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Abstract—Geo-locating BGP prefixes can help us understand
routing anomalies, prefix aggregation, or reveal what regions are
affected by an Internet outage. Our work shows that the naive
approach to prefix geo-location—simply mapping each IP address
to its corresponding geo-location—can be ambiguous because
a prefix may contain another, separately-announced prefix that
maps to a different geographical location. Should the containing
prefix also map to the locations of the contained prefix? We show
that this question is difficult to answer and characterize the scope
of these ambiguities by geo-locating around 680,000 prefixes to
countries, regions, and cities using both GeoLite and NetAcuity
Edge. We find that 0.3% of prefixes are ambiguous with respect
to countries but these prefixes constitute 8.5% of the IPv4 address
space. In the second part of our work, we study the mappings
from prefix to location. We find that most prefixes map to only a
single city but the shorter a prefix, the more locations it maps to.
Our dataset however contains outliers, e.g., a /23 that maps to
as many as 127 (potentially spoofed) countries. Our work takes
a first look at prefix geo-location and identifies issues one should
be aware of, which paves the way towards more sophisticated
applications such as the geo-location of autonomous systems. We
make our code and datasets publicly available to facilitate further
analysis.

Index Terms—BGP, prefix, geolocation

I. INTRODUCTION

The mapping of individual IP addresses to their geo-

graphical locations—i.e., IP geo-location—is a well-studied

problem and research area [4], [7], [19], [11]. This is not

the case for BGP-announced prefixes. A sound approach to

geo-locate BGP prefixes would improve our ability to analyze

and understand phenomena that manifest themselves in the

BGP world, e.g., network outages, BGP hijacking events, and

selective announcements at specific locations. In other words,

to link the BGP dimension to the geographical one, we need

to geo-locate BGP prefixes.
Currently, a sound approach to geo-locate BGP prefixes is

lacking. The most-recent approach was developed and applied

more than 14 years ago, in 2005 [4]: the authors used reverse

DNS lookups of addresses in a BGP prefix to determine the

set of locations that the prefix geolocated to. However, this

approach did not address how prefix hierarchies can confound

the geolocation of BGP prefixes, leading to potentially erro-

neous inferences. Further, the authors reported that only half

the addresses they studied had associated reverse DNS names.

In the years since 2005, IP address geolocation has improved

considerably and no longer relies solely upon reverse DNS.

Several commercial geolocation databases exist today, offering

new tools for geolocating addresses.
In this paper, we revisit how to geolocate BGP prefixes.

We show that the geo-location of prefixes is not a trivial

extension of IP geo-location, i.e., there is more to it than geo-

locating a set of IP addresses. Unlike IP addresses, prefixes

can overlap and, depending on routing dynamics and IP geo-

location, their resulting geographical interpretation can vary.

We formally define this problem as the prefix geolocation
ambiguity’ problem, quantify its extent, and characterise when

prefixes are ambiguous.

Next, we present best-effort mappings of BGP prefixes to

their locations using state-of-the-art IP address geolocation

databases (NetAcuity [3] and Maxmind Geolite [13]). We

study how many countries, regions, and cities prefixes geo-

locate to and find, to our surprise, that 98% (GeoLite) and

99% (NetAcuity) of prefixes map to a single country while

60% (GeoLite) and 73% (NetAcuity) map to a single city.

Unsurprisingly, /24s are more likely to map to a single location

than less specific prefixes, and we observe a long tail of

prefixes mapping to numerous locations. We manually inspect

some of these outliers and find that a prefix’s locations often

tell an interesting tale about its use: national ISPs operate

prefixes that map to a single country but numerous cities; VPN

providers have long prefixes that map to numerous (sometimes

spoofed!) countries; and some cloud providers and military

announce short prefixes that map to only a single city. Our

code and datasets are publicly available.

Our paper is organized as follows. Section II discusses

the dataset of BGP prefixes and IP geolocation databases

used in our analyses. In Section III, we define, quantify,

and characterize the problem of prefix geolocation ambiguity.

We analyze the mappings of BGP prefixes to their geoloca-

tions in Section IV. Section V proposes next steps towards

a more comprehensive understanding. Section VI contrasts

this study with past work that teaches us what to expect

from geo-location accuracy and geo-location spoofing. Finally,

Section VII concludes our work.

II. DATASETS

In this section, we present the datasets we use to study the

geolocation of BGP prefixes. We describe how we extract the

BGP prefixes that we will geo-locate (Section II-A) and how

we geo-locate IP addresses (Section II-B).

A. Extracting globally visible prefixes

To build a dataset of all network prefixes that are announced

on BGP and are globally visible (i.e., visible to most BGP

routers on the Internet) we leverage BGP prefix reachability

data from the RIPE RIS [17] and RouteViews [18] projects.

