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Abstract—Ensuring pervasive coverage of mobile networks and
good quality of service are common goals for both regulators
and operators. Currently, however, the evaluation of coverage is
mostly limited to maps provided by Mobile Network Operators
(MNOs). In this paper, we use the Measuring Mobile Broadband
Networks in Europe (MONROE) platform to characterize mobile
coverage along transport routes, reliably and in an objective
manner. We leverage access to MONROE nodes onboard public
transport vehicles: our unique geo-referenced dataset comes
from nodes active on board 15 Norwegian inter-city trains that
travel 13 different routes. The data from hundreds of train
trips between 2017 and 2018 on each of the routes shows the
mobile coverage status as travellers experience it. We propose an
algorithm to segment the measurement routes to enable efficient
grouping of data samples for analysis and visualization. We
present our analysis and visualization of coverage along the
railway routes. The proposed approach is generic so that other
type of performance maps, including latency or throughput maps,
can also be generated.

I. INTRODUCTION

Mobile Broadband (MBB) networks have become the key
infrastructure for people to stay online for entertainment,
communication and work related tasks. One challenging use
case for MBB networks is the mobility scenarios; especially,
Internet access in public transport infrastructures such as inter-
city trains. Mobility is becoming more and more relevant, since
up to hundreds of passengers might try to access the Internet
simultaneously while their train is moving at high speeds.

Assessing the mobile network coverage and performance
experienced by passengers on critical public transport routes
is of great importance to many stakeholders, including con-
sumers, regulators, governments, MNOs and businesses that
provide Internet services on trains. Today, regulators and end-
users are left with coverage and quality maps provided by
MNOs. These maps might not reflect passengers’ experience
correctly, since they often rely on theoretical models and
not on empirically-driven approaches. Consequently, verify-
ing these maps is often hard, since it requires performing
repeated expensive drive tests. One alternative is to lever-
age crowdsourcing for verification, but unfortunately crowd-
sourced datasets can be spatially sparse and generally lack
repeatability, which makes it hard to draw firm conclusions.

In this paper, we leverage the Norwegian State Railways
(NSB) deployment of the MONROE platform [1] in Nor-
way to analyze a geo-referenced dataset that mimics the

measurements MNOs collect through repetitive drive tests.
The MONROE NSB platform enables us to easily acquire
a vast amount of data for two commercial MBB networks
in Norway (Telia and Telenor), including the best Radio
Access Technology (RAT) available at a given measurement
point. Each measurement point we collect is characterized by
variable spatio-temporal coordinates. The spatial dimension of
the data designates the geo-location where the measurement
device captures the connection information (e.g., best RAT
available) at a moment in time. In our case, the train routes
dictate the spatial coordinates of the data points we register in
the dataset. Global Positioning System (GPS) readings from
the train system are collected every 10 seconds, resulting in
a large distance between two measurement point especially
when the train is traveling at high speeds. Due to this temporal
sparsity, it is not always possible to evaluate the RAT at the
same constant location for every measurement drive run (GPS
measurements are geographically irregular). Therefore, the set
of geo-tagged data points collected at different drive runs
varies, bringing additional complexity to our analysis.

The interaction of these two dimensions dictates the chal-
lenges of moving from acquiring the data to drawing knowl-
edge through data analytics approaches. Previous approaches
proposed to group the data points by overlaying a grid with
fixed tile size over the area of interest and identifying the grid
tiles that contained measurements samples [2]. This results in
an irregular segmentation of the route of interest and one can
extrapolate the characteristics of the data group to the entire
tile area. However, this resulted in differences between well
represented areas that contained a significant portion of route
and others that have the route only tangential to the grid tile.

In this paper, we propose an algorithm for cleaning and
morphing the dataset such that we can easily group the final
dataset based on spatial locality. In particular, we identify the
train routes, we divide them into equal length segments and
then group the geo-referenced data points in the initial dataset
around these route segments.

The contributions we make in this paper are threefold:
• We present the details of the MONROE NSB deployment,

which includes 15 MONROE nodes operating abroad 15
different passenger trains in Norway. Each node measures
two MNOs in the same time using customer-grade sub-
scriptions. The platform is open to the community for



running measurements under mobility conditions. 1

• We open the dataset we collected from operating the NSB
testbed for a period of over one year, from January 2017
until January 2018 [3].

