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Abstract—Users and content providers want websites to load
quickly. A widely used web performance metric that rewards
both the early appearance of content and the timely completion
of page load is the Speed Index (SI). Lower SI values correspond
to higher user satisfaction, which makes reducing page SI an
important goal.

In this paper, we observe that all images on a webpage
are not created equal and indeed vary considerably along a
metric we dub image density, or the ratio of byte weight to
pixel size. Variation in image density creates opportunities to
prioritize lower density images to reduce page SI by displaying
more pixels sooner for every loaded byte. We define Object
Density Distribution (ODD) – a new webpage characterization
metric. To understand the potential for image prioritization, we
characterize ODD of existing webpages, their ODDness if you will,
and show that ODD skewness and kurtosis indicate meaningful
prioritization opportunities. To understand the effectiveness of
image prioritization, we propose a URL-based prioritization
mechanism and measure its performance across 20 test pages
loaded from the Apache, NGINX, and Caddy servers. Our
results show SI improvement over 40% in some cases and mean
improvement of 5.7%. These SI improvements and the simplicity
of our prioritization method create a compelling case for the
adoption of our method by content distribution networks (CDNs)
and future browser implementations.

Index Terms—web performance, speed index, content delivery

I. INTRODUCTION

Users and content providers want their websites to load

and display quickly. Static resources, such as HTML,

JavaScript (JS), Cascading Style Sheet (CSS), and image files,

needed to render website views load from content delivery net-

work (CDN) servers. As a result, user experience, quantified

by web performance metrics such as page load times (PLT)

and Speed Index (SI), depends on the fast acquisition of hosted

resources.

Although research on web performance has helped to make

a more efficient use of available network resources, for exam-

ple by prioritizing CSS and JS objects and eliminating Head

of Line (HoL) blocking [1], network delay remains difficult to

mask. One persistent challenge is the delay of loading images,

which depends on transport layer throughput, and so both

bandwidth and latency. The introduction of web metrics such

as SI showed that the order of object appearance during a page

load matters to user experience, which led to prioritization of

above-the-fold (ATF) objects to accelerate their display, even

though page load time (PLT) remains unchanged [2].

Currently, browsers request images in order of their embed-

ding in the base HTML, or in the order of their placement on

the page. This top to bottom order makes sense in that it leads

the browser to request ATF images first. With the deployment

of HTTP/2 implementations in browsers and servers there

is potential to prioritize images with respect to each other

to force a strict priority of ATF images. Chrome does just

that and initially loads images with the Net:Lowest priority,

but upgrades to Net:Medium priority those images that are

discovered to be in the viewport, or ATF [3].

In this paper, we conjecture that browsers may leverage

HTTP/2 prioritization to improve page SI scores, not just ATF

time. We make the observation that all images are not created

equal. For example, two images of same display dimensions

(number of pixels) may take up different numbers of bytes

on disk. As a result, the image with the lower byte to pixel

ratio, a metric we dub image density, transfer more quickly

and display earlier to improve page SI and user experience.

That approach would eliminate head of line (HoL) blocking

in the transport layer send buffer among images of different

densities. The questions we address in this paper is whether

and how the web performance community may leverage dif-

ferences in image density to improve user experience with

existing websites. In other words, can browsers use HTTP/2

stream prioritization to remove HoL blocking among images

of different densities to improve page SI.

We address the questions of the practical utility of image

density variation on several fronts. First, we describe Object

Density Distribution (ODD) as a new webpage characteriza-

tion metric that approximates the SI improvement of image

prioritization during a page load. Second, we characterize

ODD of real webpages, their ODDness if you will. Our anal-

ysis of the 200 most popular Alexa pages (Alexa-200) shows

considerable ODD skewness and kurtosis, which indicates

there exist meaninful opportunities for image prioritization.

Finally, third, we develop a URL-based method and a Go

client proxy to prioritize HTTP/2 streams based on the density

of images they carry. To evaluate our method we measure the

SI of 20 test pages composed of images from representative

Alexa-300 pages loaded from Apache, NGINX, and Caddy

servers. Finally, we present a machine learning model to

identify rare page/network condition scenarios where image

prioritization should not be used.