Both projects operate measurement infrastructure based on
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BGP collectors that peer with hundreds of operational BGP

routers worldwide (BGP peers, in the following). Specifically,

in our analysis we process RIB (i.e., routing table) dumps [15,

§ 2] collected at midnight (UTC) on March 26, 2018 for all

collectors of RouteViews and RIPE RIS.

We use data only from peers sharing their entire routing

table with the collector—commonly called full-feed peers.

Similarly to Orsini et al. [15, §2,5], we label peers as full-

feed if they advertise more than 400,000 prefixes and partial-

feed otherwise. We empirically determine this threshold by

inspecting the distribution of the number of prefixes that all

BGP peers see: we find a bimodal distribution, consisting of

several peers with a small number of prefixes on one extreme,

and peers with more than 600,000 prefixes on the other

extreme; this distribution is consistent with the distribution

seen by Orsini et al. [15, Fig 5(a)]. As a result, we process

data from 347 out of 741 routers distributed worldwide. We

then consider a prefix globally visible if at least 50% of these

routers advertise it, obtaining 681,345 (75.6%) globally visible

prefixes for March 26, 2018, out of 900,952 total. We also

keep track of a prefix’s originating autonomous system(s) as

we will incorporate it in our analysis in Section III-B.

We implemented our processing code in Python, allowing

us to use the Python bindings of the BGPStream library [1].

BGPStream provides a clean interface to BGP data by abstract-

ing away the complex interaction with BGP collectors.

B. Geo-location databases

Next, we describe the geo-location databases we use to geo-

locate individual addresses within globally visible prefixes.

We draw on two geo-location providers: NetAcuity Edge [3]

(henceforth referred to as NetAcuity) and MaxMind Geo-

Lite [13] (GeoLite). NetAcuity’s commercial database has an

alleged accuracy of 99.9% on a country level and 97% on a

city level [3]. GeoLite in contrast is free—it is a less accurate

version of the commercial GeoIP2 database that is maintained

by the same company. While GeoLite was available at the

time of our analysis, it has since been deprecated in favor of

GeoLite2 but to the best of our knowledge, only the database

format has changed. Depending on the country, GeoLite2’s

alleged accuracy ranges from 19% for Algeria to 100% for

Singapore [12]. We decided to use both a commercial and a

free database because the commercial NetAcuity allows us to

investigate our problem using state of the art accuracy while

GeoLite shows us what users of the free database (likely a

larger user base) would experience.

We use a NetAcuity dump that was published on Mar 25,

2018. Our GeoLite dump was published on Mar 27, 2018—

two days later. Recall that we extracted our globally visible

prefixes on Mar 26, 2018, so our dataset and our two geo-

location dumps cover a date range of only three days. This

way we minimize inaccurate results caused by outdated geo-

location databases. To map a prefix to its geo-location(s)

we use a library that we developed ourselves. It provides

a straightforward geo-location API by abstracting away the

details of interacting with NetAcuity’s and GeoLite’s database

format. For a given prefix, we find the geolocations of all of its

addresses and place these locations in a set. As we will show

in Section III and Section IV, this set of locations is an upper

bound on the number of locations that the prefix geolocates

to.

In this work, we do not study the accuracy of IP address

geo-location databases, focusing instead upon using these

databases to study BGP prefix geolocation, i.e., the problem

of assigning geo-location information to a prefix globally

visible on BGP given the geo-location information of their IP

addresses is known. We recognize that geo-location databases

can sometimes be inaccurate and we discuss this problem in

more detail in Section VI. As IP address geolocation improves,

the results from our method to geolocate BGP prefixes will

benefit as well.

III. AMBIGUITIES IN PREFIX GEO-LOCATION

In this section, we show that geo-locating BGP prefixes

is not a trivial extension of IP address geo-location, i.e., a

prefix should not necessarily be associated with the set of all
geographical locations its respective IP addresses map to. The

source of this problem is that, unlike IP addresses, announced

prefixes can overlap with each other, which complicates the

picture.

Consider Figure 1. A prefix a.b.c.0/23 overlaps with a

separately-announced, more specific prefix a.b.d.0/24. The

non-overlapping part (i.e., its IP addresses) of the containing

prefix maps to Belgium, whereas the overlapping addresses

map to Germany. Naive geo-location of the containing prefix

a.b.c.0/23 would associate it with both Belgium and Germany.