• We propose an algorithm to address the challenges of
drawing knowledge from the vast dataset of repetitive
drive runs over 13 routes of NSB passenger trains. Our
approach allows us to segment the measurement routes to
enable efficient grouping of data samples for analysis and
visualization. We present our analysis and visualization of
coverage along the railway routes on the one-year dataset
we collected. We mention that we can extend this very
approach to generate other type of performance maps,
including latency or throughput maps, which we leave
for future work. Our R implementation of the algorithm
is further provided as open source software [3].

II. BACKGROUND AND RELATED WORK

Building accurate and reliable coverage maps has attracted
the attention of the research community and a magnitude of
work exists in this area [4]. Coverage maps need to closely
reflect actual end-user experience and use of measurements
plays a vital role towards this end [5]. However, obtaining
measurements across space and time has a high cost. Drive
tests are widely used by MNOs for coverage assessment
and performance monitoring. Piggy-backing MBB measure-
ments onto public transport infrastructure is an efficient,
cost-effective and automated alternative to traditional drive
testing [6], [7], [8], [2]. Aside from the high cost of drive
tests, the data collected from them usually has a series of
shortcomings, including variable spatio-temporal sampling and
limitation of test repeatability. The drawbacks of drive tests
act as incentive for the design of new methodologies that
address these issues [9], [10]. In this sense, our experimental
setup brings the benefit of repeatability at a low additional
cost. Other approaches, such as leveraging crowdsourcing
platforms, may help verify coverage maps[11] or increase their
accuracy by merging with controlled datasets [12]. However,
they bring additional limitations including the lack of control
on the measurement device and lack of repeatability.

Specifying a spatial sampling strategy for collecting the
measurements necessary to generate reliable coverage maps
help reduce some of the costs of collecting data [13], [12].
In this paper, however, we use the total set of measurements
throughout a period to obtain high density of data points along
the trajectory. Grid-based approaches to segment the route of
interest and pre-process the raw data presents with several
limitations, such as unequal distribution of points per result-
ing segment and uneven segments [2]. We instead propose
cutting the route in equal-size segments and reorganize the
data around those. This approach allows us to account for
noise and sparseness of the data and enable us to analyze
MBB performance along the routes. Although map-matching

1https://www.monroe-project.eu/access-monroe-platform/

techniques [14], [15] aim to address similar limitations of geo-
referenced data, map-matching is beyond the scope of our
work as here we focus on manipulating the data for enabling
offline analytics for building coverage maps.

III. MEASUREMENT SETUP AND DATASET

MONROE [1], [16] is a European transnational open plat-
form, and the first open access hardware-based platform for in-
dependent, multi-homed, and large-scale MBB measurements
on commercial networks. The platform comprises a set of
150 nodes, both stationary (e.g., volunteers hosting nodes in
their homes) and mobile (e.g., operating in delivery trucks and
on board public transport vehicles such as trains or buses).
MONROE is currently operational in Italy, Norway, Spain,
Sweden, Portugal, Greece and the UK.

Before describing the measurement setup, we summarize
the terminology used throughout this paper in Table I. Next,
we describe the MONROE node hardware and software along
with the deployment. We further detail the measurement
campaign.

TABLE I: Terminology.

Route (R) Train path between two distinct points
Segment (sR) Equidistant section of a given route
Operator (O) The access network operated by a particular operator
Coverage (C) The highest device mode observed for a given segment

A. Node Hardware and Software

Each MONROE node integrates 2 small programmable
computers (PC Engines APU2 board) interfacing with 3
3G/4G MC7455 miniPCI express modems using LTE CAT6
(connected to 3 different MNOs) and one WiFi modem. All
software components used in the platform are open source and
available online [17].

The software on the nodes is based on Debian GNU/Linux
“stretch” distribution. All experiments run inside a virtualized
environment (Docker container) to ensure separation and con-
tainment of processes. MONROE further provides continuous
monitoring measurements including active measurements such
as connectivity measurements (e.g., ping) and speedtest mea-
surements [18] as well as Tstat [19] passive probe that pro-
vides insights on the traffic patterns at both the network and the
transport levels. Furthermore, to provide rich metadata to the
experiment containers, the metadata broadcasting service runs
continuously in the background and relays metadata through
ZeroMQ2 in JavaScript Object Notation (JSON) format to
experiment containers.

Metadata collection. Since MONROE does not involve real
users (which usually entail privacy protection restrictions),
rich metadata collection, including geo-temporal tagging, is
possible. MONROE nodes generate metadata passively and
continuously: each node is instrumented to gather information
relating to its MNOs. These include network parameters
(RSSI, cell identifiers, link technology, etc.), node location

2ZeroMQ (ZMQ) distributed messaging: http://zeromq.org

http://zeromq.org


TABLE II: MONROE metadata topics

Class Type Examples
Node Sensor CPU temperature
Node Probe Load, memory usage
Node Event Power up, reboot

Device GPS GPS coordinates
Device Modem RSSI, link technology, cell ID, IP addr.

and speed (GPS), node working parameters (CPU temperature,
processing load, etc.) and node events (watchdogs).