In sum, this paper offers the following contributions:
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• We show the benefit of prioritizing images based on their

density. Specifically, our results show SI improvement

over 40% in some cases and a mean improvement of 5.7%

across a variety of web pages and network conditions.

Our work dovetails earlier results from the web perfor-

mance community on the importance of prioritization of

CSS and JS objects and on the correlation of total image

weight on SI [4]. Our results represent an upper bound of

SI improvement – to fully realize them, developers should

avoid hierarchical page structures so as to avoid blocking

of image loads by JS execution and DNS lookups.

• We present a URL-based technique for image prioritiza-

tion and describe how it may be safely and incrementally

deployed by CDNs and browsers.

• We describe the implementation of a Go proxy with a

forwarding delay of less than 4 ms, which demonstrates

the effectiveness of image prioritization even before the

method becomes adopted by browsers.

We organize the rest of this paper as follows. In Section II

we introduce ODD and characterize the ODD of existing web

pages. Section III details the implementation of our proxy and

method for image load prioritization. We measure the benefits

of image prioritization in Section IV. Section V outlines

related work on web performance metrics and HoL blocking.

Finally, we discuss options for proxy deployment and conclude

in Section VI.

II. OBJECT DENSITY DISTRIBUTION (ODD)

Our guiding idea is that not all images are created equal.

We begin by explaining the concept of image density. We then

show the degree to which image density varies among the

images of existing web pages to understand the opportunities

for image prioritization.

A. Image Density

We define image density as the ratio of image weight in

bytes to image size in rendered pixels on a webpage. Thus,

a 614 KB image might take up 290 × 162 pixels at density

of 0.0131. Note, that the pixel size of an image is its display

size defined in HTML, as absolute pixel dimensions, or image

scale factor, rather than the dimensions of the image file

itself. Browser’s Document Object Model (DOM) provides

that information as the client image size. Using this definition,

we calculate image density for every image, visible above the

fold and dub this distribution client ODD.

While client ODD represents the ground truth of rendered

images sizes, there are several disadvantages to that metric.

First, the calculation of client ODD requires the analysis of

the HTML structure of a page. Full page HTML may not be

available until all JS resources have been loaded and executed,

which in many cases does not happen until after the browser

starts requesting the embedded images. Second, the same

image may be embedded at different size in different pages,

which makes it difficult for the server to know its density on

any given page – a property that we will show in Section III-A

is helpful in implementing image prioritization.

Fig. 1. Client and Natural pixel count for images in Alexa-200 pages.

To address these shortcomings of client ODD we make

the observation that in well-optimized webpages the absolute

image size does not significantly differ from the its size defined

in the HTML [5], [6]. This correspondence makes sense,

because embedding large images, but displaying them scaled

down wastes network resources. Similarly, embedding small

images, but scaling them up reduces their visual quality. The

DOM provides the size of an image before scaling as the

natural image size.

To quantify the relationship between client and natural

image sizes we measure the images on the Alexa-200 pages.

We use the Chromium browser to load each web page, extract

the list of all objects with the ‘img’ tag and obtain its client

and natural dimensions. We ignore the pages that do not allow

scraping.

Figure 1 shows the client and natural densities of the

Alexa-200 images. The x-axis shows image rank sorted by

size, while the y-axis shows image client size across all the

pages. We observe that the client and natural size distribution

are moderately close with a correlation of 0.45. For most of

the images the natural image size is greater than the client size.

We also observe that webpages scale down 7% of images by

over 1000%. We call such images black hole images because

their level of rescaling results in very high densities.

These results show that while natural density does to some

extent approximate client density, the two cannot be used inter-

changeably. Thus an accurate ODD calculation does currently

require HTML analysis for most pages. We believe it may

be possible to eliminate that requirement by encoding images

such that the natural and client densities are the same. In well-

optimized pages natural and client image sizes should be made

to match [5], [6]. Indeed we found that is already the case for

about 30% of Alexa-200 images. We also observed that most

of these well-optimized pages are in the more popular set of

Alexa-100 pages.

