literature.

D. Results: RTT scenario

We observe RTT-fairness issues for all three groups of

algorithms. Even though loss-based algorithms such as Cubic

claim good RTT-fairness properties, they favour the flow with

a lower RTT [40]. This is most noticeable when analyzing

two Cubic flows in Fig. 5. Even when the number of flows in-

creases to 4 (Fig. 6), the flow with the lowest RTT immediately

claims all the available resources, leaving less than half to the

other flows in the first 30 s. Several improvements addressing

this problem, such as TCP Libra [32] have been proposed.

However, current kernel implementations do not capture these

improvements.

The fairness index for delay-based algorithms slowly in-

creases over time, but due to a very conservative congestion

avoidance approach of Vegas, even after 60s, flows do not

converge (Fig. 6). When we increase the number of Vegas

flows to four, the dynamics at the bottleneck becomes more

complex with the newest flow (with the highest RTT) claiming

the largest share of resources at the end (Fig. 6). Moreover,

contrary to the previous scenarios, in the slow start phase,

Vegas flows fill the bottleneck queue and the observed queuing

delay increases to 70ms. However, after 30s the queues are

drained, fairness improves, and the observed queuing delay is

very low for all flows (2− 3ms, Fig. 6).

Hybrid-based algorithms, such as BBR, favour the flow

with the higher RTT, confirming results from [33], [39].

The flow with a higher RTT overestimates the bottleneck

link, claiming all the available resources and increasing the

queuing delay (Fig. 5) by a factor of more than 10 (from

≈ 4ms to ≈ 50ms). Moreover, when we increase the number

of BBR flows to four, contrary to expectations, the average

RTT increases significantly (by a factor of almost 30) reaching

values comparable to the ones observed by the loss-based

algorithms in the same scenario although only BBR flows were

present at the bottleneck (Fig. 6, Table III).

Summary. We observe that RTT-fairness is poor for all

165



0 20 40 60
0

200

400

600

t [s]

R
T

T
[m

s]
2 Cubic flows

0ms 200ms

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
h
ro

u
g
h
p
u
t
[b
p
s]

2 Cubic flows

0ms 200ms

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
d
ex

2 Cubic flows

0 20 40 60
0

100

200

t [s]

R
T

T
[m

s]

2 Vegas flows

0ms 200ms

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
h
ro

u
g
h
p
u
t
[b
p
s]

2 Vegas flows

0ms 200ms

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
d
ex

2 Vegas flows

0 20 40 60
0

100

200

300

t [s]

R
T

T
[m

s]

2 BBR flows

0ms 200ms

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
h

ro
u

g
h

p
u

t
[b
p
s]

2 BBR flows

0ms 200ms

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
d

ex

2 BBR flows

Fig. 5: RTT scenario: Comparison of average RTT, average throughput, and fairness index for representatives of the congestion

control algorithm groups in the case the link is shared by 2 flows using the same algorithm (time unit 300ms).

TABLE II: RTT scenario: Different metrics for representatives of the congestion control algorithm groups in case the link is

shared by two flows using the same algorithm (calculated for 5 different runs).

Protocol Group Algorithm Average Average Average Average Average Average
goodput goodput ratio RTT sending rate throughput Jain index
[Mbps] [%] [#packets] [ms] [Mbps] [Mbps]

TCP

Loss- vs. Loss-based
Cubic(0ms) 65.67 94.07 233.09 75.47 67.88

0.76
Cubic(200ms) 21.88 93.80 435.53 25.36 22.92

Delay- vs. Delay-based
Vegas(0ms) 14.99 94.21 32.03 18.91 15.62

0.66
Vegas(200ms) 72.60 94.31 228.96 81.48 75.08

Hybrid vs. Hybrid
BBR(0ms) 8.90 91.98 50.08 9.87 9.24

0.56
BBR(200ms) 79.54 94.39 249.56 90.97 82.1

groups of algorithms. Delay-based algorithms are the only

ones that can maintain a low delay compared to the other two

groups. However, they still do not converge towards their fair

share. Loss-based algorithms such as Cubic perform poorly,

contrary to expectations and their own claims, favouring flows

with lower RTTs. When loss-based algorithms converge to a

fair share, the convergence time is so slow that the average

fairness index is still low (0.69 on average). Finally, hybrid

algorithms such as BBR suffer from significant dynamics in

the sharing among its own flows, favoring those with higher

RTT and significantly increasing the queuing delay. Hence, we

observe that even when only BBR flows are present on the

bottleneck, the claim of being able to operate without filling

the buffers is not true.