Metadata entries are generated in a single-line JSON format,
where every entry is labeled with a “topic” field. Table II
illustrates the metadata “topics”, which are streamed to sub-
scriber entities within the node.3 The metadata subscriber
module subscribes to all the topics, writing JSON entries
to files in a special file system location. A synchronization
process transfers these files to the MONROE server when no
other active, periodic, or user-defined experiment is running.
In this way, metadata from all MONROE nodes is collected
and stored centrally.

B. Deployment on Trains

MONROE deployment in public transportation vehicles en-
ables the evaluation of MBB networks on wide urban mobility
environments. The MONROE platform currently includes 15
nodes onboard 15 inter-city trains in Norway. These trains
travel a wide range of routes indicated by the official map in
Figure 3a. In Figure 1, we present photos from deployments on
NSB trains, where nodes are mounted directly under the desk
in the conductor room. This is a semi-closed area of roughly
1.5mx1.5m size, located in the mid-section of the train by the
passenger seats. The deployment is carried out in such a way
that the nodes mimic actual end users traveling these routes,
for which reason the mobile MONROE nodes are sometimes
called “passenger in a box”.

(a) Conductor cab (b) Node under desk

Fig. 1: Node deployment on trains in Norway.

C. Measurement Campaign

In this study, we make use of GPS measurements and
modem metadata from MONROE nodes onboard NSB trains

3For a complete list of MONROE metadata fields, see https://github.com/
MONROE-PROJECT/data-exporter.

Fig. 2: Algorithm description.

in Norway. The GPS and modem measurements are collected
independently, producing two separate datasets.

GPS measurements. These measurements are recorded
every 10 s and gathered from the train’s fleet management
system. We use a GPS dataset with the following fields: time,
longitude, latitude, and anonymized train ID.

Modem measurements. These measurements are event-
based, meaning that changes in values, such as link tech-
nology, are recorded. In case of no change, new entries are
made every 30 s. We use a subset of the modem metadata,
including the following fields: time, node ID, device
mode, imsimccmnc, and nwmccmnc.

We focus on 2 Norwegian operators (Telenor and Telia) and
consider measurements coming from mobile MONROE nodes
with their subscriptions. Their corresponding Mobile Country
Code (MCC) is 242, for Norway, and Mobile Network Code
(MNC) is 01 and 02 respectively. We provide the details of
our measurement campaign below. For the complete dataset
including GPS and modem information, readers are referred
to [3].

TABLE III: Measurement campaign parameters.

Parameter Value
Start date 01.01.2017
End date 14.01.2018

Number of nodes 15
Number of routes 13

Mobile technologies 2G, 3G, 4G
Frequency (GPS data) every 10 s

Frequency (Modem data) event-based (max 30 s)
Operators (MCC-MNC) 242-01, 242-02

Available datasets GPS, modem, train-node map

IV. ALGORITHM

Our algorithm consists of two parts: the first part is segment
identification with 4 steps, and the second part is coverage
mapping with 3 steps. Figure 2 describes these two parts and
their corresponding steps as a flow diagram.

The purpose of the segment identification component is
to associate the points in the GPS point cloud which we
collect from repeated measurements along the same routes
(see Figure 4a), to a particular segment of the corresponding
route. We aim to achieve this in 4 steps: (1) we use the raw

https://github.com/MONROE-PROJECT/data-exporter
https://github.com/MONROE-PROJECT/data-exporter


TABLE IV: Steps 1 and 4.

ID Route Description #Segments (k=100)
1 Oslo - Gothenburg 308
2 Oslo - Roa - Honefoss 78
3 Drammen - Larvik - Nordagutu 165
4 Oslo - Røros - Støren 452
5 Oslo - Eidsvoll 21
6 Dombås - Åndalsnes 106
7 Notodden 8
8 Hamar - Elverum 30
9 Trondheim - Bodø 639

10 Drammen - Stavanger 456
11 Ski - Mysen 53
12 Oslo - Trondheim 484
13 Oslo - Bergen 453

GPS data to identify each route R in the map, (2) cluster the
GPS points, (3) sort the clusters, and (4) connect consecutive
cluster centers to build a vector representing the route, which
we use to define segments sR of desired length along each
route R. The output is a segment list S = {sR},∀R, which
allows us to map any given GPS point to a particular route
segment. This component only needs to be executed once
during a time period in which the route structure does not
change. Particularly, the component must be updated if new
train routes are established by the transportation company, new
trains are deployed, or a new MONROE node is installed on
a train traversing a new route.