B. ODD of Existing Webpages

When a page contains images of varying density, loading

the less dense images first results in more pixels displayed

after transferring same number of bytes. On the other hand,
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Fig. 2. ODD skewness and kurtosis of Alexa-200 pages.

on pages where the density of all images is the same there

is no advantage to prioritization, because regardless of which

image is loaded first the browser displays the same number of

pixels per loaded byte.

To understand the opportunity for image prioritization we

want to understand the variation of image density in the client

ODD (hearafter just ODD) of existing webpages. To charac-

terize ODD we compute its skewness (distribution asymmetry

about its mean) and kurtosis (distribution “tailedness”). Both

skewness and kurtosis are statistical measures of population

differences. In our case, they signify the degree to which

image density varies within a page and creates opportunities

for image prioritization. In Section IV-C we find that indeed

both ODD skewness and kurtosis predict SI speedup from

image prioritization with a high accuracy.

Figure 2 shows the skewness and kurtosis of the Alexa-200

pages. The x-axis shows the pages sorted by the skew-

ness/kurtosis metric, which is marked on the left and right

y-axes respectively. For 50 of the pages the standard deviation

of ODD is zero or very small, which causes divide by zero

errors in floating point calculations of skewness and kurtosis

– we remove those pages from the graph. Additional 39 pages

did not permit crawling. We observe that most of the remaining

pages have defined and non-zero values of ODD skewness

and kurtosis, which indicate variation in image densities and

opportunities for image prioritization.

C. Image Prioritization in Existing Browsers

Browsers already prioritize the loading of JS and CSS

files [1]. We want to understand whether the browser does

something similar under the hood for images of different

density. To do so, we conduct the following experiment. We

load a page containing 24 images of various densities and

associate each transferred HTTP/2 frame with an image and

record the density of the contained image, as well as the arrival

time of the frame. In Figure 3 we plot the relative density

(normalized to the densest image on the page) of delivered

frames on the y-axis versus their arrival time on the x-axis.

The black ‘x’ markers show the density of loaded bytes using

Fig. 3. Density of delivered bytes during page load.

the 71.0.3578.98 version of the Chromium browser from the

Caddy server.

A page load that prioritizes objects by their density should

show low density bytes transferred first. Figure 3 shows the

opposite, where the density of loaded bytes is unordered over

time. In fact the solid black trend line shows that the average

density of loaded bytes actually decreases over time as the

result of random load order with respect to image density. Our

observations are consistent with a recent measurement study,

which showed that browsers assign the same priority to images

and load them in parallel [7]. A recent work by Wijnants et al.
offers a more detailed treatment of browser implementation of

HTTP/2 priorities [8].

For comparison we also plot (gold round markers and a

dashed trend line) a download that prioritizes objects by their

density, using the method described in the following section.

Our approach tends to load low density images first although

due to server behavior the prioritization is not strict. We

come back to this result in Section IV-B after detailing the

implementation of our method and quantifying the benefit of

prioritization on page SI.

III. MITM PROXY

To ascertain the potential of image prioritization to improve

SI at a large scale we design a collaborative mechanism be-

tween clients and content providers, or CDNs. Due to the oner-

ous nature of browser modifications we choose to implement

our mechanism on an HTTP/2 man-in-the-middle (MITM)

proxy deployed on a client machine in parallel with the

browser.

