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Abstract—The deployment of LTE, while old news to developed
countries, is ongoing in developing countries with some starting
LTE deployments only a year ago. LTE is essential for developing
countries where broadband access is mostly available through
wireless connection. The process of LTE deployment is costly
and time consuming. Network operators attempt to minimize
both overheads. With the current challenges facing network
operators to acquire new sites, 4G deployment always depends on
reusing the already existing 2G/3G macro layer. In this paper,
we study the approach of rapid 4G deployment by analyzing
data from a major network operator in a developing country. In
particular, we look at network measurements from a single large
cluster right after LTE deployment. We analyze the impact of
the deployment approach on user throughput and find that LTE
throughput could be improved further for the majority of LTE
users in more than 50% of the studied cells by improving either
interference or coverage. We find that this is mainly because the
LTE system is more sensitive to interference when compared to
3G. Finally, we show a data-driven approach to detect the affected
cells and mitigate the issue through physical optimization, this
approach balances employed LTE transition best practices with
cost efficiency and rapid deployment.

I. INTRODUCTION

The deployment of 4G/LTE networks marked a historic tran-

sition in how people consumed digital content on their phone

[1]. This is especially critical for developing countries where

reliable and affordable broadband access might be limited to

cellular networks [2]. This transition is somewhat old news

in developed countries (e.g., US and Japan had their initial

deployments in 2010 [3]). However, in developing countries

this transition is fairly recent and ongoing (e.g., El Salvador

[4] and Egypt [5] had their initial deployments in 2017). The

deployment of 4G/LTE was marked by fierce competition

between network operators trying to reach the market first.

This competition can determine the benefits gained by the

operator from the network upgrade [6]. That requires rapid

deployment of 4G network, cost efficiency and attempting to

exploit the full benefit of 4G spectrum efficiency.

With 5G deployments already underway, 4G deployment

techniques remain relevant for several reasons. First, 5G

deployment includes expansion of use of 4G bands, relying

on similar modulation and spectrum access techniques used

in 4G deployments [7]. Second, cellular operators all over the

world are currently just starting to perform “3G shutdown”

[8, 9]. This operation is performed, hand in hand with 5G

deployment, in order to keep up with customer demand by

refarming spectrum used by 3G networks to be used by 4G net-

works instead [10]. Finally, rapid 4G deployment techniques

can be very helpful for community-operated cellular networks

that service underdeveloped regions (e.g., [11]).

Standard 4G cellular network deployment implements the

following steps [12, 13, 14]. First, network dimensioning

takes into account user demand and density. It also accounts

for the desired Quality of Service (QoS) provided by the

operator. Then, network planning determines optimal radio

sites locations and parameters. To achieve rapid deployment,

it is typical for mobile operators to reuse the already existing

3G radio sites and infrastructure for 4G deployment. This

approach capitalizes on two factors: 1) having a single Radio

Access Network (RAN) that can already support both 3G and

LTE networks, and 2) the overlap in supported spectrum for

both networks. However, 3G and 4G technologies are signif-

icantly different. This requires several extensive optimization

operations to be conducted before and after 4G activation.

The optimization operations are determined based on site

measurements, collected terrain information, and capacity es-

timation. The outcome is a set of new radio antenna param-

eters for eNodeBs (4G radio sites) to ensure that each site

achieves its coverage without interference. This operation is

time consuming and is known to be costly [15] which conflicts

with any operator objectives, motivating further reduction in

deployment steps. In this paper, we assess the side effects
of reducing the deployment overhead by reducing the cost of
post-activation optimization.

Post-activation optimization is needed due to the difference

between physical layer protocols used in 3G and 4G networks.

In particular, 3G networks tolerate overlapping coverage be-

tween multiple cells, while such conditions cause problems

for 4G networks. In 3G networks, Soft Handover (SHO)

handles interference gracefully by allowing a single user to

receive data from multiple cells at the same time [16]. SHO is

enabled by Code Division Multiple Access (CDMA). On the

other hand, graceful handling of interference is not feasible in

4G/LTE networks because it relies on Orthogonal Frequency-

Division Multiplexing (OFDM) which does not have the same

macro-diversity as CDMA. Overlapping coverage areas in

4G networks lead to several problems including ping-pong

handovers, handover failures, waste of the network resources,

and degradation in signal quality [17].

