
Tackling Mobile Traffic Critical Path Analysis
With Passive and Active Measurements

Gioacchino Tangari
University College London

gioacchino.tangari.14@ucl.ac.uk

Diego Perino
Telefonica Research

diego.perino@telefonica.com

Alessandro Finamore
O2 - Telefonica UK

alessandro.finamore1@telefonica.com

Marinos Charalambides
George Pavlou

University College London
firstname.lastname@ucl.ac.uk

Abstract—Critical Path Analysis (CPA) studies the delivery of
webpages to identify page resources, their interrelations, as well
as their impact on the page loading latency. Despite CPA being a
generic methodology, its mechanisms have been applied only to
browsers and web traffic, but those do not directly apply to study
generic mobile apps. Likewise, web browsing represents only a
small fraction of the overall mobile traffic. In this paper, we take
a first step towards filling this gap by exploring how CPA can be
performed for generic mobile applications. We propose Mobile
Critical Path Analysis (MCPA), a methodology based on passive
and active network measurements that is applicable to a broad
set of apps to expose a fine-grained view of their traffic dynamics.
We validate MCPA on popular apps across different categories
and usage scenarios. We show that MCPA can identify user
interactions with mobile apps only based on traffic monitoring,
and the relevant network activities that are bottlenecks. Overall,
we observe that apps spend 60% of time and 84% of bytes on
critical traffic on average, corresponding to +22% time and +13%
bytes than what observed for browsing.

I. INTRODUCTION

Web browsing has been at the core of Internet services

since its early days. Significant attention has been devoted

to define metrics [6], [7], [21], [38] and methodologies [12],

[16], [21], [39] to unveil webpages content delivery dynamics,

and systems to optimize content delivery [8], [22], [24], [40].

These efforts are justified to improve end-users quality of

experience (QoE), while service providers are incentivized

to optimize their systems as their revenues are linked to

users QoE.1 Within these works, Critical Path Analysis (CPA)

studies the delivery of webpages to identify page resources,

their interrelations, and their impact on the user experience.

To this goal, CPA first identifies a delivery deadline capturing

the user QoE. For instance, the most widely adopted metric

is Page Load Time (PLT), the time elapsed between a user

clicking a URL and the browser triggering the onLoad event.

Once the deadline is defined, CPA investigates how each object

download, parsing, and rendering tasks can be a bottleneck for

the overall webpage delivery [8], [39], [40].

The role of browsing is however shifting, as it is not at the

center of user activities on mobile devices anymore. Recent

reports [5], [11] show that users spend less than 10% of their

time browsing, and more than 35% on apps different than

Facebook, streaming, gaming, and instant messaging. Such

1https://www.fastcompany.com/1825005/how-one-second-could-cost-
amazon-16-billion-sales

a trend is challenging also ad platforms where browsing on

mobile devices generates half the conversion rate of desk-

tops [10], [27]. This progressive change in user interests and

usage patterns is creating a gap in the literature, and CPA has

not been investigated in the context of generic mobile apps.

At high level, CPA is based on three requirements: i) define

a delivery deadline capturing the user QoE; ii) characterize

network activities and their relationships iii) identify which

activities impact the delivery deadline, thus users QoE.

To address the first requirement we need to answer the

questions: “Is any of the performance metrics defined for web
traffic suited as delivery deadline for generic mobile apps?
If not, how can we define a more suitable metric?”. The

literature has proposed several delivery deadlines. Despite PLT

is the commonly used metric, Above The Fold (AFT) [7] and

Speed Index (SI) [17] are considered superior. Both have been

introduced by Google and focus on rendering dynamics mea-

sured via a screen capture. Their costs is not negligible, and

confine their adoption only to properly instrumented devices.

Trying to solve AFT/SI constraints, the research community

has proposed a flourished set of alternatives (Yslow, Object

Index, DOMLoad, etc. [6]). As for PLT, these metrics are

easier to compute than AFT/SI, but they are all web traffic

specific. Conversely, AFT and SI do not make assumptions

on content or application internals, so they are applicable to

study generic mobile apps.

To understand traffic dynamics, identifying the right metric

is not enough. Indeed, within the boundaries of each delivery

deadline, a second question to address is “How to identify
which flows carry critical content for the overall delivery, with-
out knowing the properties of the content itself?”. For instance,

when considering web traffic, CPA leverages a dependency
graph where nodes represent the content downloaded while

edges map the interdependecies between objects and related

activities (e.g., parsing, script execution, rendering). While

extracting such graph can be trivial for webpages (e.g., parsing

webpages source code, or inspecting the document object

model - DOM), there is no guarantee that mobile content is

served in the form of a webpage. It is therefore not clear

how different network activities can be identified and how to

understand which ones impact the delivery deadline.

Finally, another critical question is: “Where is CPA per-
formed?”. The common choice in the literature [9], [32], [40]

is an in full control scenario (e.g., rooted device, apps source

978-3-903176-17-1 / © 2019 IFIP

105



code, operating system “modding”). In this case we can obtain

fine-grained info at the cost of limiting the study to a few

apps and users. Conversely, in the interest of enabling at-scale

studies, we aim to study how to reduce the amount of on-

device instrumentation in favour of a more traffic measure-

ments centric approach.

In this paper we present our journey in answering the

previous questions. We introduce a methodology, namely Mo-
bile Critical Path Analysis (MCPA), which combines passive

and active measurements and heuristics to: i) recognize user

interactions with applications; ii) extract network activities and

relevant delivery deadlines; iii) identify network traffic that

is critical for performance. To understand the effectiveness

of MCPA we follow the standard practice of using an instru-

mented device, and we dissect the traffic of 18 popular mobile

apps. Results show that via passive measurements we can

identify user engagement with more than 80% accuracy (§V).