A. ODD and Stream Prioritization

To prioritize a website’s images the proxy needs to know

their densities. The requisite information, image byte weight

and pixel size, is not available until page HTML and the

images themselves finish loading. To avoid the delay on the

browser, we propose that the content providers, or CDNs,

analyze the HTML of hosted pages and embed image density

in the object URL. Thus pic.png of weight of 614 KB and

size 290 × 162 pixels embedded in the base HTML would
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become pic_0.0131.png. However, as we explain later, the

proxy needs to know density relative to other images on a

page, such that the densest image receives normalized of 1

and other objects densities in the range (0, 1]. We assume

that while analyzing page HTML the CDN could normalize

image densities and convert absolute density of 0.0131 to, for

example, 0.65 and save the image as pic_0.65.png. The

MITM proxy forwarding HEADERS frames from the browser

scans embedded image URLs for their densities and uses

them to assign priorities to HTTP/2 streams originated by the

browser to request embedded content. We note that for two

images with the same density, even if they have different pixel

sizes, there is no SI difference between loading one image first

and loading them in parallel. Injecting image density metadata

into image URLs manages to avoid the need for browser or

server modifications thus making our method easy to deploy

incrementally.

A potential disadvantage of this method is that the same

image may embedded in two different pages and have different

normalized densities with respect to other images on each

page. As a result, it might have to be hosted twice as, for

example, pic_0.65.png and pic_0.55.png. While hosting

multiple versions of the image is relatively inexpensive, it is

important to prevent the browser from loading the image twice

and instead having it use a cached version. To allow browsers

to use cached versions of an image the CDN could replace

the name of the image with an ID unique within a page, for

example, 0376_0.65.png. The browser could then serve the

image from the cache based on the 0376 prefix and the .png

extension matching the existing cache mechanisms.

When a request for a new image passes through the proxy

the proxy computes its stream priority as

strm_prio = (1 - normalized_density) *
h2_max_prio

to assign less dense images higher priorities. Additionally, the

proxy should make sure that the new priority is lower than the

priority reserved for the CSS and JS objects (h2_max_prio)

and stays between medium and low stream priorities [3]. In

this way no image download blocks these high priority objects.

For the purposes of this paper we implement the priority

mechanisms in the proxy, but the method could be imple-

mented more efficiently in the browser itself. The browser

already analyzes the page HTML and so it knows the client

size for each image. If CDNs embedded the byte size in

each image URL as, for example, pic_614.png, the browser

would be able to calculate the client density for each image,

normalize it, and use it to assign stream priorities. While the

proxy could do so as well, the overhead of processing HTML

on the proxy would add additional delay to its forwarding

function. This mechanism would still enable browsers to

leverage their cache by matching the pic prefix and the .png

extension. If the same image were embedded at different sizes

on two different pages, the browser could use the image from

its cache as long as it was the larger of the two.

B. Proxy Implementation

We decided to implement our MITM proxy in Go after early

experiments with a popular Python proxy added unacceptable

forwarding delays. The Go proxy exposes an HTTP/2 server

towards the browser and uses standard HTTP/2 client to

connect with the web server. To achieve low latency and high

throughput the synchronization and data exchange between

the said proxy parts and its main logic loop is asynchronous

using Go’s channels and routines. Throughout its operation

the proxy maintains two independent TCP connections and

two independent HTTP/2 connections: one on its client side

and one on its server side. The proxy operates as follows:

1) Connect into the lower levels of Go’s HTTP/2 server to

access HTTP/2 frames as they arrive from the browser.

2) Intercept HEADERS frames containing browser requests.

3) For each request, extract relative image density (normal-

ized to the website’s densest object) from request URI,

calculate stream priority based on image density, and

create a request for the server with the updated priority.

4) Forward object streams from server to client according

to priorities from Step 3.

IV. EVALUATION

To understand the effectiveness of image prioritization on

reducing SI we conduct a measurement of 20 webpages

loaded from three server implementations under a range of

network conditions. Our results show that most pages in that

set benefit from image prioritization performed by our proxy

implementation. We also show a predictive model to decide

when images on a page may be safely prioritized.

A. Experimental Setup

The benefit of image prioritization depends on how well

servers support HTTP/2 stream prioritization. The question

arises because RFC 7540 states that “expressing priority

is ( . . . ) only a suggestion” for the server [9]. Indeed many

CDN servers do not obey prioritization of ATF images [10].