Performing rigorous post-activation optimization to handle

the difference between 3G and 4G is one of the costliest

steps in the deployment. That is because it involves reviewing

the coverage of tens of thousands of cells based on some

propagation and interference models then verifying the plans
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using rigorous drive tests. This cost can be reduced when

taking into account the effects of overlapping coverage areas

on 3G networks. In particular, overlapping coverage areas

waste resources in 3G networks. Moreover, SHO has limi-

tations in terms of maximum number of overlapping cells it

can handle. Hence, a well-planned 3G network should have

minimal overlap between coverage areas.

In this paper, we study the rapid deployment of 4G, testing

the idea of reusing the existing 3G sites as is1, minimizing

the extensive post-activation optimization steps efforts. This

is enabled by relying on a well-planned 3G network with

minimal overlap in coverage areas. Our goal is to characterize

the side effects of the rapid deployment. We refer to these

side effects as bad radio conditions. Then, we determine

their extent in terms of both their effect on user performance

as well as their prevalence in the studied sites. Finally, we

present a simple approach to handle affected site. Our aim

is to reach the sweet spot between cost reduction, rapid

deployment and optimum user experience. We conducted our

study based on analysis of network traces and measurements

from a major network operator. We collected data from a single

cluster of cells covering two large cities, spanning two months

in 2017 which represents the initial state of the network

right after the rapid LTE deployment. The collected traces

and measurements capture a snapshot of the operator’s 4G

deployment just before the implementation of post-activation

optimization. This enables us to assess the value and side

effects reducing the cost of post-activation optimization.

Our work is motivated by the appeal of reusing sites and

equipment with minimal to no hardware modifications to move

from 3G to 4G. This low cost operation should benefit cellular

operators deploying 4G for the first time as well as performing

3G shutdown. It can also be useful for community operated

cellular networks (e.g., [11]). Furthermore, our work motivates

analytical models and software tools that can determine the

parameters of the 4G deployment based on the 3G network

the operator starts with, as well as Inter-Cell Interference

Coordination (ICIC) [18] techniques that takes into account

the deployment approach.

In brief, our work in this paper aims at answering the

following questions about the rapid 4G deployment approach:

• What is a good indicator of bad radio conditions? We

study correlation between different cell Key Performance

Indicators (KPIs) and user throughput. We find that the

most contributing factor affecting user throughput is the

number of users within a cell using high-order modulation

and coding scheme (§IV).

• How prevalent are poor radio conditions, caused by cov-
erage overlap between neighboring sites, in the operator’s
network? Our goal is to help network operators to gain an

insight of the extent of side effects of transitioning from 3G

to 4G keeping post-activation optimization to a minimal.

We use the bad radio condition indicators to identify cells

1We omit the details of site architecture as it is part of our operators
confidential information.
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Figure 1: Comparison between the effect of overlapping cov-

erage areas in 3G and 4G networks.

with poor radio conditions. Furthermore, we validate that

the main cause of the problem is overlapping coverage areas

between cells by looking at sectors of the network with zero

overlap (§V).

• What is a cost-effective resolution of this problem? We

employ physical optimization, which is discussed in details

in (§VI), guided by our developed approach of detecting the

affected cells, to improve their performance. In particular,

we employ antenna parameters optimization techniques to

reduce or eliminate the effects of interference, leading to

user throughput improvement by up to 114%. We believe

this approach to be the best practice in rapid 4G deployment

as it balances performance and cost efficiency.

II. BACKGROUND

User devices, such as smartphones, tablets or modem cards

connect to a radio cell over a certain radio frequency or a

carrier. Each cell covers a geographic area with a directional

antenna and it is common to find 3 such cells covering a full

circle, approximately 120 degrees each, but there can be more

or fewer cells with different coverage areas. Multiple cells

covering the same direction and area can be called a sector.

For coverage and capacity, there are typically multiple cells

per base station, anywhere from 3 to 12, sometimes even more.

There can be hundreds of thousands of cells in the network. In

LTE, the site which spans all LTE sectors is called eNodeB,

which is the evolution of 3G NodeBs. A Cluster is a group

of radio sites covering a certain geographical area defined by

the network operator.

