
A Public Dataset for
YouTube’s Mobile Streaming Client

Theodoros Karagkioules∗†, Dimitrios Tsilimantos∗, Stefan Valentin∗,
Florian Wamser‡, Bernd Zeidler‡, Michael Seufert‡, Frank Loh‡ and Phuoc Tran-Gia‡

∗Paris Research Center, Huawei Technologies France
†LTCI, Télécom ParisTech, Université Paris-Saclay

‡University of Würzburg, Germany
Email: firstname.lastname@{huawei.com∗, telecom-paristech.fr†, informatik.uni-wuerzburg.de‡}

Abstract—Datasets are a valuable resource to analyze, model
and optimize network traffic. This paper describes a new public
dataset for YouTube’s popular video streaming client on mobile
devices. At the moment, we are providing 374 hours of time-
synchronous measurements at the network, transport and appli-
cation layer from two controlled environments in Europe. After
describing our experimental design in detail, we discuss how
to use our dataset for the analysis and optimization of HTTP
Adaptive Streaming (HAS) traffic and point to specific use cases.
To assure reproducibility and for community benefit, we publish
the dataset at [1].

I. INTRODUCTION

Datasets for Internet traffic are more valuable than ever for
communication research. They provide important insight into
network and application behavior, especially when covering
large-scale Internet services. One of such services is YouTube,
a video streaming platform that is generating more than 20%
of the mobile data traffic [2]. According to YouTube’s own
statistics, its users are streaming a billion hours of video every
day, with over half of these requests coming from mobile
devices [3].

Interestingly, the mobile use of YouTube’s service has
been only rarely covered by public datasets. Instead, most
available data were collected by using a personal computer
as a streaming device [4]. This, however, cannot provide
representative measurements for mobile use, since YouTube’s
Web-player (running inside a Web-browser on a personal
computer) operates differently than its native application for
mobile operation systems [5], [6]. Although YouTube fol-
lows the Dynamic Adaptive Streaming over HTTP (DASH)
standard [7] on both platforms, it employs different adaptive
streaming algorithms between the two [5]. On mobile devices,
YouTube also employs the Quick UDP Internet Connections
(QUIC) protocol [8] more often than on desktop devices,
according to [9] and to our observations from two separate
locations in Europe. The few public datasets that include
measurement of mobile clients [5], [10], however, merely
provide network traces. Since YouTube employs Transport
Layer Security (TLS) to encrypt application-layer information,
focusing on packet traces alone can only offer a limited view
on the streaming process.

Our dataset aims to fill this gap by providing measurements
that were simultaneously obtained at the network, transport

and application layer. The data were generated with YouTube’s
native Android application on two Smartphone models, at two
locations in Europe, for over 5 months. Currently, 374 hours of
curated data are available, of which about 25% are manually
labeled according to the buffer state of the player.

At the application layer, we extracted a wide range of
adaptive streaming parameters from YouTube’s mobile client.
This was possible by our recently introduced Wrapper App
[6], which allows remote control and monitoring of YouTube’s
native Android application. The source code of our tool can
be downloaded at [1] along with the dataset. At the transport
and network layer, we used the common tool tcpdump [11]
to record unfiltered packet logs on the Smartphones and a
gateway. During our entire measurement period, YouTube
deployed QUIC, rather than Transmission Control Protocol
(TCP), for transporting the streaming data. Consequently, most
of the recorded logs refer to User Datagram Protocol (UDP)
traffic.

Our aim is not to cover realistic yet loosely controlled
scenarios, such as field tests in mobile networks. Instead, the
focus of our dataset is on the synchronous measurement at the
network, transport and application layer in tightly controlled
environments. To this end, we followed the guidelines of the
DASH Industry Forum [12] and designed a testbed that allows
to control throughput, Packet Error Rate (PER), Round Trip
Time (RTT), and streaming quality in real time. This high
degree of control and its precise documentation allows to
reproduce our data as well as using it for traffic modeling
and factor analysis.

Consequently, our dataset can be immediately applied to an-
alyze HAS traffic across multiple layers from the perspectives
of packet management, Quality of Experience (QoE) factor
analysis [13] and HTTP Adaptive Streaming (HAS) algorithm
design. We will discuss further uses and point to ongoing
applications of our data below.