E. Results: QUIC

When QUIC is used with different congestion control algo-

rithms, we observe similar interactions as earlier. With BBR,

we observe the same RTT-unfairness properties as with the

TCP BBR, which always favours the flows with a higher RTT

(with an average fairness index of 0.59). Similarly, QUIC with

Cubic always favours the flow with a lower RTT. However, the

difference between the throughput of the two QUIC Cubic

flows is much smaller than the one observed for the TCP

equivalent, with an average fairness index of 0.93. In all our

QUIC scenarios where hybrid (BBR) and loss-based (Cubic)

flows compete, Cubic outperforms BBR. Over time, as QUIC

BBR flows detect a higher RTT and adopt a more aggressive

166



0 20 40 60
0

200

400

t [s]

R
T

T
[m

s]
4 Cubic flows

50ms 100ms
150ms 200ms

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
h
ro

u
g
h
p
u
t
[b
p
s]

4 Cubic flows

50ms 100ms
150ms 200ms

0 20 40 60

0.4

0.6

0.8

1

t [s]

Ja
in

in
d
ex

4 Cubic flows

0 20 40 60
0

200

400

t [s]

R
T

T
[m

s]

4 Vegas flows

50ms 100ms
150ms 200ms

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
h
ro

u
g
h
p
u
t
[b
p
s]

4 Vegas flows

50ms 100ms
150ms 200ms

0 20 40 60

0.4

0.6

0.8

1

t [s]

Ja
in

in
d
ex

4 Vegas flows

0 20 40 60
0

200

400

t [s]

R
T

T
[m

s]

4 BBR flows

50ms 100ms
150ms 200ms

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
h

ro
u

g
h

p
u

t
[b
p
s]

4 BBR flows

50ms 100ms
150ms 200ms

0 20 40 60

0.4

0.6

0.8

1

t [s]

Ja
in

in
d

ex

4 BBR flows

Fig. 6: RTT scenario: Comparison of average RTT, average throughput, and fairness index for representatives of the congestion

control algorithm classes in case the link is shared by 4 flows using the same algorithm (time unit 300ms).

TABLE III: RTT scenario: Different metrics for representatives of the congestion control algorithm classes in case the link is

shared by four flows using the same algorithm (calculated for 5 different runs).

Protocol Group Algorithm Average Average Average Average Average Average
goodput goodput ratio RTT sending rate throughput Jain index
[Mbps] [%] [#packets] [ms] [Mbps] [Mbps]

TCP

Loss-based

Cubic(50ms) 47.48 93.86 216.60 53.66 49.59

0.69
Cubic(100ms) 15.32 92.39 264.99 17.71 16.09
Cubic(150ms) 11.70 91.62 316.87 13.62 12.32
Cubic(200ms) 13.68 92.33 368.14 15.78 14.39

Delay-based

Vegas(50ms) 27.32 92.98 94.50 31.09 28.54

0.62
Vegas(100ms) 41.85 93.88 144.11 47.13 43.63
Vegas(150ms) 7.50 90.80 196.87 8.62 7.90
Vegas(200ms) 11.57 91.47 245.18 13.22 12.16

Hybrid

BBR(50ms) 7.11 88.01 203.63 42.56 7.44

0.63
BBR(100ms) 15.23 91.61 253.49 21.43 16.06
BBR(150ms) 22.20 93.59 302.70 18.81 23.45
BBR(200ms) 42.39 94.18 353.22 15.97 44.70

approach, BBR grabs more bandwidth at the expense of the

Cubic flows. However, this process is slow and the throughput

of the BBR flow remains low. Detailed measurements of QUIC

can be found in the extended version of this paper [4].

IV. CONCLUSION

After dividing existing congestion control algorithms into

three groups (loss-based algorithms, delay-based algorithms,

and hybrid algorithms), we studied their interactions.

We observed multiple fairness issues, among flows of the

same group, across different groups, as well as when flows

having different RTTs were sharing a bottleneck link. We

found that delay-based, as well as hybrid algorithms, suffer

from a decrease in performance when competing with flows

from the loss-based group, making them unusable in a typical

network where the majority of flows will rely on a loss-based

algorithm. Not only do they get an unfair share of the available

bandwidth, but they also suffer from a huge increase in the

observed delay when the loss-based algorithms fill the queues.