Typical LTE deployment relies on network dimensioning in

which user demand, density, along with the operator’s desired
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QoS provisioning are used to plan base stations placement and

capacity. This step goes hand in hand with a coverage planning

phase where the parameters of the antenna of each base station

is determined such that all areas of interest are covered and

inter-cell interference is reduced. This approach is standard

and discussed in several textbooks (e.g., [12, 13, 14]). Cover-

age planning is one of the costliest steps in the deployment.

That is because it involves reviewing the coverage of tens of

thousands of cells based on some propagation and interference

models then verifying the plans using rigorous drive tests. This

operation is both costly and time consuming which conflicts

with the goals of the operators that are eager to be the first to

deploy LTE in a market that is hungry for more bandwidth.

LTE Rapid deployment leverages two advantages the operator

has: 1) a single RAN that operates both 3G and LTE networks

allowing the same equipment to be used for either of the two

technologies, and 2) re-farming of 2G and 3G spectrum for

LTE operation, which is a technique by which spectrum of

older technologies with diminishing demand is used by newer

technologies [10]. Spectrum re-farming allowed the utilization

of the same antenna configuration used in 3G to be used in

LTE as well. Following this approach, the upgrade from 3G to

LTE became a matter of upgrading infrastructure equipment

as most of the other components, including antennas and radio

modules where used as is for LTE. The main challenge of this

approach is handling the difference between how 3G and LTE

networks handle overlapping coverage areas.

In 3G networks, users falling in the area of coverage overlap

between multiple cells don’t exhibit severe problems. This

is due to the macro-diversity technique that’s employed by

the CDMA and W-CDMA standards. This makes use of a

feature called soft handover (SHO) where a cell phone is

simultaneously connected to two or more cells extending

its capacity, shown in Figure 1a [16]. While this approach

mitigates the effects of interference from the point of view of

the user, it is still problematic from the point of view of the

operator. SHO comes at the expense of available resources,

as one user will utilize those resources for the two, or more,

base stations, while it’s preferred to connect from one cell

only. Hence, overlapping areas should be minimized as much

as possible, though, it won’t affect the customer experience in

3G as we’ve illustrated.

On the other hand, overlapping coverage areas in LTE

is not preferable from both the user perspective and the

network operator perspective. From the user perspective, the

access scheme used in LTE (i.e., OFDM) does not handle

interference gracefully, as shown in Figure 1b. This can lead to

several problems including lower user throughput, ping-pong

handovers, and handover failures. From a network perspective,

overlapping coverage areas in LTE waste resources similar to

the case of 3G in addition to making performance at users

worse. Hence, when LTE is deployed on top of an already

operational 3G network, the effect of overlapping coverage

areas is amplified and becomes a main issue in the network.
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Figure 2: Throughput estimation accuracy improvement using

sequential forward selection, showing that the first six features

are enough to provide best estimation accuracy.

III. DATA SET

We use a set of KPIs collected by a top-tier mobile

operator with more than 30 million subscribers serving an

entire country. All of our measurements are collected from the

operator network point of view. The data we use is collected

from a cluster within the operator’s network that spans two

major cities. We collect data spanning two months in 2017 that

represent the state of the network immediately post rapid LTE

deployment on that cluster. All data reported are anonymized

and collected in aggregate.

The collected KPIs are measured at the eNodeBs, capturing

both network KPIs and per-cell aggregate end-user KPIs. Our

measurements are limited to KPIs collected and aggregated by

eNodeB equipment. We follow this approach to maintain the

ability to collect data at scale by avoiding tracking KPIs of

individual users. This allows us to provide an approach that

can be realistically used by the operator to detect cells affected

by the deployment methodology.

KPI measurements are collected at 15-minute interval span-

ning two consecutive months. We believe that this period and

monitoring granularity to be representative of normal network

operations capturing hourly load variability and trends. We

filter the data to focus on trends at peak hours because that

is what the network provisions for. As indicated earlier, user

information is collected in aggregates per cell and does not

contain any personal or identifiable information about owners

of devices or exact base stations info. The data is in a columnar

format, with 4.2 million records, each record represents the

KPIs of a certain cell over the 15-minute period.