The remainder of the paper is structured as follows. Sec-
tion II documents our experimental setup and design, including
our Wrapper App. Our measurement procedures and measured
variables are described in Section III. Section IV provides an
overview of the currently available data. Section V provides
ongoing applications and further ideas for using our data and
Section VI summarizes the paper.

Smartphone #1
1. Native YouTube application
2. Network packet logs via tcpdump
3. Wrapper application for video info

Smartphone #2
Idle while Smartphone #1 is in use

Linux machine
1. Ethernet connection to Internet
2. WLAN access point for Smartphones
3. Traffic configuration via the tc tool

Linux machine and Smartphones
connected via USB for ADB
debugging and automatic control

Fig. 1: Hardware setup for regulated and automatic HAS traffic
measurements

II. EXPERIMENTAL DESIGN

In this section we describe the setup, scenarios, streaming
content and location-specific differences for our experiments.

A. Setup

Our experimental setup consists of off-the-shelf consumer
hardware, common tools for Linux and Android and cus-
tomized measurement software for Android and Linux. For
the latter, we are using our Wrapper App [6] to extract video
information and streaming statistics from YouTube’s Android
player and control scripts to automatize the experiments.

The hardware setup is illustrated in Figure 1. A Linux
computer (Kernel 3.16.0-71-lowlatency) controls two Android
Smartphones via Universal Serial Bus (USB) connections
using the Android Debug Bridge (ADB) [14]. The control
computer is connected to the Internet via a T1 line and
operates as an Internet-gateway and Wireless Local Area
Network (WLAN) access point for the Smartphones. The
Smartphones perform video streaming via an IEEE 802.11g
WLAN link at a carrier frequency of 2412 MHz. Due to the
close distance between phones and access point, the average
Signal-to-Interference-plus-Noise Ratio (SINR) was 23 dB,
which provides the maximum physical layer rate of 54 Mbit/s.

The measurements are performed on the control computer
and on the Smartphones. On all the devices, network and
transport-layer information is collected with tcpdump (ver-
sion 4.7.4, libpcap version 1.7.4). On the Smartphones, the
native YouTube application (version 12.32.60) for Android
generated HAS traffic over UDP according to QUIC [8].
Although we consistently observed some TCP packets at the
beginning of each session, all video streams were transported
via UDP/QUIC. We assume that the TCP connections were
used for tracking.

The setup allows to control the throughput, Internet Protocol
(IP) packet delay and PER that are experienced by the Smart-
phones. This traffic control is done at the control computer
via Python scripts that adjust a Token Bucket Filter (TBF) in

Fig. 2: Screen-shot from the YouTube Android application
during measurement with stats for nerds

the Linux kernel [15]. The scripts can automatically modify
the above network parameters during an experiment at pre-
determined or random points in time, which allows to emulate
the dynamics of a mobile network in a reproducible manner.

In order to control and to extract application-layer infor-
mation we designed the Wrapper App [6] – a measurement
tool for the native YouTube Android application. In principle,
our tool records application-layer information that is available
through the stats for nerds feature of YouTube’s Android
application. As shown in Figure 2, this feature offers the values
of some streaming-related parameters and the option to copy
them to other applications via the clipboard. The Wrapper App
accesses this information basically by executing touch-and-
swipe events on the Smartphone, a process which is remote-
controlled by the measurement scripts with the help of ADB.
In addition, the Wrapper App uses Android’s User Interface
(UI) automator [16] to access the video progress bar.

These measurements are started and recorded periodically
on the control computer. A measurement cycle is initialized by
a control script, which starts the Wrapper App. This tool then
launches the YouTube application and configures it according
to the parameters in the scenario-specific configuration file
(e.g., deactivating auto-play, choosing a fixed quality). The
Wrapper App then starts the measurement by requesting the
specified video.

It is important to note that the Wrapper App records only
the mentioned application-layer measurements but no content
(such as video, image data and audio).

B. Scenarios

To reduce the experimental design space and to structure our
dataset, we define the 8 scenarios in Table I. More scenarios
can be easily defined in individual configuration files.

Beginning with the simpler scenarios, no traffic control
is performed in scenarios (s1) to (s3). Scenarios (s1) and
(s2) perform video streaming at a constant quality. In (s3)
a manual quality change is introduced at a random time in
t0 ∈ [120, 240] s. This time window is chosen to be in the
middle of the video duration, which is specified in Table II,
to assure that the client can reach its target buffer level.