However, without additional knowledge, it is unclear if the

router(s) announcing the containing prefix can in fact route

traffic to the overlapping addresses in Germany. For example,

if prefix a.b.d.0/24 is withdrawn, can we still expect the

addresses in a.b.d.0/24 to be globally reachable given that they

are covered by prefix a.b.c.0/23? The answer to this question

depends on the routers and ASes originating the respective

prefixes, their relationship (e.g., are the ASes in a directly-

connected customer/provider relationship?), internal routing

configuration, and physical topology. In other words, if the

prefix a.b.c.0/23 (and the router announcing it) cannot provide

actual connectivity for the addresses in a.b.d.0/24, then its geo-

location should not include Germany. We therefore argue that

if no additional information is available, the geo-location of

prefix a.b.c.0/23 is ambiguous.

We defer the resolution of ambiguous prefixes to future

work but we note that performing a rigorous mapping has

practical implications when used in Internet monitoring and

data analysis. As an example, consider the problem of per-

forming live outage detection using BGP measurements: state-

of-the-art systems track what prefixes are visible on BGP by

a given minimum number of operational routers distributed

worldwide, and use IP geo-location to perform country-level

outage detection [14], [2]. CAIDA’s outage detection system,

IODA [2], spots an outage if the number of addresses that

geo-locate to a country and are visible on BGP drops [2]. This
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a.b.c.0–255
Belgium

a.b.d.0–255
Germany

Containing prefix: a.b.c.0/23

Contained prefix:
a.b.d.0/24

Fig. 1. A containing prefix a.b.c.0/23 whose separately announced and
more specific prefix a.b.d.0/24 maps to Germany while the remainder of the
containing prefix maps to Belgium.

approach can fail when an ambiguous prefix is not correctly

geo-located. Let us consider again the example in Figure 1

and let us assume that prefix a.b.d.0/24 (normally stable) is

suddenly withdrawn. If prefix a.b.c.0/23 should theoretically

be associated only with Belgium, but we instead use naive

prefix geo-location (i.e., mapping it to both Belgium and

Germany), IODA’s approach may mistakenly miss an outage

in Germany. With accurate prefix geo-location available, the

algorithm could take into account that once prefix a.b.d.0/24

is withdrawn, there are no prefixes geo-located to Germany

keeping these addresses reachable.1

In the remainder of this section we first quantify what

fraction of our globally reachable prefixes and address space

is affected by geo-location ambiguities (Section III-A) and

then seek to characterize when these ambiguities happen

(Section III-B).

A. Quantifying geo-location ambiguities

How many of our 681,345 prefixes are ambiguous? To

answer this question, it helps to first shed light on prefix

hierarchies. To this end, we use the dataset of globally visible

prefixes we assembled in Section II-A and assign each prefix

to one of four mutually exclusive categories:

1) Root prefixes contain other (middle or leaf) prefixes but

are not contained by any prefixes.

2) Middle prefixes both contain (middle or leaf) prefixes

and are contained by (root or middle) prefixes.

3) Leaf prefixes are contained by (root or middle) prefixes

but do not contain prefixes themselves.

4) Isolated prefixes are not part of the prefix hierarchy and

hence do not overlap with any other prefixes.

The rectangle in Figure 2 illustrates the percentage of pre-

fixes that fall into each category. More than half of our prefixes

are part of the hierarchy, i.e., they are either a root, middle,

or leaf prefix. The remaining 43% of prefixes are isolated.

Unsurprisingly, root prefixes constitute a small percentage of

prefixes but a disproportionately large percentage of addresses.

The inverse holds for leaf prefixes: they constitute almost half

of all prefixes, yet only 16% of addresses.

Note that only root (6%) and middle prefixes (4%) can

be ambiguous because only they contain other prefixes. But

1The alternative approach of simply monitoring the number of prefixes
geo-located to a country [14], would similarly fail if a.b.c.0/23 was suddenly
withdrawn, by mistakenly inferring an outage in Germany.

Leaf – 47.2% of prefixes
16.3% of addresses

Isolated – 42.6% of prefixes
34.6% of addresses

Root – 6.3% of prefixes, 39.8% of addresses

Middle – 3.9% of prefixes, 9.3% of addresses

Middle ambiguities:
1.6 / 1.0% countries

27.1 / 18.3% regions
41.0 / 26.2% cities

Root ambiguities:
4.3 / 3.0% countries

33.7 / 25.7% regions
49.3 / 35.6% cities

681,345 globally visible BGP prefixes

Fig. 2. Among our globally visible prefixes we distinguish between root,
middle, leaf, and isolated prefixes. ↓ refers to geo-location differences to
prefixes lower in the hierarchy while ↑ refers to prefixes higher in the
hierarchy. For example, 49.3% (NetAcuity) and 35.6% (GeoLite) of root
prefixes exhibit city ambiguities.

a.b.c.0–255
Chile

a.b.d.0–255
Peru

Ambiguous prefix: a.b.c.0/23

a.b.c.0–255
Chile & Peru

a.b.d.0–255
Peru

Unambiguous prefix: a.b.c.0/23

a.b.c.0–255
Chile

a.b.d.0–255
Peru

Ambiguous prefix: a.b.c.0/23

a.b.d.0–255
Chile

a.b.d.0–255
Chile

Unambiguous prefix: a.b.c.0/23

Fig. 3. The left prefixes’ geo-location is ambiguous (should a.b.c.0/23 geo-
locate to Peru?) while the right prefixes geo-locate unambiguously.

exactly how many prefixes among these 10% are ambiguous?