Our goal is to characterize the impact of rapid 4G deploy-

ment. For that to happen, capitalizing on the studied cluster’s

dataset, we devised a supervised machine learning model to

classify the cells into two groups: good and poor from the

user throughput perspective. The throughput threshold used to

label these cells was picked by the mobile operator reflect-

ing the minimum throughput required to achieve a targeted

customer experience and we omit the exact threshold value

the operator uses. Then, multiple feature selection algorithms

were applied to choose the most impacting features (KPIs)

on user throughput out of the available KPIs to the operator.

The best performing algorithms were the Sequential search

methods [19, 20] especially, the ”floating” methods [21]. Fig-

ure 2 shows the sequential floating forward selection algorithm
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performance for a decision tree classification algorithm [22].

It’s apparent that a selected group of six features achieved the

best estimation accuracy, we list them below and we will study

each of them closely against the user throughput in (§IV).

We categorize the KPIs we found into three categories:

1) Quality of Experience Indicators (QoEI), 2) Quality of

Coverage Indicators (QoCI), and 3) Capacity Indicators (CI).

Each of the available KPIs had different aggregation levels

(e.g., average and max values per cell), and the following are

the selected KPIs, all of which are averaged per cell:

• [QoEI] User Downlink (DL) Throughput: This KPI is

the main User Quality of Experience indicator used by

the operator in the radio domain [23]. The higher the user

throughput, the more it is indicated that the customers served

by that cell in the downlink direction are having a good

experience, and vice versa. One of our goals is to find how

other KPIs affect this one. During network planning and

maintenance, this KPI is used as the main drive for upgrades

and provisioning of resources to different cells.

• [QoCI] High-Order MCS Penetration Rate (HOMPR):
This KPI captures the ratio of end users in a certain

cell employing high-order Modulation and Coding Scheme

(MCS). In particular, this KPI indicates the percentage of

users using 64-QAM modulation, the highest modulation

available at the current network implementation. Users are

able to utilize high-order MCS when radio conditions are

good. The higher the employed MCS, the higher the data

rate the user can use. Cases where individual users utilize

lower-order MCS are typical (e.g., user at the border of the

cell or behind a signal reflector). Also, inter-cell interference

has a major impact on the granted MCS, the higher the

interference is, the lower the MCS order will be. Thus, when

a large ratio of users of a certain cell rely on lower-order

MCS, it indicates that there is a problem at the cell level.

• [QoCI] Channel Quality Indicator (CQI): This KPI is

reported from users to the cell to indicate channel quality

seen by the user. This report helps the cell scheduler deter-

mine the MCS to be used by that user. This metric is part

of the LTE standard unlike signal-to-noise-and-interference-

ratio (SINR). The way CQI is calculated takes into account

a vendor-based definition of SINR along with the decoding

capabilities of the user’s device. When the CQI is high, this

indicates good experienced radio conditions within the cell.

• [QoCI] Block Error Rate (BLER): This is the fraction

of blocks delivered on the channel that fail CRC (Cyclic

Redundancy Check). A high BLER percentage indicates a

problem within the cell.

• [CI] PRB Utilization: A Physical Resource Block (PRB) is

the smallest unit of resources that can be allocated to a user

which is specified in terms of radio sub-carriers and time.

The PRB Utilization KPI captures the ratio of the utilized

physical resource blocks with respect to all the available

resource blocks. This KPI reflects how overloaded a specific

cell is which can be used to attribute lower user throughput

to lack of resources at the cell when it is high.

• [CI] RRC-Connected Users: This KPI reflects the average

number of users that establish a connection with the RRC

(Radio Resource Control) layer. This includes all users

within a cell whether they have any data to send or not.

Generally, as the number of users increases, this leads to a

decrease in the average user throughput within the cell due

to the finite radio resources.

• [CI] Number of Active Users: Active users are users with

data remaining in the transmit buffer of the cell at a certain

transmission time interval (TTI). This KPI is the average

number aggregated over the collection interval. Note that
this number does not reflect all users utilizing the DL as it
only counts users with buffered data.

Our goal is to assess the network behavior when the rapid

4G deployment mentioned earlier is used. In particular, we are

interested in assessing user quality of experience of users in

the 4G deployment, represented by average user throughput

per cell. We are interested in understanding the relationship

between network parameters and user experience. To that end,

we compare the effect of Capacity Indicators (CIs) and Quality

of Coverage Indicators (QoCIs) on the Quality of Experience

Indicator (QoEI), which is the average user throughput in

our case. Figure 3 shows the relationship between Average

User Throughput and the different KPIs. We use hexagonal

binning to visualize the distribution of collected 15-minute

data samples from all cells. Hexagonal binning allows us to

compare the distribution of data across two KPIs.