We can also define delivery deadlines at least as good as PLT

for browsing, and with less than 1.3s of error with respect to

AFT in 75% of tests with other apps (§VI). By means of active

experiments, we can split traffic into “phases” likely related

to apps logic. Overall, we find that apps spend 60% of time

and 84% of bytes on critical traffic on average (§VII). Results

support the idea of a new class of tools based on network

measurements that ease the study of mobile apps. MCPA
source code and experimental datasets are publicly available

at https://github.com/finale80/mcpa.git

II. RELATED WORK AND CHALLENGES

Mobile traffic has mostly been studied at an aggregated level

(per-connection latency, throughput, etc.) [14], [23], [28], [33],

or focusing on specific protocols (e.g., DNS [4], SPDY [13],

MPTCP [19], [20]). Exceptionally, a few studies take a step

further. For instance, Panappticon [41] and AppInsight [32]

enable fine-grained view on users engagement with apps by

respectively tapping into Android components and studying

app binary files; QoE Doctor [9] focuses on performance is-

sues (e.g., high latency) by measuring radio resource allocation

and user interface interactions; Prometheus [2] tries to bridge

network metrics with user experience via machine learning.

Despite their merits, these tools focus on system information

(e.g., radio resources, operating system calls, multi-threading)

rather than digging into the role of content download and net-

work protocols dynamics. Conversely, studies focusing on web

traffic, despite being limited to this traffic class only, represent

the state of the art regarding how to dissect traffic dynamics.

In the remainder of this section we review this literature, and

we highlight the challenges in applying currently available

methodologies to study generic mobile traffic.

A. Performance metrics and delivery deadlines

Beside generic metrics such as latency and throughput, most

of the metrics in literature are defined in the context of web

traffic. We can split those into two classes: objective metrics
are delivery deadlines quantifying the time needed to obtain

some content [1], [13], [14], [25], [30]; subjective metrics are

defined considering direct feedback from end-users (e.g., mean

opinion score - MOS) and can include factors beyond content

delivery [6], [15], [22], [37]. For the purpose of this work, we

focus only on objective metrics, which we can further split

into time instant and time integral metrics.

Time instant metrics capture specific instants across the whole

events timeline of the content delivery. The most accurate

instant metric is Google’s AFT which measures the time at

which the content shown in the visible part of a webpage

is completely rendered [7]. This definition is not web traf-

fic specific, although the metric has been applied only to

browsing traffic. AFT computation requires a video screen

capture, and accurate video post-processing as the presence

of dynamic elements, such as animations and roll ads, can

introduce biases [37]. These costs limit the use of AFT for

small scale studies on instrumented devices. A recent work

shows that AFT could be approximated leveraging information

about objects position in a webpage, but this technique is

complex to be applied outside browsers [12]. Despite being

less accurate, PLT is the most widely adopted metric. Other

known deadlines are the Time To First Byte (TTFB), the

Time To First Pixel (TTFP), the time at which the parsing of

the Document Object Model (DOM) is completed. W3C has

also defined the navigation timing guidelines [38], a series

of specific events happening during a webpage rendering, but

their implementation may differ across browsers.

Time integral metrics capture the cumulative effect of events

until a specific point in the timeline is reached. The most

popular example is Google’s SI [17], which is obtained by

integrating over time the residual rendering left to reach the

AFT. Given the definition, SI suffers from the same limitations

AFT does. ObjectIndex and ByteIndex are two alternative

integral metrics that respectively capture the evolution of

objects and bytes delivery until the PLT [6].

Challenges: Metrics like PLT, which are based on internal

application “hooks”, cannot be applied to generic mobile

apps as there are no standard app/OS APIs to expose such

information. Differently, we argue that AFT and SI are valid
delivery deadline for generic mobile apps, as they capture the

actual screen rendering and do not depend on app internals

(§III). However, their measurement cost limits their adoption.

To enable at-scale measurement, a cheaper alternative is to opt

for metrics based on passive traffic measurement to compute

either on-device (e.g., via VPN solution to device “rooting”)

or in-network (e.g., via monitoring middle-boxes, already

common in mobile networks). We are therefore interested in

understanding what passive metrics are available, when they
can be applied, and what bias they introduce with respect to
AFT and SI.

B. Critical Path Analysis - CPA

CPA allows to dissect traffic dynamics within the boundaries

of a delivery deadline. It has been successfully applied to

understand web traffic, but methodologies and terminology can

vary. To the best of our knowledge, the first tool leveraging

CPA is WProf [39] (and its follow ups Shandian [40], and

106



WProfX [29]), a system that requires augmenting the browser

with a profiling engine to capture the dependency graph for

any given webpage. Such graph structures the activities related

to both rendering as well as content dependencies as visible in

the webpage DOM. Given a graph, WProf defines the critical

path as the longest path of activities such that reducing the

duration of any activity not on the critical path does not impact

the webpage PLT.

Recently, Google added Lighthouse [18] to the Chrome

devtools suite to automate webpages auditing. Lighthouse

offers a richer output than WProf, including different deadlines

(First Meaningful Painting, First CPU idle, SpeedIndex, etc.),

as well as reporting on resources that can block the rendering.

To some extent, Lighthouse output is an evolution of a

webpage download waterfall, i.e., a Gantt chart picturing the

evolution of the network communications triggered during a

webpage load. All modern browsers allow to dissect traffic

dynamics via a waterfall, and systems like KLOTSKI [8]

further build on waterfalls to find activity patterns invariant

to PLT performance.

Challenge: All these tools have slightly different critical path

definitions. They also heavily rely on “hooks” specific to

browsers internals, so they are unappealing to study mobile

apps. At the core of CPA there is the need to identify depen-

dencies between activities, and this is particularly challenging

to do only based on passive measurements. Hence, we want to

understand if active experiments, such as traffic throttling, can

complement passive measurements to create a more effective

methodology to spot traffic impacting the delivery deadline.