To find out, we first geo-locate each prefix by mapping all IP

addresses in its non-overlapping part to a set of its respective

countries, regions2, and cities. In the example of Figure 1,

a.b.d.0/24 would map to {Germany} and a.b.c.0/23 would

only map to {Belgium} because we discard its overlapping

part—a.b.d.0/24. We then label a prefix as “ambiguous” if the

locations of any of its contained prefixes (which can be a

leaf or a middle prefix) is not a subset of its own locations.

Algorithm 1 depicts pseudo code of the algorithm we use.

Figure 3 illustrates four examples. We label the two prefixes

on the left as ambiguous, because it is not clear what locations

the containing prefix should geo-locate to. Should the top left

prefix geo-locate to Peru? Should the bottom left prefix geo-

locate to Chile? Or Peru? Or both? The two containing prefixes

on the right however are unambiguous. The top right prefix

geo-locates to Chile & Peru ({Peru} ⊆ {Chile, Peru}) while

the bottom right prefix geo-locates to Chile.

The dotted arrows branching off of the rectangle in Figure 2

point to the number of geo-location ambiguities. The percent-

ages for the prefix types are based on our 681,345 globally

visible prefixes while the percentages under the geo-location

differences are based on the number of respective prefix

types. The slash between percentages separates NetAcuity (on

the left) from GeoLite (on the right). For example, 49.3%

2We use “regions” to indicate sub-national administrative divisions, such
as states in the U.S., provinces in Canada, and régions in France.
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Algorithm 1 Determining whether a prefix is ambiguous.

1: procedure IS PREFIX AMBIGUOUS(ctg pfx, ctd pfxs)
2: � Determine if the containing prefix (ctg pfx) is ambiguous

given the set of its contained prefixes (ctd pfxs).
3: ctd loc ← GEOLOCATE(ctd pfxs) � Determine contained

locations.
4: if IS FULLY SUBANNOUNCED(ctg pfx) then
5: if NUM LOCATIONS(ctd loc) > 1 then
6: return True
7: else
8: return False
9: end if

10: else
11: nonoverlapping pfxs ← SUBTRACT(ctg pfx, ctd pfxs)
12: ctg loc ← GEOLOCATE(nonoverlapping pfxs) �

Determine containing locations.
13: if ctd loc ⊂ ctg loc then
14: return False
15: else
16: return True
17: end if
18: end if
19: end procedure

TABLE I
THE PERCENTAGE OF PREFIXES (TOP ROW) AND ADDRESS SPACE

OCCUPIED BY THESE PREFIXES (BOTTOM ROW) THAT ARE AMBIGUOUS

WITH RESPECT TO COUNTRIES, REGIONS, OR CITIES.

NetAcuity (%) GeoLite (%)

Count. Reg. Cit. Count. Reg. Cit.

Ambiguous prefixes 0.3 3.2 4.7 0.2 2.3 3.3

Address space 8.5 27.5 32.5 8.0 27.2 30.4

(NetAcuity) and 35.6% (GeoLite) of root prefixes have city

ambiguities. We observe that root prefixes consistently exhibit

more ambiguities than middle prefixes. Also, the more specific

the location type, the more ambiguities we observe: country

ambiguities are an order of magnitude less prevalent than

region and city ambiguities.

Figure 2 shows the percentage of ambiguous prefixes with

respect to the number of root and middle prefixes, but how

many prefixes are ambiguous with respect to all of our 681,345

prefixes? In other words: What are the odds of a randomly-

chosen prefix to be ambiguous? Table I provides the answer for

prefixes in the first row, and for the corresponding IPv4 address

space (compared to all 232−1 IP addresses) in the second row.

Only 0.3% (NetAcuity) and 0.2% (GeoLite) of all prefixes

are ambiguous with respect to countries. City ambiguities are

more likely with 4.7% (NetAcuity) and 3.3% (GeoLite). In

contrast, a third of the IPv4 IP address space is ambiguous

with respect to cities, which highlights the pervasiveness of

ambiguous prefixes. This finding also serves as a reminder

that a small number of prefixes can constitute a significant

fraction of the address space.