The purpose of the coverage mapping component is to
present the technology coverage CO of a MBB network
O along all discovered routes, in segment granularity. This
component requires the first 4 steps to be executed at least
once, but can itself be run more often. For instance, where it
is perfectly adequate to update the segment maps once every
few months, or even every year, mobile network configurations
might change more rapidly such that performance maps are
rendered obsolete every few weeks.

In this study, we focus on the technology coverage along
train routes for different network operators, but it is possible
to extend the second part of our algorithm to use, for example
network speed [20], [18] or latency measurements along
train routes, so that other outputs including mobile network
performance maps can be produced. Readers are referred
to [3] for our sample implementation in R.

A. Part I: Segment Identification

Step 1. Identifying routes: We first inspect the cloud of
GPS points plotted on a map, in order to group them into
distinct routes which do not fork or bifurcate. While grouping,
we consider the important train stations at big cities that are
often the intersection of many different routes. We mark many
latitude and longitude box cuts and using boolean logical
operations between the box cuts. For our current dataset, this
step yields 13 routes and they are listed in Table IV. Figure 3b
shows a diagram of the box cutting, and Figure 3a compares
our route prediction to an NSB schematic of the official routes
from [21].
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Fig. 3: Train routes.

Step 2. Clustering GPS points: After Step 1, routes are
identified coarsely by their boxcut regions. However, they can
only be visualized as clouds of GPS points, as shown in
Figure 4a. The purpose of clustering is to go from this cloud of
GPS points to a distinct set of representative points, which will
mark the route segments later on. For each identified route,
we cluster the cloud of GPS points belonging to this route by
applying the k-means algorithm.

In the first iteration, we run the clustering algorithm coarsely
with k = 100, to identify the route lengths (roughly). Table IV
presents the estimated length of each route in terms of the
number of segments, for k = 100. We go through Steps 3 and
4, and use the number of segments in each route, ns (derived
from Step 4) to run the algorithm for a second iteration. This
time, we run the clustering algorithm with k proportional to the
number of segments in each route, k = c∗ns. We conducted a
sensitivity analysis to find a suitable c and the corresponding
k per each route, and we observed that c = 1 provides enough
granularity for the identified routes.

Note that, k-means is used for its efficiency and simplicity
of implementation here. However, depending on the available
dataset, different clustering algorithms can also be applied.
Especially, if there is a significant difference in the density of
GPS points along the routes, density based algorithms such
as DBSCAN, could be used. This is a topic of our ongoing
work, in an effort to generalize our algorithm further.

Step 3. Sorting clusters: The purpose of this step is to order
the clusters along their associated route. Since the previous
step yields an unsorted list of cluster centers, we need to put
them in order of their geographic location to describe a route
(directional path).

Step 4. Defining segments: The distance between the
clusters identified in the previous step might not be uniform.
We form vectors between consecutive cluster pairs and
segment the vectors into equidistant intervals. For this study,
we have chosen a total length of 1km for each segment in



order to provide a fine granular coverage map. However,
segment size can be configured to meet different needs.

Part I Output. Segment map(s): The algorithm takes the
GPS point cloud as input (Figure 4a) and, as an output, we
get a list of route segments, onto which any GPS point can
be mapped. We illustrate a sample segment map in Figure
4b. We identify segments by the latitude and longitude of
their beginning, their corresponding route, and ID (sequence
number within route).4

(a) Cloud of GPS points (b) Segment map

Fig. 4: Input GPS data and output segment map.

B. Part II: Coverage Mapping

Step 5. Augmenting GPS data: We augment the given
GPS dataset by adding two fields: route ID and segment
ID. This is achieved by matching every GPS measurement
to the nearest segment identified in Step 4. Note that in this
step, any GPS dataset (not necessarily the one used in Part I)
can be used.

Step 6. Group and merge After identifying the routes and
associating GPS information to route segments, the GPS and
modem data are merged. Note that multiple trains can be on
multiple routes, we use a lookup table that has the train-node
mapping (a list indicating which nodes are deployed on which
trains), the measurements from which nodes can be used to
asses the performance along which route. Furthemore, GPS
and modem data from these nodes are grouped by operator.
Finally, GPS and modem data per operator and route are
merged with a 6 minute time window5. The merged dataset
for each operator has the following columns: time, node
ID, device mode, longitude, latitude, train
name, and segment ID.