In (s4) to (s8), various forms of traffic control are activated.
In (s4) a rate limitation at 500 kbit/s is configured, starting at

TABLE I: HAS scenarios

Scenario Quality Rate limit
s1 480p No
s2 720p No

s3 720p
t0−→480p No

t0 ∈ [120, 240] s

s4 Auto No
t0−→ 500 kbit/s

t1−→ No
t0 ∈ [120, 240]s, t1 = t0 + 150

s5 Auto 1024 kbit/s
s6 Auto (see Figure 3)

s7 Auto No 120s−−→ 3000 kbit/s
t0
�
t1

100 kbit/s

t0 = 160 + 85n, n ∈ N
t1 = 205 + 85n, n ∈ N

s8 Auto No
t0
�
t1

100 kbit/s

t0 = {120, 300}s, t1 = {180, 380}s

0 100 200 300 400 500 600

Time (s)

1

2

3

4

5

6

R
at
e
li
m
it
(M

b
it
/s
)

τ = 11, ǫ = 1

τ = 13, ǫ = 1.25

τ = 15, ǫ = 1.5

τ = 20, ǫ = 1.75

τ = 25, ǫ = 2

Fig. 3: Traffic configuration of rate (Mbit/s), delay τ (ms) and
PER ε (%) for (s6) according to DASH-IF guidelines

a random time in the interval [120, 240] s with a total duration
of 150 s. In this scenario, we configure the YouTube client
to choose the streaming quality automatically according to its
built-in HAS policy. Scenario (s5) also allows video quality
adaptation but at a constant throughput limit of 1024 kbit/s.

Scenario (s6) implements a test case specified by the DASH
Industry Forum (DASH-IF) in [12, Table 5] with quality
adaptation. The stepwise traffic control in this scenario is
illustrated in Figure 3. Finally, (s7)-(s8) emulate cases with
steep throughput drops to 100 kbps, where even the lowest
video quality is not supported. These scenarios allow to study
the behavior of adaptive streaming policies in the case of
coverage loss due to shadowing or handover failures in mobile
networks.

C. Streaming content

In order to provide data for representative videos, we chose
3 clips whose average encoding rates correspond to the average
rates in [17, Table 4]. Table II provides the average µ and the

TABLE II: Streaming content and video bit-rate statistics
(mean µ and standard deviation σ)

Video Duration (s) Bit-rate (kbit/s)
144p 240p 360p 480p 720p 1080p

TOS 734
µ 107 240 346 715 1347 2426
σ 35 78 175 346 641 1152

Nature 561
µ 108 242 398 792 1566 3009
σ 48 109 231 424 794 1381

TalkShow 559
µ 52 102 282 600 1156 2324
σ 29 54 137 267 492 919

standard deviation σ of the encoding rate for each streamed
quality of the selected videos.

These videos represent different types of content. The movie
Tears of Steel (TOS), with YouTube video ID is “OHOpb2fS-
cM” [18], contains a mixture of computer generated and
natural images in high motion. The clip is commonly used
for testing video codecs and recommended in DASH-IF’s
specification [12, Section 2.1]. As a second clip we chose
a nature documentary (Nature) [19] with YouTube video
ID “2d1VrCvdzbY”. This video consists of complex natural
scenes (e.g., clouds, trees and water surfaces). Finally, we
chose a talk-show (TalkShow) [20] as a low-motion clip with
YouTube video ID “N2sCbtodGMI”.

None of these videos is monetized, which prevents interrup-
tions through advertisements. TOS, TalkShow and Nature are
encoded at 24, 25 and 30 fps, respectively and are all available
at the horizontal resolutions {144p–1080p}. Each of these
qualities is available in two representations. First, as a H.264-
encoded stream of DASH segments in an MP4 container
and, second, as a VP9-encoded stream in a WebM container.
YouTube’s streaming application automatically chooses the
format and indicates the chosen representation by an ‘itag’
field that is available in our dataset. The ‘itag’ index points
to a specific field in the DASH manifest file, from which the
content URL, format, URL, peak bitrate and other meta-data
can be extracted according to the DASH specification [7].

D. Location-specific differences

The measurements were performed at two locations in
Europe, i.e. Paris in France and Würzburg in Germany. While
the main setup, procedures and scenarios were identical, two
relevant differences between the setups were inevitable.