We start with QoCIs. Figure 3a shows that the higher the

High-Order MCS Penetration Rate the higher the through-

put users might experience. The highest concentration of

samples is along the area corresponding to this relationship.

Samples with high rate of High-Order MCS Penetration and

low throughput can be justified by low available capacity.

Invertedly, the rare occasions of having bad radio conditions

and still relatively high throughput occur when high bandwidth

and low user count occur. We observe a similar trend the

CQI metric (Figure 3c). However, CQI exhibits less correlation

with throughput than the HOMPR. Figure 3b shows the Block

Error Rate (%) which naturally has negative correlation with

throughput. Visually, it is clear that among all the QoCIs, the

HOMPR has the highest correlation with the user throughput.

Figure 3d shows a clear relationship with PRB utilization.

The higher the utilization, the lower the attained throughput as

contention for resources increases. The samples indicating the

high utilization and still relatively high user throughput occur

when spectrum resources are utilized by a few users. CIs are

less correlated with total cell population compared to QoCIs.

Figures 3e and 3f both relate the number of users to user

throughput. In case of the RRC-connected users, there is no

clear correlation as connected users do not necessarily utilize

and resources. On the other hand, the negative correlation is

clear between active users and user throughput.
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(a) HOMPR (b) BLER (c) CQI

(d) PRB Utilization (e) RRC-Connected Users (f) Number of Active Users

Figure 3: Hexbin scatter comparing distribution of values of different KPIs and Average User Down Link Throughput over

collected data.

Correlation with Average
HOMPR CQI BLER

PRB RRC Number of
User Throughput Utilization Connected Users Active Users

All cells 0.454163 0.401373 -0.316519 -0.311759 -0.120421 -0.18782
Cells in good

0.265883 0.236271 -0.312613 -0.370343 -0.162819 -0.229172
radio conditions

Table I: Correlation between different KPIs and Average User Down Link Throughput.

IV. RELATIONSHIP BETWEEN BAD RADIO CONDITIONS

AND LOW USER THROUGHPUT

The first row of Table I summarizes our finding showing the

Pearson correlation coefficient between all KPIs. As clear from

Figure 3a, HOMPR has the highest correlation between the

other KPIs. Our hypothesis is that this correlation is an artifact

of the LTE deployment approach which leads to coverage

overlapping between cells. To understand our hypothesis,

consider an ideally operating network. In the ideal case, user

throughput should be a factor only of available capacity in

a cell (i.e., low throughput should only occur when demand

exceeds capacity). However, in cases of bad radio conditions,

the coverage quality becomes an factor in determining user

throughput. This relationship wastes capacity by having nodes

operating at lower throughput than available at the cell. It also

leads to poor user expience.

To validate our hypothesis, we started by looking at cells

in good radio conditions. Our goal is to show that when

the coverage is good, capacity is the only contributor to

user throughput. In our experience, good radio conditions are

associated with HOMPR higher than 40%. Figure 4 along

(a) PRB Utilization (b) Number of Active Users

Figure 4: Hexbin scatter comparing distribution of values

different KPIs and Average User Down Link Throughput over

sample with Higher-Order MCS Penetration Rate is higher

than 60%.

with the second row of Table I show that under good radio

conditions capacity becomes the dominant factor controlling

average user throughput, which is the expected behavior. This

shows that poor radio conditions lead to a change in factors

affecting user throughput. This motivated further analysis as

shown in the next section.
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Figure 5: Comparing average user throughput for users poten-

tially experience bad radio condition (Band 1 users) and users

not experiencing bad radio conditions (Band 2 users).

Figure 6: CDF of ratio of users operating at high modulation

schemes for all studied cells and the top 10% busiest cells

showing similar distribution in both cases.

V. PREVALENCE OF POOR RADIO CONDITIONS

Our next step is to look at the extent of this issue in terms

of its effect on throughput as well as the number of affected

cells when rapid deployment of 4G is employed. Our goal is

to determine whether bad radio conditions are likely to occur

when rapid deployment techniques are employed, and if so,

quantify its effect. As 3G cells are planned with minimal

overlap, one might expect that an LTE network deployed

on top 3G coverage planning should have little problems.