To understand whether image prioritization is effective across

server implementations we evaluate our method on the

Apache, NGINX, and Caddy servers. The servers differ in

how they implement HTTP/2. Apache uses libnghttp2

library [11], NGINX uses its own implementation of the

standard – the ngx_http_v2_module [12], and Caddy relies

on Google’s Go implementation of HTTP/2 (the same one

we use in our proxy) [13].

To accurately measure the impact of image prioritization

on sets of images contained in real pages our approach is to

save offline the images embedded in a webpage and create a

new page structure that displays them at as a grid. We include

images embedded in the base page, but not banner ads, which

in general load from servers not controlled by page developers.

This method separates the impact of image load time from

other factors, such as JS execution, DNS lookups, or blocking

calls to third party servers. Indeed in some real world web

pages we observe such blocking behavior, which nevertheless

may be avoided with existing page optimization techniques
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Fig. 4. ODD skewness and kurtosis of 20 test pages.

discussed further in Section V-A [1], [14]–[17]. As such, our

measurement of page SI and improvement from prioritization

represent an upper bound. At the same time, a recent analysis

of HTTP Archive shows a high correlation between total image

weight and SI, so our results indicate the impact of image

prioritization on that aspect of web performance [4].

For our evaluation we create a set of 20 test pages with

images originating from Alexa-300 websites to capture differ-

ent representative page layouts. Based on pictures from real

pages, we wanted to create a set of different pages that span

possible page characteristics to understand their relationship

with prediction and benefit. While measurement with real

web pages would have been in some ways preferable, our

method does require object renaming, which would require us

to serve these pages from our servers and estop ‘in the wild’

realism anyway. Our test pages contain images from news

service, video streaming, e-commerce, image gallery websites.

We obtain image sizes by querying the DOM. The number of

images on these pages ranges from 19 to 125, their total byte

size from 128 KB to 5 MB, and their image area coverage from

19.2% to 78.7%. We show the ODD skewness and kurtosis of

the test pages in Figure 4, which in shape are representative

of the skewness and kurtosis of Alexa-200 pages in Figure 2.

Our evaluation environment consists of the following. We

run the Chromium browser (71.0.3578.98) and proxy (Go ver-

sion 1.10.3) on commodity Ubuntu 16.04 Dell OptiPlex 7040

with Intel Core i7-6700T CPU and 16GB of memory. We

orchestrate our browser tests by accessing Chromium remotely

from a Node.js script via Chrome DevTools Protocol [18] and

the chrome-remote-interface client library (0.26.1) [19]. We

measure SI by saving each page load history into Chromium’s

trace file and use the Speedline library (1.4.2) to interpret

it [20]. The server machine is a Lubuntu 17.04 ThinkPad R61E

Intel Core 2 Duo T7100 CPU with 4GB of memory. We use

default TCP settings for both machines. Client and server

machines connect over 100 Mbps Ethernet.

We conducted our experiments using three types of netem

emulated networks conditions of 2, 5 and 10 Mbps with 10, 30,

and 50 ms RTT and three popular web servers Caddy (0.11.1),

Apache (2.4.25) with libnghttp2 library (1.2.1.1) and

Fig. 5. Test page SI improvement for Caddy over 5 Mbps with 30ms RTT.

NGINX (1.10.3). For the purpose of evaluation we conduct

each measurement 40 times.

B. Image Prioritization and SI Speedup

We aim to understand the effectiveness of image prioriti-

zation by density to reduce page SI. For each test page we

measure its SI in three download scenarios: without a proxy,

through a proxy but without prioritization, and through a proxy

with image prioritization. SI measurement through a proxy

without prioritization allows us to distinguish any negative, or

positive effects of the proxy apart from prioritization.

Figure 5 shows the SI improvement of pages loaded through

our proxy with and without prioritization with respect to the

SI of the no proxy scenario. We load the pages from the

Caddy server with 5 Mbps bandwidth and 30 ms round trip

time (RTT) controlled by netem. The x-axis shows pages in

descending order of percentage SI improvement, while the

y-axis shows the percentage of SI improvement. Each point

represents the mean of the SI improvement over 40 runs with

the error bars showing 95% confidence intervals.