First, the performance of the T1 uplink to the Internet neces-
sarily differed between Würzburg and Paris. While Würzburg’s
uplink provided 30% higher average throughput, it also came
with a 26% higher average RTT. Our measurement results for
those links are summarized in Table III.

The second difference was the used Smartphone model. In
Paris, two identical phones of the type Huawei Nexus 6P
(Model H1512, baseband version: angler-03.78) were used
alternately. Switching between these phones was necessary
since, despite line power and a deactivated display, the mea-
surements depleted the battery of the active phone faster than it

TABLE III: Mean µ and standard deviation σ for 10000
measurements of RTT and 1954 measurements of throughput

Location RTT (ms) Throughput (Mbit/s)
µ σ µ σ

Paris 18.64 24.17 9.07 2.17
Würzburg 25.19 34.41 13.01 4.63

could recharge. Using two phones allowed the inactive phone
to recharge in order to provide continuous experiments. In
Würzburg, the Smartphone Google Pixel XL (Model marlin,
baseband version: 8996-012511-1611190200) was used. This
device did not suffer from battery depletion, making multiple
phones unnecessary at this location. Note that both locations
used the same version of the Android operation system, i.e.,
version 7.1.1 with the security patch from December 5th, 2016.

Although we observed no significant influence of these
location-specific differences, the reader should be aware that
their effect was not systematically studied.

III. DATA COLLECTION

In this section, the measurement procedures at the network,
transport and application layer as well as the labeling process,
are described in detail.

A. Network and transport-layer information

On the control computer and on the Android phones, we
use the traffic capturing tool tcpdump to record TCP, UDP
and IP information. Contrary to packet sniffing, we are using
tcpdump not to record payload but to log meta data from the
IP and UDP/TCP headers. For each packet that passes the
TCP/IP stack, we configure tcpdump to produce a new record
in a log file that contains a timestamp and the fields “tos: type
of service, ttl: time to live, id: IP ID, offset: fragment offset,
flags: fragmented diagram, proto: protocol type, length: packet
length” and “source IP > destination IP: protocol, packet
length”. Packet length is given in bytes and the timestamp
is in Unix epoch time (i.e. seconds after 00:00 UTC on 1
January 1970). Table IV shows the most relevant parameters.

Note that we apply no filter to tcpdump, which means that
we are logging all IP packets in both directions (ingoing
as well as outgoing). Although all packet types are logged,
YouTube’s Android client employed QUIC for streaming.
Thus, most of the recorded traces refer to UDP packets.

B. Application-layer information

We measure information at the application layer with two
methods. First, we use our YouTube Wrapper App to extract
information from YouTube’s Android application itself. As
described in Section II-A, our tool transfers information from
YouTube’s statistic module and the video progress bar to the
control computer. Video progress is recorded every 0.5 s in
the file Video progress, while the statistics are also extracted
twice per second but stored in a file named Statistics. For
each experiment, the Wrapper App logs its control events in

TABLE IV: Selection of recorded parameters relevant to HAS

Layer File identifier Parameter

Network

TCPdump packet arrival time (s)
TCPdump packet source IP address
TCPdump packet source port number
TCPdump packet destination IP address
TCPdump packet destination port number

Transport TCPdump packet payload size (Bytes)
TCPdump packet transport protocol

Application

DNS query source IP address
DNS query source port number
DNS query destination IP address
DNS query destination port number
Statistics “bh”: buffer level (ms)
Statistics video ID
Statistics “fmt”: video quality (itag)
Statistics “afmt”: audio quality (itag)
Statistics “bwe”: bandwidth estim. (bit/s)
Video progress elapsed video time (s)
Event log network configuration events
Event log Video play-out events

the event log file. A selection of the recorded variables is
summarized in Table IV.

Our second method is to record information from Domain
Name System (DNS)-queries that are initiated by the YouTube
application. These data are recorded by tcpdump and saved in
the file DNS. This information allows to measure the initial
delay by calculating the time difference between the playback
start and the DNS initial request.