4Although train track infrastructures seldom change (except for new tracks
being built every 5-10 years), in case of deviations, a particular train might be
diverted to a different track. In this case, all measurements from this particular
train would be associated with segments along the new track. We do not
drop any measurements as long as they can be associated with an identified
segment, within a given confidence level.

5The modem data is updated when there is a change of state or periodically
with a 30s interval. However, metadata might not be updated at times due to
hardware failures. This can cause a false matching of GPS data to modem data.
The 6 minute time window is wide enough for the periodic measurements,
but cuts off the matching in case the modem data is not updated

Step 7. Statistical analysis: At this point, for each
operator O and per each segment sR, an analysis of selected
performance metrics can be conducted. One of the prominent
methods is to consider the maximum of available technologies
over all measurement points for a given segment and
operator. An alternative is to use the mode of available
technologies over all measurement points for a given segment
and operator. Coverage maps can be generated using either
statical representation. See Section V for a comparison of
using maximum or mode on our dataset.

Part II Output. Coverage Map(s): As an output, we get a
color-coded map of available technology along the 13 routes
identified before, in segment granularity, for each operator.

V. EVALUATION

In this section, we first discuss the metrics we selected for
building the coverage maps, and then we present different
ways we can leverage coverage maps.

We choose the maximum and the mode as the statistical
metrics. The statistical maximum is a measure of the best
coverage provided by an operator within a given time period,
regardless of any temporal effects, while the statistical mode is
a measure of the overall coverage experienced by the end-users
within the time period. For instance, if an operator suffers from
a (temporary) loss of coverage in an area for some portion of
the specified time period, this may be reflected in the statistical
mode, whereas it will not affect the statistical maximum.

Figures 5a-6a and Figure 5b-6b illustrate the differences be-
tween the two chosen statistical metrics for the two operators.
Note that, in these maps, we have not illustrated the northern
most routes due to having very little data points in these
routes. These coverage maps have been generated using the
data described in Table III. We observe that although the best
coverage provided by Telenor and Telia seem to be relatively
similar, Telia users are spending more time on 3G than 4G
on average. The underlying issue has been identified as the
following: due to internal network configurations of Telia,
when there is an active 3G connection (i.e. the connection is
in active state, sending data), even though the 4G coverage is
available, the network does not provide handover to 4G. The
handover is only possible if the connection goes to an idle
state and then become active again. Since MONROE nodes
are constantly running a ping experiment in the background,
and therefore keeping their network connection in active state,
once a Telia SIM card on a node is on the 3G network, it will
not connect back to 4G network even it is available (unless
there is an explicit disconnect from the 3G network due to
mobility or other reasons). Our finding has been discussed
with and confirmed by Telia. We present the coverage map
without modification, since we believe that it represents actual
user experience of coverage. For instance, a user surfing the
web on these routes would probably get the same coverage
experience (heavy 3G domination), due to continuous activity
over their connection. Similarly, although end users don’t have



a regular ping like MONROE, most users have background
traffic that keeps their connection active.

(a) Telenor (b) Telia

Fig. 5: Mode: Coverage maps for Telenor and Telia along the
train routes in Norway using statistical mode.

(a) Telenor (b) Telia

Fig. 6: Maximum: Coverage maps for Telenor and Telia along
the train routes in Norway using statistical maximum.

In this paper, we have provided the coverage maps for all the
data collected during one year period. However, the algorithm
can also be used to track coverage changes in time over the
routes. We have generated monthly coverage maps and observe
the coverage evaluation during this time. Due to limited space,
these results are not presented here but provided in the data
repository [3].

VI. CONCLUSION

The growing interest around MBB network measurements,
coupled with the emerging availability of measurement plat-
forms, brings to light the problem of knowledge discovery in
the current data-rich but information-poor settings. This im-
plies working with complex datasets, which are often plagued
by many issues including high dimensionality, sparsity and the
presence of categorical variables (e.g., RAT). The approach we
propose in this paper helps to tackle some of the limitations
of such datasets, particularly for the case of drive runs over
railway paths. Clustering measurement samples around train
route segments allows us to create accurate mobile network
coverage maps using the MONROE platform. In the scope
of this study, we focus on railways in Norway; however, our
methodology can easily be generalized for running a similar

study in other routes. Moreover, though here we focus on radio
coverage, we plan to extend this analysis to produce additional
performance maps for Quality of Service (QoS) and Quality
of Experience (QoE) MBB metrics.
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