In general we observe that the SI of most of the test

pages improves under prioritization. In Figure 5 the maximum

SI improvement is almost 40% with the mean improvement

across all pages of 5.7%. In contrast using a proxy without

prioritization does show a slight degradation in performance

(SI increase) of 0.85%.

Although the prevailing wisdom is that extra bandwidth

does not matter much [21], there is a correlation between

image weight and SI that can only be accounted for by

bandwidth [4]. To gain a fuller picture of the effect of

image prioritization we conduct the experiments under other

network conditions. Table I shows the mean SI improvement

for Apache, NGINX, and Caddy under combinations of 10,

30, and 50 ms latency and bandwidth of 2, 5, and 10 Mbps.

We observe that image prioritization helps in all cases except

for Apache and Caddy servers under very performant networks

with 10 ms latency and bandwidth of 10 Mbps. This adverse

effect is due to the forwarding overhead of the proxy, around

4 ms, and may be eliminated if prioritization were to be

implemented in the browser itself. We also observe large
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RTT (ms) Bandwidth (Mbps) Mean SI Improvement (%)
Apache NGNIX Caddy

2 2.55 5.35 6.00
10 5 1.55 2.85 3.35

10 -1.2 0.95 -1.15
2 4.55 5.8 8.35

30 5 3.0 4.6 5.7
10 1.95 3.35 2.9
2 5.75 7.95 10.1

50 5 5.65 8.3 9.0
10 4.9 6.95 6.75

TABLE I
MEAN SI IMPROVEMENT ACROSS TEST SCENARIOS

benefits of image prioritization for experiments with 50 ms

latency. While a portion of the improvement is due to the proxy

splitting the TCP connect (the proxy without prioritization by

itself reduces SI by 1-4%) the bulk of the benefit comes from

prioritizing images.

C. Prediction of SI Speedup

Although image prioritization leads to SI improvement on

average, we want to understand if it is possible to predict

whether prioritization would reduce SI a given page. An

accurate prediction model would enable our proxy to safely

decide when to apply image prioritization. For example in

Figure 5, prioritization should be applied to pages 1-17, but

not 18-20.

We used our measurement data to predict the ratio of

SI speedup from image prioritization (prioritization SI to

no proxy SI) for each server across the different network

conditions. SI ratio less than 1 indicates that prioritization

helps, while ratio greater than 1 indicates that prioritiza-

tion should not be used. We trained a linear regression

model (sklearn.linear_model.LinearRegression) based on

webpage characteristics (factors) that govern the benefit from

image prioritization. These were: 1. the number of images

on a webpage (num imgs) – the more images, the more

opportunities for prioritization; 2. the percent of a page

covered by images (img area prcnt) – the greater the image

coverage, the greater the impact of images on SI; 3. the

total image size (total img bytes) – the more image bytes,

the more time spent in image transmission; 4. webpage ODD

characterized through its standard deviation (ODD std dev),

variance (ODD var), kurtosis (ODD kurt), and skewness

(ODD skew). For each factor set we trained a model for

all |n − 1| website subsets and predicted the SI ratio for

the remaining site. We then computed the percent error of

predicted to actual SI ratio for each server and set of network

conditions.

Table II shows the results of the prediction model. For each

factor set and server we show the means of percent error, SI

ratio, and factor coefficients. We found that ODD var was

not a predictive factor (error greater than 100%) and so we

omit the results from factor sets including the metric. We also

found that total img bytes, while helpful in predicting SI, is

not a significant factor in predicting speedup ratio (less than

1.2 × 10−8) and so for simplicity we present results from

factor sets that do not include it. We also considered other

factor combinations, for example num imgs, img area prcnt,

ODD kurt, ODD skew, which did not show more accurate

predictions in general.

The results show that linear regression predicts SI ratio with

a high accuracy across websites and network conditions. While

the results in Table II are means across network conditions, we

observe that the prediction error for individual server, factor

set, network condition scenarios is small enough to accurately

predict whether the speedup ratio is positive, or negative, and

so whether prioritization would be helpful.