III. MCPA OVERVIEW

In this section, we introduce MCPA, our methodology to

perform CPA on generic mobile apps. First, MCPA identifies

activity windows, i.e., user interactions with apps. Each activ-

ity window is profiled to extract network activities, measure

the delivery deadline, and finally extract the critical traffic.

Activity windows (§V). In the context of web traffic, CPA

is performed for every webpage retrieval. This includes all

activities in response to directly typing a URL, refreshing

or aborting the load of a webpage, clicking a link within

a page, etc. For webpages, those activities can be easily

identified using APIs provided by browsers. However, such

mechanisms are not available to study generic mobile apps,

so alternative approaches need to be considered. One option

is to log user clicks, scrolls, currently displayed apps, and use

such detailed information to partition the traffic based on user

engagement. However, in an at-scale scenario, i.e., without

full control on the devices, logging actual user interactions

is almost impossible. Another option available is to apply

“cheaper” passive traffic analysis heuristics. In fact, mobile

traffic is bursty in nature [14], [35], i.e., the traffic presents

activity windows when the user is interacting with the phone,

interleaved by “idle” periods. An optimal split associates a

different user action to each window, but depending on traffic

conditions and apps characteristics this might not always be

possible. In §V we discuss heuristics for partitioning the traffic

based on passive measurements and we evaluate their accuracy.

Download waterfall and performance metrics (§VI). For

each activity window we need to define a set of metrics and

identify the activities involved in the delivery of contents. CPA

for webpages requires to instrument the browser to extract

all activities participating to both the download and rendering

tasks. However, to do the same for generic mobile apps would

require to either reverse engineer every app, or to instrument

their source code or the operative system [32], [41]. The

approach of MCPA is to focus only on network activities and to

report per-flow metrics for both transport (TCP, UDP, QUIC)

and application (DNS, HTTP, HTTPS/TLS, Facebook Zero -

FB0) protocols. These activities are visually represented in the

form of a download waterfall.

Once the different activities are identified, a delivery dead-

line should be set to capture the quality of experience per-

ceived by users. In a fully controlled environment, the best

available option is to apply AFT and SI (§II). We argue they

are still valid to study generic mobile traffic, but we are

not aware of any work in the literature proving this. Indeed,

the end of a user action on an app is generally marked by

visual changes, and this applies to apps wrapping browser(-

like) functionalities (e.g., social, news, e-commerce), as well

as to more interactive apps such as messaging ones (e.g., the

end of a message delivery triggers a check mark on screen).

However, both AFT and SI capture events related to rendering.

In an at-scale scenario screen recording is not possible, so

rather than looking for exact estimates of user experience, we

are interested in defining a proxy for AFT/SI, yet sufficient

to identify critical activities, based on passive measurements.

In §VI we discuss how MCPA creates waterfalls, we introduce

our delivery deadlines, and we compare them against AFT/SI.

Critical Path (§VII). Finally, MCPA identifies which activities

of a waterfall constitute the critical path. To do so, we rely on

active experiments, i.e., we observe how the delivery deadline

changes when throttling the traffic on a per-domain basis. In

other words, if a macroscopic delay is observed on the overall

delivery when delaying some traffic, we can conclude that a

domain, and the related traffic, is critical. The same principle

also applies to discover relationships among domains.

MCPA is built upon pcap2har, a Python open source

tool transforming pcap files into webpages HAR files,2 which

we modified and extended to handle generic mobile traffic

(including TLS/HTTPS, QUIC, FB0).

IV. DATASET

Mobile Apps. We select 18 popular apps across 7 categories:

Social (Twitter, Facebook, Instagram), Messaging (WhatsApp,

SnapChat, Messenger), News (CNN, BBC, Newsbreak), Geo-

based (Google Maps, Uber), Shopping (Letgo, Amazon), E-

mail (Microsoft Outlook, Gmail), and Streaming (Youtube,

Spotify, Soundcloud). We intentionally left out Games and

Productivity apps as they are known to generate little network

2https://github.com/andrewf/pcap2har

107



�0

�200

�400

�600

�800

�1000

�1200

00 10 20 30 40

vo
lu
m
e�
[k
B
]

time�[s]

clic
k
clic
k
clic
k

clic
k

sta
rtu
p

00 10 20 30 40

new
�

act
ivit
y

win
dow

�

if

b
�

=�2
00k

B

gr
ad
ie
nt

�
�
�

b

time�[s]

t�=�2.5s
t�=�5s

sta
rtu
p

Fig. 1. Activity windows: cumulative traffic when using the CNN app (left);
traffic gradient ∇b (right).

traffic, which is likely related to ads [3]. Conversely, we focus

on very popular apps according to both vendors [34], and 3rd

party3 rankings, to create a set of apps sufficiently diversified

to assess if there is a case to use passive and active analysis to

perform CPA. We further consider web browsing by studying

the top-50 Alexa websites (alexa-T50).

Traffic Scenarios. We consider two traffic scenarios:

app-startup and app-click. The former considers the traffic

generated in the first 60s after the app is launched.4 In

the latter, relevant user interaction sequences are emulated

based on common behaviors with the apps, such as select a

video/song, a news, scroll an email, send a chat message, etc.

To this end, we define ad-hoc patterns, each with multiple

input tap events uniformly distributed within [0,10s]. For

example, for the Letgo shopping app, the sequence is: search

by category; show top results; select random item; show price

and geographical location (all sequences listed in [36]).

Data collections. Our experiments are performed on a Nexus 5

running Android 6.0.1, and using a SIM of a European mobile

carrier. For each app and scenario we ran 10 experiments, with

the device instrumented to collect pcap files (via tcpdump) as

well as the video screen record (via Android screenrecord
utility5). For alexa-T50 dataset, we also use WProfX, Google

Lighthouse and Chrome’s devtools to extract performance

indicators and critical path information. In regards to video

recording, as shown in [6] the additional computation can bias

the experiments, artificially slowing the rendering. We verified

that this effect is not present in our results (details in [36]).

