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Abstract—Voice is progressively becoming a popular way to
interact with mobile devices such as smartphones or connected
cars. Most of the current deployments depend on cloud services to
recognize the user’s commands. For this reason, voice-controlled
applications have stringent requirements in terms of delay or
availability. On the other hand, many of the devices using
such applications are attached to several wireless networks. On
iPhones, Multipath TCP made voice-enabled applications useable
while users move from cellular to WiFi.

In this paper, we leverage the MONROE platform to analyze
the performance of Multipath TCP for voice-activated applica-
tions. For this, we port the Multipath TCP Linux kernel code into
the Linux Kernel Library so that it can run as a regular applica-
tion. We extend iperf3 to emulate voice-activated applications
and carry out measurement campaigns. Our measurements show
that Multipath TCP brings clear benefits for users attached to
two networks.

Index Terms—multipath, MPTCP, interactive traffic, voice-
recognition, low-latency, measurement

I. INTRODUCTION

Voice recognition has a long history, but the recent develop-
ments in deep learning, the improvement of hardware capabil-
ity and the pervasiveness of the Internet have enabled a new
generation of cloud-based voice recognition platforms, e.g.
Apple Siri, Google Speech Recognition, Microsoft Cortana,
Amazon Alexa. These platforms have enabled or potentially
will enable several use cases in various activities of our
lives: voice-based search or commands, hands-free infotain-
ment control at home and in connected cars [1], automatic
customer support [2], voice-based path guides for visually
impaired people [3], etc. These systems do not require a high
volume of network traffic, but they do present very specific
networking requirements: high availability, low latency and
energy awareness. These applications typically send voice
samples to cloud servers that return the recognised text.

Since 2013, Siri, the voice-recognition and virtual assistant
application on iOS, has used Multipath TCP (MPTCP) [4] by
default to communicate with the Apple servers [5]. This is
today the largest commercial deployment of Multipath TCP
[6]. The large deployment of Siri makes it a baseline for
other voice-enabled applications. In this paper, we would like
to answer two questions: (1) What are the benefits of using
MPTCP for voice-recognition traffic? and (2) What are the
factors that impact the performance of MPTCP?

A first possible approach could be conducting passive
measurement on the real Siri traffic at some vantage points
such as university campus WiFi networks, or on mobile
operator gateways. However, this approach is incomplete since
Multipath TCP can use different paths and it is difficult to
passively collect all the packets sent by a smartphone over
WiFi and cellular.

Another approach is to leverage existing mobile measure-
ment platforms to deploy simplified voice-activated applica-
tions and conduct active measurements. The challenge now
is to have a mature Multipath TCP stack on the mobile
nodes used on those platforms. In this paper, we present a
methodology to conduct Multipath TCP measurements on a
mobile broadband platform and leverage the Linux Kernel
Library [7] to quickly deploy Multipath TCP. We use this
methodology to collect sample measurements to demonstrate
its benefits by answering the two questions above.

This paper is organised as follows. Section II provides a
background on the voice-recognition traffic and our observa-
tions on recent Siri traffic. Section III describes the MONROE
platform, the challenges to run Multipath TCP on this platform
and our approach. The measurement methods and procedures
are depicted in detail in Section IV. Section V presents the
results of two measurement campaigns and the Section VI
concludes our paper.

II. BACKGROUND

In this section, we briefly describe the behaviour of voice-
recognition applications such as Siri and Multipath TCP.

A. Voice-recognition Traffic

Traditionally, unreliable protocols like UDP are used to
transport interactive voice traffic to avoid the additional latency
induced by reliable transport protocols. However, most of
the deployed cloud-based voice-recognition systems use TCP
[8] or QUIC[9] - which is on top of UDP but has added
reliability - as their transport protocols. This is likely because
the responses from servers are typically textual or binary
messages, which need to be transferred reliably.

The network traffic generated by Siri has been preliminary
analysed by several works [10], [11], [12], [13].
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Fig. 1: The observed Siri traffic pattern

Our observations on Siri traffic: In order to have up-to-date
information on the current Siri communication behavior, we
have captured Siri traffic on an iPhone running iOS 11.1 (Fig.
1). The tests included a series of real-life questions, a current
weather query, and a one-off Google search. Below are some
of our observations, which are used for traffic emulation in
our measurements.