In order to illustrate some of the data that were recorded
from the YouTube application during a streaming session,
Figure 4 plots the level of the play-out buffer in seconds (left
y-axis and both ’itag’ lines) and the result of the bandwidth
estimation (bwe) in Mbit/s over the session time. We observe
that the adaptive streaming client initially chooses a quality
of 720p (itag 136), which maintains the buffer level at around
120 s. After throughput throttling (t = 152 s), the play-out
buffer leaves the steady state and starts depleting. YouTube’s
bandwidth estimation adjusts to this buffer depletion at t =
208 s, leading to the selection of the 144p quality (itag 160)
at t = 290 s. This drastic decrease in video quality allows
to quickly fill up the play-out buffer and, thus, avoids stalls.
After our control script has removed the throughput limit
at t = 303 s, YouTube’s bandwidth estimation recovers at
t = 336 s and the client requests 720p-segments again.

C. Labels

By analyzing the previous network and application logs,
we are also able to distinguish different states of the play-
out buffer. These states are fundamental for the behavior
of adaptive streaming clients and are, thus, useful to study
and design HAS traffic. We identify the 4 different states
filling, steady, depleting and unclear. In the states filling
or depleting, the client’s download rate is above or below
the video bitrate, respectively. In the steady state, however,
the buffer level is approximately constant and the client’s

0 100 200 300 400 500 600

Time (s)

0

20

40

60

80

100

120

140
B
u
ff
er

O
cc
u
p
an

cy
(s
)

720p

144p

0

2

4

6

8

10

12

14

B
an

d
w
id
th

es
ti
m
at
io
n
(M

b
p
s)bwe

rate limit = 500kbps rate limit = 1Gbps

Fig. 4: Example of data from Statistics and Event log files,
for video [20], under experiment scenario (s4).

download rate is approximately equal to the video bitrate [21,
Sec. 2.2]. Adaptive streaming clients aim to achieve the steady
state by adapting video quality and segment request time.
Interested readers are referred to [21], [22] to learn more about
adaptive streaming algorithms and buffer states.

We labeled the buffer states manually with the help of a
graphical user interface (GUI), that we developed for this
reason, which provides plots as in Figure 5. The top figure
shows the buffer level in seconds, as recorded in the Statistics
log file. The bottom figure displays the accumulated data over
time for the streaming data, as recorded in the TCPdump log
file. By inspecting these plots, the GUI allows a user to:

• plot accumulated data separately per packet flow,
• specify time intervals for independent label assignment,
• associate a label with a previously defined interval.

The result of this process is a separate log file with timestamps
and label values, that contains the string Labels in its name.

IV. DATASET

Let us now provide an overview to the structure and the
content of the dataset [1].

Using the setup and tools in Section II and the methodol-
ogy in Section III, the data were recorded in Paris, France
and Würzburg, Germany, over the course of 5 months. The
measurement campaign started on the 19th of September 2017
and ended on the the 23rd of February 2018.

During this campaign, 2201 experiments were performed.
Each experiment is defined by its scenario index (s1 to s8),
the video ID and the iteration index. Overall, 374 hours of
streaming traffic were recorded, 25% of which are labeled.
Table V provides the numbers of experiments per scenario
and number of labeled experiments in parentheses.

The data are provided as text files in UTF-8 character
encoding and csv-format. The directory structure is ./
$Location/Scenario_$n/Vid_$v/Iteration_$m,
where Location = {’Paris’, ’Wurzburg’}, n = {1, 2, . . . , 8},
video ID v according to Section II-C and m = {1, 2, . . . ,M}
with iteration index M according to Table V. For example, the

0 100 200 300 400 500 600

Time (s)

0

20

40

60

80

100

120

140

B
u
ff
er

O
cc
u
p
a
n
cy

(s
)

Unlabeled
Filling
Steady
Depleting

0 100 200 300 400 500 600

Time (s)

0

20

40

60

80

100

A
cc
u
m
u
la
te
d
d
a
ta

(M
B
)

Filling

Steady

Depleting

Fig. 5: Example of labeled streaming video [20], using the
setup in Section II under experimental scenario (s4).