V. ACTIVITY WINDOWS

Mobile devices are constantly connected to the network, so

they generate a continuous stream of connections. Conversely,

user engagement is occasional, hence the connections stream

has to be processed in order to identify those time intervals

where users interact with the device. Ideally, the traffic stream

should be split so that each partition corresponds to a relevant

QoE-related user interaction. We call these partitions activ-
ity windows. Such windows can be obtained using granular

device-screen logs reporting on clicks, scrolls, etc., at the cost

of running tests only on a limited set of instrumented phones.

To enable large scale analysis built on network measure-

ments, the same split should be performed by looking at traffic

3https://www.androidrank.org
4This time is more than double the maximum startup time observed in our

experiments.
5https://developer.android.com/studio/command-line/adb

characteristics only. To this end, we can exploit the bursty

nature of mobile traffic, where bursts of bytes are likely to

correspond to user engagement with an app. For instance,

consider Fig 1(left) showing the cumulative traffic observed

when a user interacts with the CNN app. Notice how volume

abruptly increases in response to users actions. In this section

we investigate how and to what extent traffic bursts and idle

periods can be used to identify activity windows.

A. Partitioning policies.

We consider two possible policies to partition the traffic

generated by a mobile device.

Naı̈ve. The first policy relies on a single threshold to identify

“long” idle periods. That is, a connection is associated to a

new window if its traffic starts after an idle period longer than

αt, otherwise it belongs to the current window.

Gradient. A more refined policy creates a new window if a

“large” burst happens after a “long” idle period. To do so,

we combine two thresholds: αt and αb. We use αt to define

a sliding window where we monitor the gradient ∇b of the

volume. For instance, consider αt = 5s. All traffic in the first

5s is accumulated. Then, we progress the sliding window,

accumulating the traffic entering, and removing the one falling

outside the window. In this way ∇b has a positive slope when

traffic is exchanged, and negative (or no) slope for idle times.

Fig. 1(right) reports ∇b for αt = 2.5s and αt = 5s. Using

the gradient, we define a new activity window if we observe

at least αb bytes exchanged after an idle period of αt. For

instance, considering αb = 200kB, in Fig. 1(right) ∇b reaches

the threshold at 5.2s and 32s. However, we identify an activity

windows only at 32s as it is preceded by an idle larger than

αt = 2.5s (no windows found for αt = 5s).

B. Validation and sensitivity analysis

Our dataset contains detailed logs of the users click times,

each click corresponding to the beginning of a new activity

window. As such, for a given combination of thresholds, we

can quantify the accuracy of the partitioning by measuring the

Precision as the fraction of partitions detected by our policies

actually matching a click, and the Recall as the fraction of

clicks that are identified as activity windows by our policies.

For instance, in Fig. 1 Precision = 1.0 and Recall = 0.25.

Best policy. We find the naı̈ve policy being ineffective. In fact,

a small threshold (αt <1s) leads to over-splitting (high Recall,

but low Precision), while for larger values Recall and Precision

do not go above 50% (see [36] for details). Compared to naı̈ve,

the gradient policy, which considers bursts registered after idle

periods, significantly reduces the over-splitting. By selecting

αb = 5kB and αt = 1s, both Recall and Precision are kept

above 70%. We choose αb to be the median size of a single

transaction as observed in logs from a large European mobile

operator (see [36]), while αt = 1s is considered as a minimum

response time of a user engaging with mobile apps.

Further improvements. Performing a grid search to find

thresholds better than the ones selected based on our intuition

did not help. However, we found most of the misclassification

108



Fig. 2. TDT and TDI accuracy evaluation

are due to chat apps. Intuitively, as those apps typically ex-

change small messages (unless they are video/audio messages,

or images), αb = 5kB is too large. Indeed, applying αb =

0.25kB only for this app category leads to Recall = 85% and

Precision = 88% across all apps. Although these fine-grained

optimizations could be done on a per-app basis, we argue this

is unnecessary, and would be also challenging considering the

large numbers of apps currently available. In fact, even if our

analysis is not exhaustive, two pairs of thresholds cover a

very diversified set of apps. In order to select which pairs

of thresholds to use, we found that basic traffic classification

techniques, based on port numbers, IP addresses, or domain

names, are sufficient. For instance, chat applications use very

few (and specific) domains and/or ports (§VII).

Background traffic. One last aspect to consider is the impact

of “background” traffic (notifications, emails fetch, etc.) on

the windows partitioning accuracy. We collected several 1-

day long traces, mixing periods of activity with silence. We

observe that, while the gradient policy is still sensible to back-

ground traffic, those intervals (i.e., with no user interaction)

can be filtered out by looking at the pace at which activity

windows are generated. Intuitively, when the user is active,

multiple partitions are expected to be generated in a short time,

while this effect is significantly reduced when only background

traffic is present (see [36]).

Summary. Our results support the idea of identifying activity

windows via passive measurements. We stress that the gradient

policy is a heuristic, so not meant to be perfect. Its function

is to enable us to focus on traffic dynamics and CPA knowing

that the portion of the traffic under analysis is likely related

to user engagement, hence meaningful to be dissected.

VI. NETWORK WATERFALL AND METRICS

For each identified activity window, MCPA creates a down-

load waterfall detailing traffic dynamics and performance.

Network waterfall. MCPA extracts transport (L4) and appli-

cation (L7) per-flow metrics. At L4, it computes aggregated

statistics (e.g., total duration, bytes, RTT), as well as protocol

specific information (e.g., TCP, QUIC, FB0 handshake dura-

tion, IP addresses, ports). At L7, MCPA reports on HTTP trans-

actions (e.g., metadata from request and response headers),

TLS handshake (e.g., duration, if the handshake is full or fast,

SNI, ALP protocols), DNS (e.g., domain name, CNAMEs,

query resoution time). Moreover, each flow is split into bursts
by grouping packets when interleaved by more than 2 RTTs.