We observe that ODD kurtosis is the most predictive

ODD characterization. The predictive power of kurtosis makes

sense, because kurtosis indicates whether there is a spread

of densities among page images which benefits prioritization.

Similarly ODD skewness is predictive, because high skewness

indicates a long tail of low density images on a page, which

likewise benefits prioritization. These results show a proxy

with a trained model, knowledge of server type from the

HTTP reply header, and ODD distribution computed from

image URLs embedded in the HTML base page, could safely

decide whether or not to apply image prioritization to reduce

page SI. These results also justify the use of ODD kurtosis

and skewness in Figure 2 to estimate the potential of image

prioritization in existing webpages.

D. Server Behavior

Finally, we aim to understand server behavior when pri-

oritizing HTTP/2 streams. Figure 6 shows the timeline of

webpage objects loaded from Caddy with and without prior-

itization. In each scenario the browser requests all images as

it parses the base HTML. The y-axis shows the image density

(and relative priority) while the x-axis shows object load time.

Factors Server Error % SI Ratio Coefficients

Caddy 6.68 0.9335 0.0006, 0.0009, 0.0020
num imgs, img area prcnt, ODD kurt Nginx 4.70 0.9512 0.0006, 0.0007, 0.0039

Apache 3.63 0.9653 0.0002, 0.0003, 0.0009
Caddy 6.79 0.9325 0.0007, 0.0010, 0.0078

num imgs, img area prcnt, ODD skew Nginx 4.81 0.9510 0.0006, 0.0008, 0.0161
Apache 3.68 0.9647 0.0002, 0.0003, 0.0030
Caddy 7.13 0.9299 0.0007, 0.0013, 0.0503

num imgs, img area prcnt, ODD std dev Nginx 5.62 0.9522 0.0006, 0.0009, 0.0234
Apache 3.83 0.9635 0.0002, 0.0004, 0.0162

TABLE II
LINEAR REGRESSION PREDICTION OF SI SPEEDUP RATIO.
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Fig. 6. Time line of a page load with and without density prioritization.

We observe that prioritizing lower density images allows

them to finish loading earlier. In contrast, when the same

images load at the same priority their load time depends on

their size. This effect of prioritization holds regardless of the

actual priorities given to streams, as long as the relative stream

priority (priority order between streams) remains the same.

We have seen this effect on Apache and NGINX servers as

well. In other words, servers seem to implement strict priority

and adjusting stream priorities in a way that does not affect

their order has no effect on performance. Interestingly, strict

priority seems to be in contrast with RFC 7540, which states

that “Each dependency is assigned a relative weight, a number

that is used to determine the relative proportion of available

resources that are assigned to streams dependent on the same

stream” [9].

We also observed that Apache and NGINX servers deviate

from requested priorities by sending a few bytes of a lower pri-

ority (higher density) object first. Figure 3 shows this behavior

where the first few bytes transferred under prioritization (gold

round markers) have density around 0.75. Then after around

0.2 seconds the server starts sending frames containing a set of

low density images in a round robin fashion. We suspect that

the initial transmission of high density bytes might be due to

races between threads that fetch objects from disk. As object

requests arrive from the server, they trigger server threads that

load images from disk and pass them to the HTTP/2 send

buffer. It is possible that low priority stream bytes enter the

HTTP/2 send buffer and pass to the send buffer of the TCP

connection before bytes of a high priority stream displace

them in the HTTP/2 send buffer. To avoid this HoL blocking

in the TCP send buffer the server administrator may set the

TCP_NOTSENT_LOWAT socket option to restrict the TCP send

buffer to the minimum size required to fully utilize connection

bandwidth [7]. Even if low priority bytes get in initially, once

the buffer empties, higher priority objects may be transmitted

by the server more quickly. Another option in Apache is to use

mod_file_cache module to keep high priority (low density)

objects in memory [22].

V. RELATED WORK

To put our work in context we briefly discuss related work

on web page optimization developers might use to reduce SI

or other web performance metrics [2], [23].