TABLE V: Number of total experiments and number of labeled
experiments in parentheses

Scenario Video
Nature TalkShow TOS All videos

s1 90 (21) 102 (33) 109 (32) 301 (86)
s2 86 (17) 97 (27) 108 (31) 291 (75)
s3 80 (18) 94 (27) 108 (32) 282 (77)
s4 90 (25) 103 (35) 119 (41) 312 (101)
s5 63 (10) 82 (19) 102 (31) 247 (60)
s6 86 (32) 107 (40) 120 (43) 313 (115)
s7 81 (11) 86 (6) 87 (6) 254 (23)
s8 69 (7) 65 (3) 67 (4) 201 (14)

Total number 645 (141) 736 (190) 820 (220) 2201 (551)
Total time (h) 132 (29) 114 (30) 128 (34) 374 (93)

directory ./Paris/Scenario_1/Vid_2d1VrCvdzbY/
Iteration_1 contains the data of the first iteration of
the Nature video according to scenario (s1) in Paris. Each
directory Iteration_$m contains the csv-files, named
according to the type of data {’Labels, ‘DNS’, ‘TCPdump’,
‘event log’, ‘Statistics’, ‘Video progress’}, as described
in Section III. Some file names also indicate the device
{‘PC’, ‘Phone’}, as these measurements are simultaneously
performed on the control computer (‘PC’) and on the
Smartphone. Note that we, redundantly, add $Location, $n,
$v and $m to the file names for simplicity and organization.

Within each file, every line starts with a Unix timestamp
[23], that is provided by the respective measurement device
{‘PC’, ‘Phone’}. Although the devices were synchronized via
Network Time Protocol (NTP), we provide the file called
time log that contains both time references at the moment of
initiation of the measurement.

V. APPLICATIONS

Our dataset provides time-synchronized measurements at
the ISO/OSI Layers 3, 4 and 7 in controlled scenarios.
While these data may be used in various ways, let us now
briefly point to specific applications for (i) designing adaptive
streaming clients, (ii) analyzing streaming traffic at packet
level and (iii) estimating streaming parameters and quality.

First, our dataset allows to study and to reproduce how
a popular adaptive streaming client reacts to variable link
conditions. By mapping the scenario parameters from Table I
to the measures at Layer 7 (cp. Table IV) algorithm designers
can analyze, for instance, the reaction time and video quality
of YouTube’s client depending on throughput, PER and delay.
Since our measurement tools are publicly available [1], [6],
researchers can even reproduce our testbed and compare the
performance of their own bitrate adaptation algorithms against
YouTube’s adaptive streaming policy. In the same manner, our
tcpdump-logs can be used to study and to improve the packet
generation of adaptive streaming clients compared to YouTube.

Second, our dataset allows a detailed analysis of adaptive
streaming traffic at Layer 3 and 4, depending on various
network and video-related factors. A good statistical under-
standing at the packet level is particularly relevant with the
deployment of new transport protocols such as QUIC. Since
the majority of our packet logs capture QUIC traffic, our data
help operators and vendors to customize their networks for
this new kind of traffic. One example of such customization is
service classification based on packet arrival patterns, which
we developed based on the presented dataset and described
in [24]. Such real-time classification systems can then be
used for streaming-specific billing and traffic shaping as in T-
Mobile’s Binge On [25] or to custom-tailor admission control
and resource allocation [26] in cellular networks.

Third, our dataset allows to estimate application-layer pa-
rameters and quality, based on packet flows. In [27], we used
a previous version of this dataset to estimate video encoding
rate only by observing the size and arrival time of the related
IP packets. Such simple mechanisms already provide sufficient
accuracy for adjusting resource allocation functions [26] and
for estimating QoE [13]. Similarly, our dataset can be used
to estimate further QoE factors such as initial buffering delay,
adaptation frequency as well as stalling frequency and delay.

VI. SUMMARY

We described our public [1] dataset for YouTube’s mobile
streaming client and the methods to reproduce it.

Our experimental setup allows to design controlled exper-
iments with automatic variation of network and streaming
parameters during a video session. Besides measuring network
statistics, streaming variables are extracted from YouTube’s
native Android application. Our procedures support the test
cases of the DASH Industry Forum [12] and provide state
labels for YouTube’s adaptive streaming logic.

At the moment, our dataset offers 374 hours of synchronous
measurements at the network, transport and application layer
in two controlled environments. All of these data are generated

by YouTube’s native Android application and most of the
recorded logs refer to QUIC and UDP traffic.

We are already using this dataset to analyze adaptive stream-
ing traffic and to design traffic managing functions for cellular
networks [24]. We believe that publishing our data and tools
will enable the research community to better understand how
to model, manage and control adaptive streaming traffic.