Siri uses TLS 1.2 for encrypting the exchanged data. As
an interesting side note, shortly after the beginning of the
Siri connection, we also observe that other TCP connections
are established towards other servers for other Apple services,
e.g. weather forecast, notification update, new system update
check. These connections are probably created opportunisti-
cally to save the energy consumed due to activating network
interfaces. Except in the TLS handshaking phase, the clients
send data in bursts of several small TCP segments, which
likely contain the encoded voice samples. The length of each
segment lies in the range of 50-500 Bytes and always has
the PSH flag set, showing that the TCP NO_DELAY socket
option has been used. After each burst, the server sends back
a small response. It is believed that Siri uses HTTPS as the
application protocol for the transaction [10], in which the voice
samples are included in HTTP POST messages. Thus, the
small responses that we observe are probably the HTTP 100
Continue informational status messages. When all voice
samples have been received and processed, the server sends
back its final response. After that, the connection is not closed
immediately by the client nor the server, but is maintained
persistently for a long time. This process is illustrated in
Figure 1.

B. Multipath TCP

Multipath TCP [4] is a TCP extension whose specification
was published in 2013. It enables hosts to exchange packets

over different paths to improve performance or reliability.
Multipath TCP allows a mobile application to start a con-
nection over the WiFi interface and then automatically switch
to the cellular interface when the quality of the WiFi network
decreases [14]. This ability to efficiently support handovers is
the main reason why Apple has been using Multipath TCP
since 2013 [6].

Multipath TCP is described in detail in [4] and in [15]. In
a nutshell, Multipath TCP allows to use different paths by
establishing one TCP connection, called subflow over each
path. The subflows that compose a Multipath TCP connection
are not static, they can be established and released at any time
during the lifetime of a connection. Multipath TCP allows data
to be sent over any path and data sent over one path could be
retransmitted over another path if the former fails.

A Multipath TCP implementation typically includes two
types of algorithms to control the utilisation of the different
paths. The path manager controls the establishment of sub-
flows. A simple path manager could simply create all subflows
at connection establishment time. Advanced path managers
[16] can delay the establishment of subflows and only create
them when the primary path fails [14] or when its throughput is
too low. The packet scheduler is another important algorithm
found in any Multipath TCP implementation [17]. It selects
over which path each data is transmitted. Several schedulers
exist. The simplest one is the round-robin scheduler that uses
all established subflows. The default scheduler in the Multipath
TCP implementation in the Linux kernel [18] prefers the
subflow with the lowest round-trip-time [17].

III. MPTCP MEASUREMENTS: CHALLENGES AND
APPROACH

We use the MONROE platform [19] for our measurements
since it supports various multi-homed wireless nodes. To
realise our MPTCP measurements on the MONROE platform,
we have to overcome a technical challenge. Since the platform
only allows experimenters to run their tests inside Docker
container [20], we cannot run the experimental MPTCP stack
in the Linux kernel directly. To run a Linux MPTCP imple-
mentation in user-land, we extend the Linux kernel library to
provide Linux MPTCP to the application.

A. The MONROE Platform

MONROE [19] is a large multi-homed mobile-broadband
measurement platform. It provides the experimenters the ac-
cess to two kinds of nodes: stationary nodes and mobile nodes
(which are placed on trains, trucks, or buses). Detailed descrip-
tions of the platform have been presented earlier [21], [22].
For example, [22] presents simple but extensive download-
/upload measurements on this platform. In our experiments,
we observed - on more than half of the nodes - that the
MP_CAPABLE option [4] used by Multipath TCP to establish
connections was removed from the SYN packet on port 80
towards an external server. However, the MPTCP connections
on other port ranges (5201 to 5300) do not suffer from this
problem. This suggests that HTTP transparent proxies are used



in the cellular networks attached to these nodes, confirming the
observation in [22].

As the MONROE platform is based on a container technol-
ogy, introducing MPTCP to an application inside a container
requires kernel upgrades, which is challenging to deploy on the
MONROE nodes. We solve this problem by using the Linux
kernel library to allow an application to use a custom MPTCP-
enabled network stack without requiring any kernel change on
the host.

B. Linux Kernel Library overview
The Linux kernel library (LKL) [7] is essentially a library

that enables users to use custom Linux kernel code directly
inside applications. Unlike a typical build of Linux kernel
source tree which produces a bootable image, a build of LKL
generates a set of library files which contain the Linux kernel
but live in userspace. An application can link the LKL library
in order to call alternate system calls (instead of the ones of the
host kernel) implemented in LKL. We leverage this feature to
use the Multipath TCP network stack for our test application.

After traversing packet processing in the LKL system calls
(completely operated inside userspace), a packet goes through
a virtualized device driver composed of Linux kernel code,
which is a virtio driver implementation, and destined to
a virtio device of LKL to be transmitted to the outside.
LKL supports a series of virtio devices: raw socket, tap
device, Virtual Distributed Ethernet (VDE) [23], Intel Data
Plane Development Kit (DPDK) [24], etc. With those devices,
the incoming and outgoing packets processed by the network
stack of LKL do not need to pass through the stack of the
host operating system.