167



The only combination that worked well together was delay and

hybrid algorithms: the observed RTT was low and resources

shared fairly (the more flows the fairer the distribution of

resources). Finally, we found that hybrid algorithms, such as

BBR, are very sensitive to changes in the RTT, even if that

difference is very small (≤ 0.5ms). They not only favour the

flow with a higher RTT at the expense of the other flows, but

they also cannot maintain a low queuing delay as promised

even if they are the only flows present in the network.

Our work therefore shows that to support applications that

require low latency, a good congestion control algorithm on

its own won’t be enough. Indeed, guaranteeing that flows of

a given group (in terms of type of congestion control) will

receive their expected share of resources, requires that resource

isolation be provided between the different groups.

REFERENCES

[1] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” Queue, vol. 14, no. 5,
pp. 20–53, 2016.

[2] M. Hock, F. Neumeister, M. Zitterbart, and R. Bless, “TCP LoLa:
Congestion Control for Low Latencies and High Throughput,” in 2017
IEEE 42nd Conference on Local Computer Networks (LCN), 2017, pp.
215–218.

[3] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “TIMELY: RTT-based
Congestion Control for the Datacenter,” pp. 537–550, 2015.

[4] B. Turkovic, F. A. Kuipers, and S. Uhlig, “Fifty shades of congestion
control: A performance and interactions evaluation,” arXiv preprint
arXiv:1903.03852, 2019.

[5] J. Postel, “Transmission control protocol specification,” RFC 793, 1981.
[6] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,” RFC

5681 (Draft Standard), Internet Engineering Task Force, September
2009. [Online]. Available: http://www.ietf.org/rfc/rfc5681.txt

[7] S. Floyd, “HighSpeed TCP for large congestion windows,” Tech. Rep.,
2003.

[8] D. Leith and R. Shorten, “H-TCP: TCP for high-speed and long-distance
networks,” in Proceedings of PFLDnet, vol. 2004, 2004.

[9] T. Kelly, “Scalable TCP: Improving performance in highspeed wide area
networks,” ACM SIGCOMM computer communication Review, vol. 33,
no. 2, pp. 83–91, 2003.

[10] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, “TCP
westwood: Bandwidth estimation for enhanced transport over wireless
links,” in Proceedings of the 7th annual international conference on
Mobile computing and networking. ACM, 2001, pp. 287–297.

[11] L. A. Grieco and S. Mascolo, “Performance evaluation and comparison
of Westwood+, New Reno, and Vegas TCP congestion control,” ACM
SIGCOMM Computer Communication Review, vol. 34, no. 2, pp. 25–38,
2004.

[12] K. Yamada, R. Wang, M. Y. Sanadidi, and M. Gerla, “TCP westwood
with agile probing: dealing with dynamic, large, leaky pipes,” in
2004 IEEE International Conference on Communications (IEEE Cat.
No.04CH37577), vol. 2, June 2004, pp. 1070–1074 Vol.2.

[13] D. Kliazovich, F. Granelli, and D. Miorandi, “Logarithmic window
increase for TCP Westwood+ for improvement in high speed, long
distance networks,” Computer Networks, vol. 52, no. 12, pp. 2395–2410,
2008.

[14] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
(BIC) for fast long-distance networks,” in INFOCOM 2004. Twenty-third
AnnualJoint Conference of the IEEE Computer and Communications
Societies, vol. 4. IEEE, 2004, pp. 2514–2524.

[15] C. Caini and R. Firrincieli, “TCP Hybla: a TCP enhancement for het-
erogeneous networks,” International journal of satellite communications
and networking, vol. 22, no. 5, pp. 547–566, 2004.

[16] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74, 2008.

[17] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-host
congestion control for TCP,” IEEE Communications surveys & tutorials,
vol. 12, no. 3, pp. 304–342, 2010.

[18] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, TCP Vegas: New
techniques for congestion detection and avoidance. ACM, 1994,
vol. 24, no. 4.

[19] G. Hasegawa, K. Kurata, and M. Murata, “Analysis and improvement of
fairness between TCP Reno and Vegas for deployment of TCP Vegas to
the Internet,” in Proceedings 2000 International Conference on Network
Protocols, Nov 2000, pp. 177–186.

[20] K. Srijith, L. Jacob, and A. L. Ananda, “TCP Vegas-A: Improving the
performance of TCP Vegas,” Computer communications, vol. 28, no. 4,
pp. 429–440, 2005.