B. Understanding geo-location ambiguities

Here, we take a first look into characterizing when pre-

fixes are ambiguous and investigate the potential for using

the resulting inferences to resolve geo-location ambiguities.

Resolving a containing prefix’s ambiguous geo-location re-

quires determining whether the containing prefix should also

be assigned the location(s) of addresses from its contained

prefixes. For example, we would like to determine if the

containing prefix in Figure 1 should map to both Belgium

and Germany, or to Belgium alone. We present a preliminary

exploration of geo-location ambiguities and present potential

explanations and predictors that can help resolve ambiguities.

Our first intuition was that ambiguous prefixes may be

announced by an origin AS that is different from its contained

prefix(es). If an ambiguous containing prefix and its contained

prefix are announced by separate ASes, we could consider

the prefixes different for all practical purposes, which would

resolve the ambiguity.

We iterated over all 472,174 pairs of containing3 and con-

tained prefixes and determined for each pair if the containing

prefix is ambiguous (with respect to countries, regions, and

cities) compared to its contained prefix, and if there is an

origin AS difference between the two. Though only 69,264

(10%) of the 681K globally visible prefixes are containing

prefixes, these containing prefixes form a large number of

prefix pairs (472,174) with their contained prefixes. Table II

shows the results of this analysis. The four percentages of each

of our three location types add up to 100%. Each location type

has two columns, indicating the percentage of identical geo-

locations (=) and differing geo-locations (
=). The table’s rows

show the percentage of identical and differing origin ASes.

For example, related to countries, 20.6% of prefix pairs geo-

locate to identical countries but have different origin ASes.

The table shows that origin AS differences are generally less

likely than identical origin ASes except when there are country

ambiguities. We highlight this result further in Table III, which

shows an alternate representation of the data from Table II.

Table III shows the conditional probabilities that the origin

AS differs given that there is a difference in the location of

the containing and contained prefix pairs. Interestingly, we

observe that an origin AS difference occurs for two-thirds of

the containing and contained prefix pairs which have a country

ambiguity. For region and city ambiguities, such origin AS

differences are less likely.

Next, we hypothesized that shorter containing prefixes are

more likely to be ambiguous, since they can contain many

longer prefixes which may geolocate to a different location. We

confirm this hypothesis by examining the relationship between

the length of the containing prefix and the likelihood that the

prefix is ambiguous at the country and city levels in Figure 4.

Shorter prefixes are indeed more likely to be ambiguous.

We then investigated which autonomous systems are partic-

ularly likely to have prefixes that exhibit geo-location ambi-

guities. Figure 2 shows that our dataset has 69,264 containing

prefixes; of these, 2,269 exhibit a country-level ambiguity with

at least one of their contained prefixes. The ten ASes with the

most containing prefixes that have country-level ambiguities

3The set of root and middle prefixes together constitutes containing prefixes.
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TABLE II
THE RELATIONSHIPS BETWEEN THE GEO-LOCATION AND ORIGIN AS(ES) OF A CONTAINING AND ITS CONTAINED PREFIXES.

NetAcuity (%) GeoLite (%)

Country Region City Country Region City


= = 
= = 
= = 
= = 
= = 
= =


= origin AS 7.4 20.6 18.6 9.4 22.4 5.6 5.9 22.1 18.0 10.0 20.4 7.6

= origin AS 3.7 68.3 39.5 32.5 49.0 23.0 3.0 69.0 33.9 38.1 41.2 30.8

TABLE III
THE CONDITIONAL PROBABILITIES OF AN ORIGIN AS DIFFERENCE

KNOWING THAT THERE IS A GEO-LOCATION AMBIGUITY.

Conditional probability NetAcuity GeoLite

P(origin-as-diff | country-diff) 0.66 0.66

P(origin-as-diff | region-diff) 0.32 0.35

P(origin-as-diff | city-diff) 0.31 0.33

include large transit providers (Level 3, Cogent, Open Tran-

sit), large residential ISPs (Centurylink, Verizon), software

companies (Apple, Accenture), and government agencies (U.S.

DoD). These ten ASes account for 283 (12.4%) of the 2,269

prefixes.

For most of the containing prefixes from the above ASes,

their contained prefixes were announced by either the same AS

or frequently, by a sibling AS. In these cases, it is plausible

that the containing prefix can provide connectivity to the

contained prefix’s addresses if the latter is withdrawn; thus,

the containing prefix should likely inherit the location(s) of

the addresses from its contained prefixes. However, for some

of the above ASes, we observe that the containing and their

respective contained prefixes do not appear related to each

other, i.e., the prefix pairs belong to different ASes and these

ASes are neither siblings, nor are they in a customer-provider

relationship. For example, of 30 containing prefixes belonging

to Level 3 that were ambiguous at the country level, 25 have

contained prefixes announced by ASes that appear unrelated

to Level 34. For such containing prefixes, we may be able

to resolve the geo-location ambiguity by only considering

the geo-locations of addresses that the prefixes can feasibly

provide connectivity to (i.e., if the contained prefix belongs to

a sibling or customer AS).