IV. MEASUREMENT DESIGN
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Fig. 2: General Experiment Procedure with LKL

The MONROE platform consists of not only stationary
nodes which are located in four European countries (Norway,

Sweden, Italy and Spain) but also mobile nodes which are
set up on trains (Norway), buses (Sweden, Italy), and trucks
(Italy). For our experiments, we selected 28 stationary nodes
and 40 mobbile nodes - each of them has two cellular
interfaces which are connected to different mobile operators.

To reduce the location bias due to the utilisation of a single
server, we set up two servers: one on our university campus
in Belgium and the other one in Tokyo, Japan. However,
due to space limitations, we only present the results with
Belgian server in this paper. Both clients and servers run
version 0.93 of the Multipath TCP implementation in the
Linux kernel [18]. On client, we need to merge the source
code of LKL and Linux Multipath TCP and built them as a
library to the client application 1. We also use the enhanced
socket API [25] to only use the wireless interfaces for creating
the subflows. Several coupled congestion controls have been
proposed to maintain the fairness with regular TCP. We use the
OLIA (Opportunistic Linked-Increases Algorithm) congestion
control [26] which is a coupled one and is proven to be
stable. For packet scheduling, we use the default Lowest-RTT
scheduler.

A. Measurement Procedure

Figure 2 depicts our general procedure for the experiments
with LKL on clients. While this procedure was originally
designed for voice-activated traffic measurements and for
MONROE project, it can be adapted to run on other measure-
ment platforms and with other custom Linux network stacks.

At the beginning of the experiment, we run tcpdump to
capture traffic on both client and server. The current LKL im-
plementation uses the virtio device and communicates with
the outside world through raw sockets. After bootstrapping the
LKL, the main measurement application can run. It stores its
results in log files. The next subsection elaborates this stage
with our simulated voice-activated application (Fig. 3).

B. Measurements with Voice-activated Applications

Since the implementation of popular voice-recognition sys-
tems like Siri, Alexa, Google Assistant are closed-source and
their traffic is encrypted, we use simulated traffic for our mea-
surements. For this purpose, we modified the popular iperf3
measurement software [27] on both clients and server 2. The
original iperf3 software uses a separate control channel
between the clients and the server. We modified this channel
to exchange the experiment parameters at the beginning of
each test as well as the results after the data transfer. Given
that latency is an important factor in our measurements, we
enabled TCP NO_DELAY socket option on the clients and the
server. We also configured the Linux stacks with TCP Small
Queue and Tail Loss Probe enabled.

The emulated traffic is based on our observations on Siri
traffic pattern, as presented in II-A. As shown in Fig. 3,
after a client connects to a server, it starts sending voice

1Merged code is available at https://github.com/hoang-tranviet/mptcp/
commits/lkl 4.13-mptcp v0.93 API

2Source code is available at https://github.com/hoang-tranviet/iperf-siri

https://github.com/hoang-tranviet/mptcp/commits/lkl_4.13-mptcp_v0.93_API
https://github.com/hoang-tranviet/mptcp/commits/lkl_4.13-mptcp_v0.93_API
https://github.com/hoang-tranviet/iperf-siri
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data in a series of bursts. Each request consists of 9 bursts
and each burst spans 10 TCP segments (ranging from 50
to 500 Bytes) on average. For every burst, the server may
respond with a small reply corresponding to the HTTP 100
Continue (Intermediate-Response). The inter-burst time is
set to 300 msec. Once the server has received all request data,
it immediately sends back a 750 Bytes response to the client.
Our version of iperf3 uses the enhanced socket API [25]
to have more control on the creation of subflows. For users,
the important metric is the request-response delay, which is
defined as the delay between the transmission of the last burst
and the arrival of the first response packet. A similar metric
has been used in previous work [11], [12].

V. SAMPLE MEASUREMENT RESULTS

In this section we present some results of two measurement
campaigns 3. The first one compares the performance of TCP

3All measurement scripts and corresponding collected data will be available
at the publication time

0.0 0.2 0.4 0.6 0.8 1.0
Request-Response Delay (second)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TCP
MPTCP Default

(a) Stationary nodes

0.0 0.2 0.4 0.6 0.8 1.0
Request-Response Delay (second)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

TCP
MPTCP Default

(b) Mobile nodes

Fig. 4: Request-Response Delay: MPTCP vs. TCP

and MPTCP. The second campaign evaluates the performance
of different configurations of MPTCP.