A. Web page optimization

There are a number of well-understood methods for web

page optimization [24], [25]. Browsers automatically prioritize

the load of CSS files, such that they do not block the display of

images when these load. Similarly, the load of JS files receives

high priority, because they might point to additional HTML,

CSS, or object files. Beyond that developers may optimize

image byte size to its display size, use lossless compression to

encode them, and leverage browser caching such that images

embedded in multiple pages do not need to be reloaded.

Further, developers may optimize a page to defer loading of

objects not visible ATF and to defer parsing of JS scripts

not on the critical path to first paint. After a page design is

finalized a developer may also minimize HTML and JS to

reduce script sizes. There are several tools on the market to

identify these and other candidate optimization for a given

page [5], [6], [26].

Recent browsers also provide facilities to order the loading

and display of image objects. For example the preload

HTML tag directs a browser to load certain images first [1].

This mechanism may be augmented by asking the browser to

defer the load of other images until they come into view, for

example when a user scrolls down the page [27]. Combined,

these mechanisms allow a user to specify three priority levels

even in HTTP/1.1. For more control, Chrome allows develop-

ers to order image load and display using the recently released

image decoding API [14]. The intent of the API is to allow

images to load asynchronously then display when loaded, thus

masking the loading time from the main thread. The API can

block the loading of certain images, such as advertisements or

high density images in our case, until the hero images or low

density images have been displayed. Finally, there is recent

work on ordering the preloading of media content such as

video, audio, and track [15].

The research community has also proposed several solutions

for automatic web page optimization. Shandian pre-processes

page structure on a proxy and then orders network transfers

and computation to reduce PLT [16]. KLOTSKI discovers

object dependencies and uses greedy scheduling to reduce PLT

without violating them [17]. Instartlogic CDN recodes images

to enable progressive load [28]. These methods, however, do

not prioritize images by their density, and so our method is

orthogonal.

B. Head of line blocking

Frame-based protocols, such as HTTP/2, suffer a “latency

tax” as they traverse TCP connections [29]. The problem was

first described by Clark and Tennenhouse as a disconnect

between in-order delivery of bytes in TCP streams and frame-

based application protocols, which only require in-order bytes

within each frame [30]. As a result, the delivery of frame i+1
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to the application layer may be unduly held up by frame i in

the TCP receive buffer waiting for the retransmission of a lost

TCP segment. Qian et al. define this type of HoL blocking as

Type-L (loss) blocking [31]. They also define Type-S (sender)

blocking, which occurs when delay sensitive HTTP/2 frames

queue in the TCP send buffer behind frames of a large, delay

insensitive object.

In this paper, we described that Type-S HoL blocking also

occurs when a low density object is blocked in the TCP send

buffer behind a high density object. The research community

has proposed several solutions to eliminate Type-S HoL block-

ing specifically. Kernel-Informed Socket Transport (KIST)

prevents Type-S blocking in the Tor network by buffering

data at the application layer and passing to the transport layer

data only at the socket serialization rate [32]. μTCP builds

in multi-queue support into TCP [29]. TM3 modifies kernel

packet scheduling to assign data to packets, in priority order,

right before their transmission [31]. SMig enables migration

of HTTP/2 streams between connections, even over different

network interfaces [33]. Finally, Goel et al. propose a multiple

connection approach that does not require any modifications

to the client [34]. The proxy solution we present in this paper

mitigates Type-S HoL blocking among images of different

densities.

VI. CONCLUSIONS

We presented a new method to improve web page Speed

Index by prioritizing the images of low density, or low byte

weight to pixel size ratio. We also introduced a new web page

characterization metric, Object Density Distribution (ODD),

and showed that most pages in the 200 most popular Alexa

pages have non-zero ODD kurtosis and skewness, which

creates meaningful opportunities for image prioritization. We

implemented a Go HTTP/2 proxy to prioritize images based on

image density embedded in object URLs. Density based image

prioritization reduced SI in our experiments by around 5.7%

on average and is an incrementally deployable, orthogonal

technique to existing web performance optimization methods.
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