Fig. 3. Per-app instant metrics comparison.

All the metrics are then represented as a download waterfall,

a relevant visual aid to CPA (§VII).

Performance metrics. As discussed in §II, we consider AFT

and SI suitable to study mobile apps traffic. However, we

consider them only as baseline as we aim to avoid on-device

screen recording. We are instead interested in studying the

reliability of objective metrics based on passive traffic mea-

surements. We define the instant metric Transport Delivery
Time (TDT) as the time between the beginning of an activity

window and the 95th percentile of the whole volume ex-

changed in the window.6 We also define the equivalent integral
metric Transport Delivery Index (TDI) as

∫ TDT

0
1− xB(t)dt,

where xB(t) is the percentage of total volume exchanged in

the window up to time t. We highlight that TDI is similar to

the Object Index introduced in [6] using TDT instead of PLT

(recall that PLT does not apply for generic mobile apps §II). In

the remainder of the section we investigate the penalties TDT

and TDI introduce against the respective baselines AFT and SI.

We consider also PLT as reference for browsing performance.

A. Evaluation

Web Browsing. Fig. 2(left) reports the Cumulative Distribu-

tion Function (CDF) of the deltas AFT-TDT and SI-TDI for

alexa-T50 dataset. Both are well centered around zero, but

TDI is a better proxy of SI than TDT is for AFT. Notice

however that AFT-PLT presents a similar distribution as AFT-

TDT. In other words, if PLT is the most popular metric to

measure web performance, TDT is at least comparable. This

is further corroborated considering PLT-TDT which presents

a distribution well centered around zero.

Aggregate apps traffic. Fig. 2(right) reports the CDFs

of AFT-TDT and SI-TDI deltas for both app-startup and

app-click datasets. All curves are well centered around zero,

but app-startup CDFs present a heavier negative tail. This

resembles what was observed for browsing, i.e., at startup

more content is downloaded than what is required for the

visualization, so TDT and TDI can over-estimate rendering

deadlines. TDI is more sensible to this effect, while for 75%

of the experiments TDT generates a ±1.3s error at most.

Per-app traffic. To further investigate the deviations be-

tween instant metrics, Fig. 3 reports the deltas AFT-TDT

as a function of TDT for each individual app. Considering

app-startup (left plot), besides a few outliers, all apps present

similar behavior, with variable deadlines in absolute scale,

6We experimented with other percentiles too (see [36]), but the 95th resulted
the more robust to long tail effect (e.g., keep alive).

109



Fig. 4. Examples of download waterfall: YouTube (left); CNN (center); Twitter (right).

TABLE I
CRITICAL PATH TRAFFIC CHARACTERISTICS.

app-startup

fl. dom. vol.[kB] T[s] T break [%]

abs % abs % abs % abs % DNS TCP TLS Data

Twitter 13 38 1 13 33 79 4 77 0 14 18 68

Facebook 7 40 2 40 836 97 9 61 1 0.2 6.1 92.7

Instagram 16 56 2 25 1108 97 4 80 0 0.2 11.4 88.4

Whatsapp 2 100 1 100 4 100 1 100 9 6 0 85

Snapchat 10 80 4 50 2802 91 11 70 3 4 19 74

Messenger 5 57 3 50 86 72 2 63 0 12.5 19.3 68.2

CNN 10 59 2 13 25 31 3 38 15 15.8 3.8 65.4

BBC 6 75 2 50 98 96 1 21 0 29 0 71

NewsBreak 27 66 5 25 152 92 5 63 0 8 12 80

Gmaps 17 65 6 46 870 99 4 57 0 12 25 63

Uber 13 59 5 36 61 25 5 64 0 8 20 72

Letgo 10 56 3 30 715 97 1 18 6 6 25 63

Amazon 33 67 5 45 1490 96 7 84 0.4 7.8 22.8 69

Gmail 7 14 1 20 16 91 2 82 0 17.6 28.9 53.5

Outlook 4 57 2 50 20 91 2 79 3 10 22 65

Youtube 10 63 5 45 127 84 3 46 5.8 9 16 69.2

SoundCloud 10 43 2 20 715 99 8 76 0 6 16 78

Spotify 1 13 2 25 78 95 5 59 1 9 6 84

AVERAGE 11 56 3 38 513 85 4 64 2.5 9.7 15.1 72.7

Browsing 12 48 5 37 488 71 5.53 38 2.6 5.5 16 76

app-click

fl. dom. vol.[kB] T[s] T break [%]

abs % abs % abs % abs % DNS TCP TLS Data

1 13 1 25 29 96 19 44 0 0 0 100

2 40 2 67 1313 63 5 54 5 10 0.1 84

4 57 1 50 1538 90 2 50 0 0 0 100

1 100 1 100 1 100 1 100 0 0 0 100

2 22 1 33 194 75 6 17 2 4 3 91

3 60 2 40 20 79 10 35 0 1 1 98

3 25 2 40 69 82 1 55 0 3 0 97

4 36 2 67 105 92 1 67 0 22 0 78

19 43 7 78 96 20 3 73 0 7 6 87

3 60 2 100 870 98 2 52 0 0 0 100

3 43 1 50 13 11 5 85 0 0 0 100

5 100 2 100 65 100 2 100 0 1 5 94

21 34 4 36 1650 92 12 80 0 3 3 94

6 55 2 40 38 75 11 21 0 3 4 93

5 83 3 75 9 100 0 35 0 21 54 25

5 45 1 20 65 47 1 31 0 23 42 35

1 17 1 33 120 99 1 44 0 0 0 100

3 30 1 50 115 98 0 52 0 0 0 100

5 48 2 56 351 79 4 55 0 5 7 88

but TDT is triggered slightly after AFT as already observed

in Fig.2(right). For app-click (right plot) errors are further

reduced, with only Amazon showing larger penalties.