A. MPTCP versus TCP

Initially, we ran the client application on 28 different
stationary nodes towards our server. Each node performs
five transactions with the server in 60 seconds (which gives
five measured request-response delay samples), and the entire
experiment is repeated three times. Figure 4a shows the CDF
of the Request-Response Delays for this experiment.

Then, we ran the measurement with similar configuration
but this time on 40 mobile nodes. As shown in Fig. 4b, it
is clear that the average delay in this case is much higher
than that of stationary nodes, with much longer tails that
are not fully shown here. This is understandable given that
the mobility of nodes likely reduces the connection quality,
significantly increasing packet losses and delays. We can see
that the default configuration of MPTCP delivers similar or
better performance than TCP, though the difference is not
always significant.
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Fig. 5: Request-Response Delay vs. Signal Strength

To dig in more details, we also collected the Received signal
strength indication (RSSI) of the default cellular interface on
each node, as shown in Fig. 5 and Table I. The high correlation
between the delay and the signal strength in the case of TCP
shows that the signal quality on the last-mile has a significant
impact on the overall perceived delay. For MPTCP, there is no
clear correlation between the user-level delay and the signal
strength. This is likely the result of the scheduler decision,
which tends to transfer data over the second subflow when
the delay of the initial subflow increases.

B. Different MPTCP server configurations

In this campaign, we use two different schedulers on the
server: default scheduler and server scheduler. The default
scheduler prefers the subflow with the lowest round-trip-time.
Meanwhile, the server scheduler [13] was designed for servers
that serve mobile devices. This scheduler always prefers to
transmit data over the last subflow on which it received data
or a valid acknowledgement.
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Fig. 6: Request-Response Delay: various MPTCP
configurations

Client Stationary nodes Mobile nodes
TCP -0.34 -0.20

MPTCP Default 0.03 -0.11
MPTCP Server 0.07 -0.10

MPTCP Default No-IR 0.01 0.11
MPTCP Server No-IR 0.01 -0.10

TABLE I: Correlation between Request-Response Delay and
the RSSI of default interface

On the server side, the default (Lowest-RTT) scheduler may
take undesired decisions in some cases. For example, consider
a client that has both WiFi and cellular interfaces and initially
sends data through the WiFi path. If the WiFi connectivity
fails, e.g. because the user moves, then the server still sends
traffic through this path since it does not know about the
failed WiFi connection on the client side. The server scheduler
[13] avoids this problem by choosing the subflow on which
the server has just received client data. To be concrete, it
remembers the timestamp of the latest original packet received
on each subflow. A packet is considered original if it contains



new data based on its Data Sequence Number, or if it contains
new Data-ACK that advances the left edge of sending window.

For any scheduler, the up-to-date information about each
subflow should play an important role in improving data trans-
fer performance. As described in Fig. 1, Siri server sends an
intermediate response (100 Continue) after each received
burst. To reveal the performance impact of these responses,
we run the experiment with two different behaviors: servers
send back these intermediate responses (default behavior) or
do not send them back (the tests with “No-IR” annotation in
the figures).

In all cases, there is no clear difference of delay in the
first 70 percentiles. This represents the situations in which the
default path is always the best path, so there is no impact of
using different MPTCP configurations. The main differences
are in the last 30% percentiles. In the case of mobile nodes
(Fig. 6b), the server scheduler gives better performance for
mobile nodes by keeping track of the most recent working
subflow. However, for stationary nodes (Fig. 6a), the server
scheduler gives nearly identical results since the connectivity
status of each client interface is generally unchanged.

Additionally, when the server does not send intermediate
responses, the delay increases significantly for both schedulers.
Without the intermediate responses, the clients do not have up-
to-date subflow information signaled from the server. In turn,
the server has less information side to make a good decision
when sending final response. The situation is worse for server
scheduler, which just selects the most recently active subflow.
While the server scheduler relies passively on the incoming
traffic to select the subflow, the intermediate responses plays
the role of the active probing on the current status of subflows.

VI. CONCLUSION

Voice-activated applications are on the rise and will likely
play a more important role in the future. In this paper, we have
proposed an extension of iperf3 that models the network
behaviour of such applications. We have then proposed an
implemented a measurement methodology that leverages the
LKL library to use a specific networking stack without chang-
ing the underlying Linux kernel. This is key to be able to test
new protocols on platforms such as MONROE or Planetlab.
We demonstrate the benefits of this approach on the MONROE
platform. Our measurement results show that Multipath TCP
with a proper configuration could help to improve the user-
perceived delay in various network conditions.
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