REFERENCES

[1] T. Karagkioules et al. (2018) A public dataset for YouTube’s
mobile streaming client. Open dataset. [Online]. Available:
http://qoecube.informatik.uni-wuerzburg.de/

[2] Sandvine, “Global Internet phenomena: Latin America & North Amer-
ica,” Report, Jun. 2016.

[3] YouTube. (2018) Youtube for press. [Online]. Available:
https://www.youtube.com/yt/about/press/

[4] S. Alcock et al. (2015) Analysis of YouTube application flow control.
Dataset. [Online]. Available: https://wand.net.nz/ salcock/youtube/

[5] A. Rao et al., “Network characteristics of video streaming traffic,” in
Proc. ACM CoNEXT, Dec. 2011.

[6] M. Seufert et al., “A wrapper for automatic measurements with
YouTube’s native Android app,” in Proc. IEEE TMA, Jun. 2018.

[7] ISO/IEC, “Dynamic adaptive streaming over HTTP (DASH),” Interna-
tional Standard 23009-1:2014, May 2014.

[8] J. Roskind, “QUIC: Multiplexed stream transport over UDP,” Design
Document and Specification Rationale, Dec. 2013.

[9] A. Langley et. al., “The quic transport protocol: Design and internet-
scale deployment,” in Proc. ACM SIGCOMM, Jun. 2017.

[10] S. Sengupta et al. (2015) Crawdad dataset (v. 2015-11-26). Dataset.
[Online]. Available: https://crawdad.org/iitkgp/apptraffic/20151126/

[11] The tcpdump group. (2015) tcpdump packet analyzer v. 4.7.4, (libpcap
v. 1.7.4). Manual page. [Online]. Available: http://www.tcpdump.org/

[12] DASH Industry Forum, “Guidelines for implementation: DASH-
AVC/264 test cases and vectors,” Report, Jan. 2014.

[13] F. Wamser et al., “Modeling the YouTube stack: from packets to quality
of experience,” Computer Networks, Apr. 2016.

[14] developer.android.com. (2017) Android debugging tool (adb)-
Android SDK platform. Manual page. [Online]. Available:
https://developer.android.com/studio/command-line/adb.html

[15] A. N. Kuznetsov. (2001) Linux traffic configuration tool (tc). Manual
page. [Online]. Available: https://linux.die.net/man/8/tc

[16] developer.android.com. (2017) Android UI automator-
Android SDK platform. Manual page. [Online]. Available:
https://developer.android.com/training/testing/ui-automator.html

[17] C. Kreuzberger et al., “A comparative study of DASH representation
sets using real user characteristics,” in Proc. ACM NOSSDAV, 2016.

[18] Blender Foundation. (2013) Tears of steel. Video. [Online]. Available:
https://www.youtube.com/watch?v=OHOpb2fS-cM

[19] National Institute of Fundamental Studies Sri Lanka. (2016)
Science copies nature’s secrets. Video. [Online]. Available:
https://www.youtube.com/watch?v=2d1VrCvdzbY

[20] Zweites Deutsches Fernsehen. (2017) Heute show. Video. [Online].
Available: https://www.youtube.com/watch?v=N2sCbtodGMI

[21] T. Huang et al., “A buffer-based approach to rate adaptation: Evidence
from a large streaming service,” in Proc. ACM SIGCOMM, Aug. 2014.

[22] K. Spiteri et al., “BOLA: near-optimal bitrate adaptation for online
videos,” in Proc. IEEE INFOCOM, Apr. 2016.

[23] The Open Group, “IEEE standard for information technology - Portable
Operating System Interface (POSIX(R)),” IEEE Std 1003.1, 2004 Edi-
tion The Open Group Technical Standard, Dec. 2008.

[24] D. Tsilimantos et al., “Classifying flows and buffer state for YouTube’s
HTTP adaptive streaming service in mobile networks,” in Proc. ACM
MMSys, Jun. 2018.

[25] A. Molavi Kakhki et al., “BingeOn under the microscope: Understanding
T-Mobile’s zero-rating implementation,” in Proc. ACM Internet-QoE,
Aug. 2016.

[26] D. Tsilimantos et al., “Anticipatory radio resource management for
mobile video streaming with linear programming,” in Proc. IEEE ICC,
May 2016.

[27] D. Tsilimantos et al., “Traffic profiling for mobile video streaming,” in
Proc. IEEE ICC, May 2017.