[21] C. Jin, D. Wei, S. H. Low, J. Bunn, H. D. Choe, J. C. Doylle,
H. Newman, S. Ravot, S. Singh, F. Paganini, G. Buhrmaster, L. Cottrell,
O. Martin, and W. chun Feng, “FAST TCP: from theory to experiments,”
IEEE Network, vol. 19, no. 1, pp. 4–11, Jan 2005.

[22] S. Belhaj and M. Tagina, “VFAST TCP: An improvement of FAST
TCP,” in Computer Modeling and Simulation, 2008. UKSIM 2008. Tenth
International Conference on. IEEE, 2008, pp. 88–93.

[23] J. Sing and B. Soh, “TCP New Vegas: improving the performance
of TCP Vegas over high latency links,” in Network Computing and
Applications, Fourth IEEE International Symposium on. IEEE, 2005,
pp. 73–82.

[24] C. P. Fu and S. C. Liew, “TCP Veno: TCP enhancement for transmission
over wireless access networks,” IEEE Journal on selected areas in
communications, vol. 21, no. 2, pp. 216–228, 2003.

[25] R. King, R. Baraniuk, and R. Riedi, “TCP-Africa: An adaptive and fair
rapid increase rule for scalable TCP,” in INFOCOM 2005. 24th Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, vol. 3. IEEE, 2005, pp. 1838–1848.

[26] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A Compound TCP
Approach for High-Speed and Long Distance Networks,” in Proceed-
ings IEEE INFOCOM 2006. 25TH IEEE International Conference on
Computer Communications, 2006, pp. 1–12.

[27] A. Baiocchi, A. P. Castellani, and F. Vacirca, “YeAH-TCP: yet another
highspeed TCP,” in Proc. PFLDnet, vol. 7, 2007, pp. 37–42.

[28] S. Liu, T. Başar, and R. Srikant, “TCP-Illinois: A loss-and delay-based
congestion control algorithm for high-speed networks,” Performance
Evaluation, vol. 65, no. 6-7, pp. 417–440, 2008.

[29] H. Shimonishi and T. Murase, “Improving efficiency-friendliness trade-
offs of TCP congestion control algorithm,” in Global Telecommunica-
tions Conference, 2005. GLOBECOM’05. IEEE, vol. 1. IEEE, 2005,
pp. 5–pp.

[30] K. Kaneko, T. Fujikawa, Z. Su, and J. Katto, “TCP-Fusion: a hybrid con-
gestion control algorithm for high-speed networks,” in Proc. PFLDnet,
vol. 7, 2007, pp. 31–36.

[31] H. Shimonishi, T. Hama, and T. Murase, “TCP-adaptive reno for
improving efficiency-friendliness tradeoffs of TCP congestion control
algorithm,” in Proc. PFLDnet. Citeseer, 2006, pp. 87–91.

[32] G. Marfia, C. Palazzi, G. Pau, M. Gerla, M. Sanadidi, and M. Roccetti,
“Tcp libra: Exploring rtt-fairness for tcp,” in International Conference
on Research in Networking. Springer, 2007, pp. 1005–1013.

[33] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and
G. Carle, “Towards a Deeper Understanding of TCP BBR Congestion
Control,” in IFIP Networking 2018, Zurich, Switzerland, May 2018.

[34] M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of BBR
congestion control,” in 2017 IEEE 25th International Conference on
Network Protocols (ICNP), Oct 2017, pp. 1–10.

[35] S. Ma, J. Jiang, W. Wang, and B. Li, “Towards RTT Fairness of
Congestion-Based Congestion Control,” CoRR, vol. abs/1706.09115,
2017. [Online]. Available: http://arxiv.org/abs/1706.09115

[36] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “{PCC}:
Re-architecting congestion control for consistent high performance,”
in 12th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 15), 2015, pp. 395–408.

[37] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A Quantitative Measure
of Fairness and Discrimination,” Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA, 1984.

[38] “The chromium projects: Chromium,” https://www.chromium.org/
Home, accessed: 04-03-2019.

[39] M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of bbr
congestion control,” in 2017 IEEE 25th International Conference on
Network Protocols (ICNP). IEEE, 2017, pp. 1–10.

[40] T. Kozu, Y. Akiyama, and S. Yamaguchi, “Improving rtt fairness on
cubic tcp,” in 2013 First International Symposium on Computing and
Networking, Dec 2013, pp. 162–167.

168