Summary. The analysis shows that metrics purely based on

passive traffic monitoring are a reasonable approximation of

AFT and SI, and at least as good as popular metrics such as

PLT. This brings visibility on apps dynamics when AFT and SI

cannot be measured, and more broadly they can significantly

simplify QoE/performance analysis. There are clearly some

corner cases and occasional outliers, as not all apps behave the

same, but our analysis shows that TDT and TDI are reasonable

heuristics to qualitatively capture delivery deadlines.

VII. CRITICAL PATH ANALYSIS

CPA tools for browsing define the critical path based on

a dependency graph capturing the relations between objects

downloaded (§II-B). This graph is constructed “passively”

exploiting the DOM built by the browser when rendering the

webpage; however this technique is not applicable to generic

mobile apps. Therefore, to discover critical traffic, MCPA uses

an “active” approach based on traffic throttling. We use the tc
utility to throttle one domain at a time to 1kb/s, and test the

impact on the activity window delivery deadline. In particular,

for each throttling scenario we perform 10 runs applying a p-

value test (with 0.05 as significance level) to accept or reject

the null hypothesis: a domain is critical if the deadline is

always delayed across runs. Likewise, a similar test is applied

to discover dependencies among domains (i.e., by delaying

domain A also domain B is delayed).

Overall, we define Critical Set (CS) as the set of domains

impacting the delivery deadline, and we create a dependency

graph among them. We define Critical Path (CP) as the whole

set of flows generated by the CS. In other words, similarly to

Lighthouse, MCPA CP is defined based only on network traffic,

but it captures the whole traffic activities of a flow, rather than

pinpointing specific objects/requests. It follows that the time
on CP is the sum of time intervals where at least 1 critical

flow is active. In the remainder of the section, we first present

some examples of CPA on specific apps. Then, we discuss

traffic properties across apps.

A. Dissecting individual apps traffic

Fig. 4 details the startup traffic dynamics for YouTube,

CNN, and Twitter apps. For each app, we stack 6 views of

the traffic: dependency graph, download waterfall, time on

CP, CDF of the bytes exchanged, and a film strip showing

the screen rendering progress. The dependency graphs show

only domains having at least one dependency. In the download

waterfall each row corresponds to a different flow (labeled with

domain and destination port). Horizontal lines show bursts

carried by flows (§VI), colored red if found critical (blue

otherwise), while dotted lines indicate idle periods. Saturated

colors reflect exchange of data, while pale ones correspond

to DNS and handshakes (TCP, TLS, or QUIC). Finally, two

vertical lines mark the AFT and TDT deadlines.

YouTube. Focusing on YouTube, the traffic before the AFT

is almost entirely critical. This is composed of a mix

of images (i.ytimg.com handles video thumbnails, while

yt3.ggpht.com handles user related content such as avatars),

control, and other structural elements of the app (e.g., fonts,

javascripts). The download idle times hint to rendering cycles

(fetch→process→render→iterate), as also confirmed by the

film strip showing a “dummy” loading screen used to hide

the actual rendering process. TDT is delayed due to video

pre-fetching [26]. This is confirmed by app-click, where we

observe the portion of video left being delivered on the already

opened flows when the playback is triggered (see [36]).

CNN. Differently from YouTube, the majority of the traf-

fic for the CNN app is not critical. After contacting cere-

110



Fig. 5. MCPA time on CP for dif-
ferent types of traffic.

Fig. 6. Comparing time on CP across
CPA tools.

bro.api.cnn.io (possibly a control domain), the app is “stalled”

for 3s by 3rd party and ads services communications, none

of which is critical. Finally the control goes back to cere-
bro.api.cnn.io which triggers the rest of the critical traffic (dy-
naimage.cdn.turner.com). As for YouTube, rendering phases

are possibly hidden by the loading screen, but more interesting

is the macroscopic impact of 3rd party traffic which accounts

for 55% of the overall deadline.

Twitter. The Twitter app instead has a very simple waterfall:

only 3 flows, all twitter related, with only 1 being critical. We

interpret this minimalist approach as an explicit design choice,

but it would be interesting to know if content sharding could

further reduce loading latency.

B. Critical traffic properties across apps

Table I summarizes the critical traffic properties for both

app-startup (left) and app-click (right). For each app we report

the number of critical flows, domains, bytes both in absolute

and percentage averaged across different runs. We also report

the time spent on the critical path (TC) and how this is spent

doing DNS, transport handshakes, and data transfers. Table

rows are grouped by app categories.

Traffic volume. On average, 56% (48%) of flows, 89% (79%)

of bytes are critical in app-startup (app-click). Differently from

what we expected, in absolute scale the volume of bytes is still

significant in app-click (351kB on average, almost 70% of the

average volume in app-startup). Considering domains, 38% are

critical in app-startup startup against 56% for app-click. There

are macroscopic differences between apps, but no visible pat-

terns within and between categories or scenarios. For instance,

Whatsapp is an “outlier” as all traffic is carried over 1-2 flows,

hence everything is critical. The only class that seems different

is web browsing, which presents 48% (71%) of critical flows

(bytes), -8% (-18%) with respect to apps startup.

Time on CP. For browsing also TC is lower, 38% against

63% (55%) in app-startup (app-click) as also detailed in Fig. 5.