Our preliminary results suggest that it may be possible

to resolve ambiguities in containing prefixes’ geo-locations

by examining various features associated with the containing

and contained prefixes, such as their origin ASes and prefix

lengths. In future work we will examine whether additional

features can help explain geo-location ambiguities, e.g., the

type of ASes that the containing and contained prefixes

belong to (transit, stub, multi-homed), the extent to which the

containing prefix is subannounced etc.

In this paper, we handle ambiguous prefixes by reporting the

4It is possible that Level 3 shares a relationship with these ASes that we
are unaware of.
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(b) The % of city ambiguities by containing prefix length.

Fig. 4. The percent of country (top) and city (bottom) ambiguities by
containing prefix length.

upper bounds of the number of locations that these prefixes

geo-locate to. In Section IV, we geo-locate prefixes by having

them map to all contained locations—even if the prefix is

ambiguous. Our results therefore provide an upper bound on

the number of locations that a prefix geo-locates to.

IV. GEO-LOCATING PREFIXES

Next, we arrive at another key question of our work: What
places do prefixes geo-locate to? Section IV-A first takes a

look at how many locations (i.e., countries, regions, and cities)

prefixes geo-locate to and Section IV-B then studies interesting

outliers that we discovered.

A. How many locations do prefixes geo-locate to?

We begin by iterating over the globally visible prefixes we

extracted in Section II-A and mapping each IPv4 address
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to its location, using both NetAcuity and GeoLite. Both

geo-location databases provide information about an address’

country, region, and city. For each prefix, we count the number

of countries, regions, and cities it maps to. Note that we do

not distinguish between ambiguous and unambiguous prefixes

for this analysis; thus, the results we report here describing the

number of locations that a prefix maps to are upper bounds.

Figure 5 illustrates the results. In the top three diagrams,

the x-axis shows the number of locations (in log10) while the

y-axis represents the empirical CDF of prefixes that map to

the given number of locations. Interestingly, it is unlikely for

a prefix to map to more than one geographical location—be

it a country, region, or even a city. However, this depends on

a prefix’s size, as we will show later. Most prefixes map to

a single location: 98% (NetAcuity) and 99% (GeoLite) geo-

locate to a single country, 80/67% to a single region, and

73/60% to a single city. The bottom three diagrams in Figure 5

illustrate the number of IP addresses that are covered by the

prefixes constituting the top three diagrams. The number of

addresses refers to all addresses covered by the respective

prefixes. We count addresses that are covered by multiple

prefixes only once, i.e., the prefixes a.b.c.0/23 and a.b.c.0/24

cover 512 addresses. All sub-plots in Figure 5 have a long tail:

0.3% (NetAcuity) and 0.1% (GeoLite) of prefixes map to more

than five countries while 5.4/2.1% map to more than ten cities.

Section IV-B will discuss the most interesting outliers we

discovered. These numbers show that BGP prefixes can vary in

the number of locations they geolocate to, but many map to a

single location. This result suggests that we can potentially

use BGP data to detect and analyze phenomena, such as

connectivity outages, even at fine geographic granularity.

Figure 5 treats all prefixes equally and does not differentiate

by their length. Our intuition however tells us that prefix length

matters—a /8 is likely to map to more locations than a /24.

We therefore repeat our analysis for all prefix lengths in our

dataset, ranging from /8 (the shortest) to /24 (the longest).

Figure 6 illustrates the number of geographical locations that

prefixes of a given length map to. Indeed, we find that

it confirms our intuition: more specific prefixes geo-locate

to fewer locations. Also, prefixes map to fewer countries

than regions, and fewer regions than cities. Still, even /24s

occasionally map to more than one location—0.5% map to

more than one country and 5.8% map to more than one city.

Recall that this analysis did not take into account that some

prefixes are ambiguous. Thus, the number of locations that

prefixes geolocate to in Figure 5 and Figure 6 are an upper

bound.

B. Geo-location outliers

Figure 6 tells us how many locations a prefix of a given

size tends to map to but not all prefixes adhere to these

expectations. We will now take a closer look at prefixes that

geo-locate to an unexpected number of locations. We find that

our data tells interesting tales about the purpose of prefixes

and, more broadly, provides a new lens to look at Internet

data. We do not simply rank all prefixes by the number of
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(b) The empirical CDF of prefixes’ addresses over the number of locations.