However, we find that this is not always true.

We start with assessing the extent of effect of bad radio

conditions on average user throughput. In particular, we study

a set of cells where users can access 4G through two different

frequency bands. We refer to them as Band 1 and Band 2.

A load balancing algorithm ensure that, for each cell, the

number of users operating at each band is roughly the same.

The main difference between the two frequency bands is the

cells had neighbouring cells operating in Band 1, potentially

having overlap in their coverage area in that band. On the other

hand, all studied cells had no neighbouring cells operating in

the Band 2, ensuring having no bad radio conditions due to

interference. We compare average user throughput for both

scenarios where Reference Signal Received Power (RSRP) is

low (i.e., areas with poor coverage). Figure 5 shows the result

of the experiment. We find that average throughput is up to 3x

higher for users operating in Band 2 where there are no bad

radio conditions due to overlapping coverage areas. Hence, we
conclude that cell overlap has significant negative impact on
user throughput.

Next, we look at the prevalence of the problem in the

studied cluster of cells. Figure 6 shows the CDF of High-

Order MCS Penetration Rate (HOMPR) over all LTE cells

of the studied cluster. We use HOMPR as a proxy for cells

suffering from bad radio conditions as it is the KPI with the

highest correlation with average user throughput. In particular,

a cell with very low High-Order MCS Penetration Rate reflects

that the majority of users can only decode robust lower-

order modulation schemes. This is unlikely to happen due to

individual users having bad radio conditions (e.g., large scale

fading), rather it is more likely that a large population of cell

users are facing a common source of interference.

The figure shows that 50% of the cells have a HOMPR

lower than 40%, which is the level we found to make average

user throughput more dependent on capacity than radio con-

ditions. To better understand the impact of the problem, we

look at the top 10% busiest cells and find that they exhibit a

very similar distribution. Hence, we conclude that bad radio
conditions are quite common in cases of rapid deployment and
can lead to significant deterioration in user throughput.

VI. RESOLVING POOR RADIO CONDITIONS

Typically, mobile operators target a certain customer ex-

perience each year, trying to maintain an edge over other

competitors. And after estimating year-over-year expected

traffic increase, taking inputs from commercial teams and

meeting some certain strategies, they dimension the needed

capacity across all the mobile network’s domains, including

RAN, Transport and Core Networks. For RAN domain, the list

of cells likely to be congested (i.e., hot spots) are estimated in

advance, to be handled with a proper expansion according to

their configurations in term of number of carriers and sectors

at the site [24]. Huge investments are dedicated, in terms of

spectrum, license and hardware expansions to work proactively

on those cells to make sure they would accommodate the

foreseen capacity needs.

Apart from that, dealing with congested cells is a normal

day to day activity for the RF optimizers at the mobile operator

[25]. Several approaches are implemented for the hot spot

resolution. Usually, the solution involves bandwidth expansion

after assuring the highest possible spectrum utilization, adding

more cells/sectors or even planning new sites. These expansion

procedures are very costly but this can be afforded by the

operator to assure a better experience for the end user, and

consequently, a higher revenue. However, these approaches to

handling hot spots are not necessarily the right approaches in

when LTE is deployed following the methodology discussed

in Section V.

From practical observations, it was found that hot spots,

following a soft LTE deployments, are mostly formed due

to overlapping coverage areas between different cells. Hence,

relief of this congestion can be done by re-planning coverage

areas of affected cells. This approach requires: 1) detecting

cells suffering from this problem, and 2) providing some

guidelines for handling the interference problem.

Affected Cells Detection: We rely on High-Order MCS

Penetration Rate to detect cells affected by our LTE deploy-

ment approach. In particular, cells with 40% or low High-
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Figure 7: Illustration of cell physical parameters.

Order MCS Penetration Rate are considered affected. This is

consistent with our finding in Section IV where we found that

for cells with High-Order MCS Penetration Rate larger than

40%, the main factors affecting user throughput are capacity

factors not interference factors.

Physical Optimization: To address the problem of overlap-

ping coverage areas, the parameters determining the coverage

area of each cell are optimized using standard planning tools

that simulate the coverage of affected cells. These tools

identify optimal parameters for each antenna, in terms of

the elevation, azimuth and height (Figure 7), to make sure

the dominance of the serving cells and isolation from the

neighboring cells as much as possible. And those predictions

can be calibrated with performing a field drive test to capture

the coverage measurements and the results are sent back

for the planners to analyze and confirm their coverage plan.