On the other hand, for both browsing and apps TC is similar

in absolute scale (4-5s). In other words, despite the diversity

in the actions triggered, results suggest that the differences

in the critical traffic between startup and actual app usage

could be less pronounced that one might think. As expected,

data transfer has the largest impact on the critical path with

72.7% (88%) for app-startup (app-click). DNS is generally

small except for a few cases. Conversely, protocol handshakes

are heavier at startup (24.8% on average), but app-click shows

Fig. 7. Lighthouse critical path analysis.

unexpected bi-modal behaviour with either a heavy (e.g., 67%

YouTube, 10% Facebook) or negligible weight.

Content type analysis. Extracting keywords from the do-

mains, we split the traffic in 3 classes: ad-hoc (apps/websites

specific domains), cdn, and oth-serv (e.g., 3rd party services,

ad networks). We find that for apps (browsing) TC is split

into 68% (33%), 25% (51%), and 7% (15%), while volume is

split into 47% (25%), 52% (65%), and 1% (9%) for ad-hoc,

cdn, and oth-serv respectively. In other words, apps network

latency tends to gravitate towards app-specific domains. Those

are not necessarily responsible only for control logic as

they carry almost the same volume as CDNs. Conversely,

browsing content is likely served by CDNs. Considering oth-

serv, browsing spends 2× TC than apps, but downloads 9×
more volume than apps.

VIII. DISCUSSION AND CONCLUSION

MCPA aims to identify critical traffic generated by generic

mobile apps. A few other CPA tools for mobile apps have

been presented, but none of them are applicable to our intent

as they either require heavy on-device instrumentation or do

not dissect traffic dynamics [32], [41]. However, restricting

the focus to web browsing only, we can compare MCPA with

WProfX (the WProf version for mobile browsing) and Google

Lighthouse, both open sourced. Fig. 6 shows the CDF of the

fraction of time on CP for the three tools. We highlight that

for MCPA and Lighthouse, time on CP implicitly refers to only

network activities, while WProfX reports also on parsing and

rendering time, which we exclude for the comparison.

WProfX profiles the impact of webpages loading activities on

PLT. Notice the strong similarity of MCPA and WProfX CDFs,

with both tools reporting 38% of time on CP on average. This

implies that MCPA, even if based on traffic analysis only, is

comparable with an in-browser profiling engine.

Lighthouse reports the webpage Critical Request Chains
(CRCs) pinpointing to objects generating bottlenecks.7 As

visible in Fig. 6, Lighthouse reports a shorter time on CP

than both WProfX and MCPA. We found that MCPA generally

classifies a few more domains as critical than Lighthouse

(details reported in [36]), but the same is true for WProfX

too. This discrepancy is due to a design choice visible only

inspecting Lighthouse source code. Specifically, Lighthouse

marks objects as critical if they have a network priority higher

than medium (i.e., the browser schedules objects fetch early

on), and they are neither images, XML HTTP Request (XHR),

7https://developers.google.com/web/tools/lighthouse/audits/critical-request-chains

111



nor server push(ed) content. This results in a “constrained”

view of the traffic as reported for a subset of websites by

the strip-plots in Fig. 7: grey dots represent all requests; red

dots (left plot) mark critical objects; blue dots (right plot)

marks prioritized objects; vertical black lines mark the AFT.

Notice how Lighthouse is biased towards the first part of the

download, which possibly involves only “structural” properties

of the webpage rather than actual content.
Beside the fine-grained details, the tools comparison high-

lights a more subtle problem: the lack of standard methodolo-

gies to pinpoint what is critical, and how to perform root cause

analysis related to those bottlenecks. These goals go beyond

the purpose of our work, which instead addresses a prior and

more fundamental requirement: to ease the study of generic

mobile apps. We demonstrated that network measurements can

be effective and easier to adopt than rendering based metrics

such as AFT/SI. Moreover, our definition of critical path aims

to discover any critical network activity without any restriction

on the type, so to capture traffic dynamics as a whole. To test

MCPA we adopted the standard practice of an instrumented

device, with the intention to demonstrate that this might not

be necessary. This can open the doors to a new class of

tools easier to deploy than current state of the art techniques,

without significantly sacrificing accuracy. In this way, app

developers and mobile operators could better dissect traffic

dynamics (e.g., TCP/TLS handshake, TCP fast open [31], app-

specific protocols, control logic, or pre-fetching) by means of

at-scale measurement campaigns.

REFERENCES

[1] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Greenstein,
S. McDaniel, M. Piatek, C. Scott, M. Welsh, and B. Yin, “Flywheel:
Google’s data compression proxy for the mobile web,” in Proc. USENIX
NSDI, May 2015.

[2] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan,
“Prometheus: Toward quality-of-experience estimation for mobile apps
from passive network measurements,” in Proc. ACM HotMobile, 2014.

[3] M. Almeida, M. Bilal, A. Finamore, I. Leontiadis, Y. Grunenberger,
M. Varvello, and J. Blackburn, “Chimp: Crowdsourcing human inputs
for mobile phones,” in Proc. WWW, 2018.

[4] M. Almeida, A. Finamore, D. Perino, N. Vallina-Rodriguez, and
M. Varvello, “Dissecting dns stakeholders in mobile networks,” in Proc.
ACM CoNEXT, 2017.

[5] F. A. Blog, “U.s. consumers time-spent on mobile crosses 5
hours a day,” 2017, http://flurrymobile.tumblr.com/post/157921590345/
us-consumers-time-spent-on-mobile-crosses-5.

[6] E. Bocchi, L. De Cicco, and D. Rossi, “Measuring the quality of
experience of web users,” in Proc. SIGCOMM Internet-QoE, 2016.

[7] J. Brutlag, Z. Abrams, and P. Meenan, “Above the fold time: Mea-
suring web page performance visually,” https://conferences.oreilly.com/
velocity/velocity-mar2011/public/schedule/detail/18692, 2011.

[8] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and V. Sekar,
“Klotski: Reprioritizing web content to improve user experience on
mobile devices,” in Proc. USENIX NSDI, 2015.