Fig. 5. The y-axis represents the empirical CDF of prefixes (top) and the
prefixes’ covered addresses (bottom) that geo-locate to a given number of
countries, regions, and cities (x-axis).

locations they map to because short prefixes such as a /8 tend

to map to more locations than long prefixes. We therefore use

a location diversity metric to explore outliers, which we define

as:

Dlocation =
# of locations

# of reachable addresses

A /24 prefix whose addresses geo-locate to 254 different

countries would have a diversity metric of 254/254 = 1. If

it only geo-locates to a single country, the metric would be

1/254 = 0.004. Note that our diversity metric exhibits bias:

theoretically, a /24 can have maximum diversity for its 254

addresses but a /8 prefix’s diversity metric can never equal 1

because there are no 16 million countries. Regardless, we find

that our metric is useful for exploratory analysis, and indeed,

we discovered three noteworthy outlier classes: (i) prefixes that

geo-locate to many countries but few cities; (ii) prefixes that

geo-locate to many cities in a single country; and (iii) short

prefixes that geo-locate to a single city.

1) Prefixes in many countries but few cities: We discovered

many long prefixes that geo-locate to numerous countries

while being present in only one city per country. Upon

inspecting the originating autonomous system and the whois

records, we discovered that these prefixes, shown in Ta-

ble IV, are owned by two VPN providers: “HideMyAss!” (a

subsidiary of AVAST) and “IAPS Security Services” whose

prefix is announced by NFORCE. Users often use VPNs to
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Fig. 6. The number of geographical locations that prefixes with a given length
geo-locate to. We distinguish between countries (lightest), regions (darker),
and cities (darkest). The box plots do not contain outliers beyond the whiskers.

TABLE IV
PREFIXES THAT GEO-LOCATE TO MANY COUNTRIES BUT ONLY A FEW

CITIES. THE PREFIXES ARE OWNED BY TWO VPN PROVIDERS.

Prefix # countries # cities # city errors Owner

5.62.60.0/23 127 100 27 HideMyAss!

5.62.62.0/23 125 100 26 HideMyAss!

5.62.56.0/23 68 72 23 HideMyAss!

5.62.58.0/23 62 67 20 HideMyAss!

46.36.203.0/24 28 23 33 IAPS

46.36.201.0/24 24 46 18 IAPS

46.36.200.0/24 23 31 11 IAPS

circumvent location-based content restrictions, which incen-

tivizes VPN providers to maximize their country footprint. The

prefix 5.62.60.0/23 maps to 127 different countries—including

Christmas Island, North Korea, and even Vatican City. Our

skepticism about these locations was reinforced by the work

of Weinberg et al. whose IMC’18 paper showed that some VPN

providers “lie” about their proxies’ geo-location [20]. Earlier,

in 2014, a blogger also expressed doubts about the alleged

locations of IAPS’s proxies [8]. All prefixes in Table IV contain

several IP addresses that NetAcuity could not geo-locate—a

particularly rare error considering NetAcuity’s high coverage.

Apart from the VPN providers in Table IV, the prefixes with

the largest number of countries are dominated by the French

cloud hosting provider OVH and the Swedish hosting provider

MissDomain.

2) Prefixes in many cities but one country: Figure 6 shows

that shorter prefixes tend to geo-locate to more locations.

Our data exhibits many (both short and long) prefixes that

geo-locate to one country but hundreds, or even thousands

of cities. Unsurprisingly, such prefixes mostly belonged to

large national ISPs such as the German Deutsche Telekom, the

American Comcast, and the French Orange. We also find long

prefixes that map to a surprisingly large number of cities. The

French telecommunication provider Orange announces several

/24 and /23 that map to hundreds of French cities. For example,

62.160.124.0/24 geo-locates to 177 cities.

3) Short prefixes in a single city: Finally, we stumbled upon

prefixes as short as a /8 that geo-locate to a single city. Our

data shows that many prefixes—one as short as /8—geo-locate

to a single city. Upon manual inspection we find that these

outliers mostly belong to telecommunication providers, cloud

providers, and military: (i) The Kenyan provider Safaricom

operates two /12 prefixes that geo-locate to Nairobi, (ii) Korean

Telecom operates several /12 prefixes that geo-locate to Seoul,

(iii) the Chinese TieTong Corporation operates a /11 and /12

that map to Beijing, and (iv) the German Deutsche Telekom

announces a /11 that maps to Bonn. Amazon announces a /12

that maps only to Ashburn in the U.S. (Amazon operates a

data center in the city); Samsung announces a /12 that maps

to Seoul; and Cloudflare announces a /12 that maps to San

Francisco; the Dutch research and education service provider

SURFnet announces a /12 that maps to the Dutch city Utrecht.