Finally, this parameters are applied to the affected site.

We demonstrate the effectiveness of this approach by show-

ing the following two cases where the methodology was

applied. Both cases are identified by having HOMPR below

30%. Physical optimization was applied at hour 17 and 11

for case 1 and 2, respectively. Figure 8 shows that, for both

cases, once physical optimization was applied both HOMPR

and average user throughput improve significantly. Average

user throughput is improved by 97% and 114% on average.

This is a significant impact in throughput that is achieved

without provisioning any extra resources. Hence, we note that

this approach allowed our operator to save costs in two ways.

First, it allowed for a fast deployment of LTE where not all

cells needed re-planning. Second, it allows the operator to

have an approach to resolve hot spots other than the costly

resource provisioning (e.g., creating more cells or licensing

more spectrum) to check before going to that step.

VII. RELATED WORK

Data-driven Cellular Network Optimization: We cate-

gorize those approaches based on where measurements are

collected into the following categories:

1. Measurements taken at the network side, capturing cell
KPIs: Earlier work in this direction has focused on 3G
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Figure 8: Two case studies showing the effect of physical

optimization that improved High-Order MCS Penetration Rate

on improving average user throughput by up to 114%.

networks. We focus on recent measurements from major oper-

ators. For example, in [26] sector KPIs used to infer user QoE.

This allows the network operator to detect underperforming 3G

sectors. The work in [24] uses sector KPIs to forecast which

cells will underperform under specific loads. Our approach

falls under this category to augment earlier work. In particular,

it provides a specific metric to detect underperforming cells

due to 4G transition. It can be used in conjunction with other

approaches to provide better cell planning and provisioning.

2. Measurements taken at the network side, capturing user
traces: Several systems rely on user traces to detect [27],

predict [28] and react to [29] user throughput in 4G networks.

3. Measurements taken at the user side: This approach relies

on measurements that are either collected by the operator

through wardriving (e.g., [30]), or crowdsourcing (e.g., [31]).

This direction of work is orthogonal to ours that can alert

operators to coverage gaps that cannot be detected from the

operator side.

Interference cancellation and mitigation: Such techniques

have been deployed with varying degrees of success for more

than 20 years. They are generally categorized into three major

techniques as shown in [32]: interference cancellation, inter-

ference averaging and interference avoidance techniques. Al-

though in theory many proposed interference mitigation tech-

niques have shown promising results, in practice the gains do

not seem to materialize and better approaches need to be eval-

uated in realistic scenarios suitable for implementation[33].

For example, interference cancellation promises significant

gains but is likely limited to the LTE UL due to processing

complexity, and will require real-time exchange of information

between base stations every few milliseconds to maximize the

gain for an LTE system. Beam-forming technologies such as

organized beam hopping show significant theoretical promise;

however, as practical technologies for a deployed LTE system

they are still unproven [18].
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Also, LTE offers the capability to provide a flexible dy-

namic inter-base station approach to interference coordination

through the use of inter-base station signaling capabilities

using the X2 interface defined between the base stations,

including the use of UL reactive overload indicators (OIs)

and proactive high interference indicators (HIIs) that provide

bit maps of interference conditions on a per RB basis. DL

inter-cell interference coordination (ICIC) is supported through

the use of DL relative narrowband transmit power (RNTP)

bit maps providing a coarse power indication on a per RB

basis [18]. Although this capability was already employed,

further physical optimization was still required achieving extra

enhancement in user throughput as we showed earlier.

VIII. CONCLUSION

We use a large-scale LTE data set from a major telecom op-

erator to assess the value of a rapid LTE deployment approach

that relies on transitioning from 3G to 4G, minimizing the

overhead of extensive post-activation optimization steps. We

also show a data-driven approach to detect underperforming

cells and present the physical optimization approach to handle

the detected cells. Overall, the approach balances LTE transi-

tion best practices with cost efficiency to allow the operator

to provide a high performing network rapidly. We believe this

approach will be beneficial for operators deploying 4G for the

first time and performing 3G shutdown as well as community-

operated networks servicing rural underdeveloped areas.
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