[9] Q. A. Chen, H. Luo, S. Rosen, Z. M. Mao, K. Iyer, J. Hui, K. Sontineni,
and K. Lau, “Qoe doctor: Diagnosing mobile app qoe with automated
ui control and cross-layer analysis,” in Proc. ACM IMC, 2014.

[10] D. Collins, “Mobile conversion rates lag behind desktop,” 2017, https:
//grafik.agency/insight/mobile-conversion-rates/.

[11] S. Colwyn, “New consumer media consumption research,” 2014,
https://www.smartinsights.com/marketplace-analysis/customer-analysis/
consumer-media-device-use/.

[12] D. N. da Hora, A. Alemnew, C. Vassilis, R. Teixeira, and D. Rossi,
“Narrowing the gap between qos metrics and web qoe using above-the-
fold metrics,” in Proc. PAM, 2018.

[13] J. Erman, V. Gopalakrishnan, R. Jana, and K. Ramakrishnan, “Towards
a SPDYier Mobile Web?” in Proc. ACM CoNEXT, 2013.

[14] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin,
“A first look at traffic on smartphones,” in Proceedings of the ACM IMC,
2010.

[15] Q. Gao, P. Dey, and P. Ahammad, “Perceived performance of top retail
webpages in the wild: Insights from large-scale crowdsourcing of above-
the-fold qoe,” in Proc. SIGCOMM Internet-QOE, 2017.

[16] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin, “Detecting
cellular middleboxes using passive measurement techniques,” in Proc.
PAM, 2016.

[17] Google, “Speed Index,” https://sites.google.com/a/webpagetest.org/docs/
using-webpagetest/metrics/speed-index, 2008.

[18] Google, https://developers.google.com/web/tools/lighthouse/, 2017.
[19] B. Han, F. Qian, S. Hao, and L. Ji, “An anatomy of mobile web

performance over multipath tcp,” in Proc. ACM CoNEXT, 2015.
[20] B. Han, F. Qian, and L. Ji, “When should we surf the mobile web using

both wifi and cellular?” in Proc. Workshop on All Things Cellular, ser.
ATC ’16.

[21] T. Hofeld, F. Metzger, and D. Rossi, “Speed index: Relating the
industrial standard for user perceived web performance to web qoe,”
in QoMEX, 2018.

[22] C. Kelton, J. Ryoo, A. Balasubramanian, and S. R. Das, “Improving user
perceived page load time using gaze,” in Proc. USENIX NSDI, 2017.

[23] A. Le, J. Varmarken, S. Langhoff, A. Shuba, M. Gjoka, and
A. Markopolou, “AntMonitor: A System for Monitoring from Mobile
Devices,” in ACM C2B1D, 2015.

[24] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-M. Wang,
“Webprophet: Automating performance prediction for web services,” in
Proc. USENIX NSDI, 2010.

[25] Y. Ma, X. Liu, S. Zhang, R. Xiang, Y. Liu, and T. Xie, “Measurement
and analysis of mobile web cache performance,” in Proc. WWW, 2015.

[26] R. Mok, V. Bajpai, A. Dhamdhere, and k. claffy, “Revealing the Load-
balancing Behavior of YouTube Traffic on Interdomain Links,” in Proc.
PAM, 2018.

[27] Monetate, “Benchmarks and research - eq1,” 2018, https://info.monetate.
com/rs/092-TQN-434/images/EQ1-2018 First-Impressions.pdf.

[28] D. Naboulsi, M. Fiore, S. R., and R. S., “Large-scale mobile traffic
analysis: A survey,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 124–161, Oct. 2015.

[29] J. Nejati and A. Balasubramanian, “An in-depth study of mobile browser
performance,” in Proc. WWW, ser. WWW ’16, 2016.

[30] F. Qian, S. Sen, and O. Spatscheck, “Characterizing resource usage for
mobile web browsing,” in Proc. ACM MobiSys, 2014.

[31] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan, “Tcp
fast open,” in Proc. ACM CoNEXT, 2011.

[32] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and
S. Shayandeh, “Appinsight: Mobile app performance monitoring in the
wild,” in Proc. OSDI, 2012.

[33] J. P. Rula and F. E. Bustamante, “Behind the curtain: Cellular dns and
content replica selection,” in Proc. ACM IMC, 2014.

[34] Sandvine, “Global Internet Phenomena,” https://www.sandvine.com/
hubfs/downloads/phenomena/2018-phenomena-report.pdf, 2018.

[35] T. Stöber, M. Frank, J. Schmitt, and I. Martinovic, “Who do you sync
you are?: Smartphone fingerprinting via application behaviour,” in Proc.
ACM WiSec, 2013.

[36] G. Tangari, A. Finamore, D. Perino, M. Charalambides, and G. Pavlou,
“Technical report - Tackling Mobile Traffic Critical Path Analysis
With Passive and Active Measurements,” https://www.dropbox.com/sh/
rk853z5e49l1mjy/AADOvq19EQ05R5ZDK Jt0w1Ya?dl=0, 2019.

[37] M. Varvello, J. Blackburn, D. Naylor, and K. Papagiannaki, “EYEORG:
a platform for crowdsourcing web quality of experience measurements,”
in CONEXT, 2016.

[38] W3C, “Navigation timing level 2,” 2018, https://w3c.github.io/
navigation-timing/\#introduction.

[39] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“Demystifying page load performance with wprof,” in Proc. USENIX
NSDI, 2013.

[40] X. S. Wang, A. Krishnamurthy, and D. Wetherall, “Speeding up web
page loads with shandian,” in Proc. USENIX NSDI, 2016.

[41] L. Zhang, D. R. Bild, R. P. Dick, Z. M. Mao, and P. Dinda, “Panapp-
ticon: Event-based tracing to measure mobile application and platform
performance,” in Proc. CODES+ISSS, 2013.

112