Finally and most strikingly, the U.S. Army Intelligence and

Security Command announces 55.0.0.0/8, which maps to Fort

Huachuca, a U.S. Army installation.

V. DISCUSSION

A longitudinal analysis would provide further insight into

how the geographical properties of prefixes change over time.

We only considered a single snapshot in time but GeoLite (but

not NetAcuity) maintains an archive of past database releases,

making it straightforward to rerun our experiments over past

data. Finally, our work is limited to IPv4 prefixes. Future work

should study the geo-location of IPv6 prefixes, and highlight

how these results compare to our IPv4-based results.

Section III-B lamented the lack of ground truth that has

the correct mapping of a prefix to its geo-locations, regardless

of potential ambiguities. One could create ground truth by

repeatedly running traceroutes to a contained prefix that is

causing ambiguity for its containing prefix. Once the contained

prefix is withdrawn, the behavior of traceroutes could turn

ambiguity into certainty: if the traceroutes keep reaching

their destinations we may conclude that the containing prefix

also geo-locates to the overlapping locations. If however the

traceroutes do not reach their destinations, we may not be

able to draw conclusions, since the withdrawal might be

related to events of different nature, including failures in the

final destination network. Large-scale, longitudinal traceroutes

coupled with BGP data may provide the reference information

we need to resolve these ambiguities.
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VI. RELATED WORK

Most similar to this paper is Freedman et al.’s [4] work

from IMC’05, in which they studied the geographical locality

of prefixes and their effect on route aggregation, routing table

size, and routing policies. In contrast to our use of geo-location

databases, the authors relied on reverse DNS to map an IP

address to its location. Freedman et al.’s work counts more

than ten years of age—routing tables have since grown and

changed substantially—and did not consider prefix hierarchies.

In this paper, we did not evaluate the accuracy of the geo-

location databases we used; however, this topic has received

attention from the research community [16], [19], [5], [9].

Geo-location appears to be highly accurate at the country level.

In 2011, Poese et al. [16] reported a 96–98% accuracy depend-

ing on the database. Similarly, Shavitt et al. [19] reported at

least 80% for seven databases, also in 2011. Finally, Gharaibeh

et al. [5] showed at IMC’17 that their tested databases are

at least 77.5% accurate when geo-locating Internet routers

(NetAcuity had 89.4% accuracy at the country-level). Note

however that these works used very different datasets for

ground truth, so the accuracy numbers cannot be compared.

City-level accuracy has lagged behind country-level accuracy,

although recent work suggests that accuracy is improving at

the city-level too. In 2011, Poese et al. [16, § 3] measured

that “less than 20% of the exact matches for Maxmind and

InfoDB are within a few tens of Km from the ground truth.”

In the same year, Shavitt et al. [19, § IV.B] measured city-

level accuracy ranging from as low as 0.8% (IPligence) to

79.1% (NetAcuity). In 2017, however, Gharaibeh et al. [5,

§ 5.2.1] showed that the NetAcuity geolocation database was

successfully able to geolocate router addresses at the city-level

with an accuracy of 74.2%. Considering that Gharaibeh et al.

focused on geolocating router addresses, and that geolocation

databases are especially bad at it (since their primary focus

is on the edge [10]), we expect the geolocation accuracy of

non-router addresses to be better.

There are incentives to spoof one’s geo-location, e.g., to

bypass region blocks for online video. Not only is it possible to

interfere with active geo-location methods [6] but Weinberg et

al. [20] recently showed that it is happening in the wild: several

VPN providers spoof geo-location to make their customers

believe that they operate proxies in countries they are not.

Our results from Section IV-B offer additional evidence that

some VPN providers may be spoofing their geo-location.

VII. CONCLUSION

In this work we took a first look at geo-locating BGP

prefixes. This problem differs from (but builds on) geo-

locating IP addresses because of the complexity that BGP

introduces. We showed that simply mapping each of a prefix’s

IP addresses to its geographical location may be misleading

because separately announced, more specific prefixes, can map

to different locations. We quantified how often this happens

for both the commercial NetAcuity Edge and the free GeoLite

database and took preliminary steps in the investigation of

how to solve such ambiguous cases. We also found that most

prefixes map to a single geographical location—for NetAcuity

98% map to a single country and 73% to a single city. This

is an interesting result, because it suggests that BGP data

analysis can reveal phenomena (e.g., connectivity outages)

even at a relatively fine geographic granularity. It is likely

that such potential will further increase in the future, given

the increasing fragmentation of prefixes in the global routing

table and the fact that (as we found) longer prefixes are more

likely to map to a single location than short ones.
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