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Abstract—We propose an Overlay network architecture for re-
liable and QoS-aware interconnection between its nodes, without
handling Internet routers and without tunneling overhead. The
architecture is based on the SDN paradigm. We demonstrate the
feasibility and challenges of such a system using mininet and pox
controller.

I. INTRODUCTION

Overlay networks have emerged several years ago for
different purposes, namely content delivery, privacy, peer-
to-peer, on-line gaming, data centers interconnection, among
others. Indeed, it is well known that quality-of-service (QoS)
is not taken into account by the current Internet de facto
routing protocol, BGP, and that following non-BGP routes
can provide better QoS and overcome connectivity failures
due to BGP outages. Overlay networks can thus bypass these
issues, without the need of controlling intermediate nodes
nor changing an ossified protocol stack. On the other hand,
previous work either doesn’t provide overlay scalable solutions
for QoS-aware overlay networks (see e.g. [1]) or rely on
decentralized solutions adding overhead (such as relaying on
encapsulation techniques).

To fill this gap, and thanks to the new opportunities the
SDN paradigm offers, we have proposed, in [2], an SDN-
based architecture to allow QoS-aware and reliable routing in
overlay networks. This solution leverages three key features
of SDN: 1) a virtually centralized view of the architecture,
in order to efficiently perform smart monitoring and routing
decisions, 2) a fine-grained, flow-based forwarding capability,
3) a decoupled data and control plane interfaced through a
standardized protocol (OpenFlow).

In this paper, we focus on the control of the overlay for
achieving a scalable end-to-end QoS aware routing. For this
sake, we propose to use the functionalities provided by SDN
and in particular the southbound interface OpenFlow to mod-
ify, at each controlled switch, packet headers as convenient, for
having packets to follow the adequate path, in a per flow basis.
This paper demonstrates the feasibility of such an approach
under a flexible testbed based on mininet1, OVS switches2,
and the pox controller3.

1An Instant Virtual Network on your Laptop www.mininet.org
2Open Virtual Switch, www.openvswitch.org
3https://github.com/noxrepo/pox

II. SYSTEM ARCHITECTURE

Fig. 1 depicts our proposed architecture, which is composed
of three main blocks: a traffic engineering one, a monitor-
ing one, and the controller itself. This virtually centralized
infrastructure controls an overlay network which is composed
of different sites (Overlay Nodes, ON). ONs are OpenFlow-
capable switches and are interconnected among them through
the Internet, constituting the overlay network. We briefly
describe the main key functionalities of the system, while
reader is referred to our previous work [2] for more details.
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Fig. 1: System description
A. Monitoring and Traffic Engineering

TEApp computes the best paths according to some QoS
metrics (e.g delay). MonApp assists TEApp by providing feed-
back information about network state. Solutions existing in the
literature for performance monitoring in SDN, in particular
for delay measurement, present a trade-off between accuracy
and overloading the network with traffic between controller
and switches (see e.g. [3]). They are not convenient to our
scenario, where the controller can be far from switches. Our
proposed solution is based on equipping each overlay site with
a probe packet generator (PPG, for convenience we only show
one in Fig. 1) which is commanded by the MonApp. Active
monitoring is thus possible thanks to locally-generated probing
packets, following instructions from a centralized intelligence.



B. Controlling the Overlay Network

Upon arrival of a new packet to the controller, it decides on
which path the packet –and subsequent packets of the same
flow– must follow. For such decision, it queries the TEApp
module. Upon response, the controller programs switches
along that path. In particular, it will choose a flow identifier,
and program each switch in the path to match such packets,
and to perform a set of actions. Flow identification varies
in IPv4 and IPv6 environments (transport ports are used in
the former while dedicated IP addresses are used in the
latter). Actions are, for instance, modification of destination
and source network addresses adequately and flow identifier.
Finally, forwarding of packets by switches is performed on
a per flow basis, and thanks to the programmed OpenFlow
matching rules and actions. Fig 1 illustrates a simple example
where a flow from A to B is routed through C.

Source addresses are changed to avoid having packets fil-
tered through reverse path forwarding by intermediate routers
or middleboxes. The architecture supposes an in-band control,
meaning data and control (and monitoring) traffic use the
same physical network. The controller thus programs switches
adequately in order to handle these different kinds of traffic.

Our solution reminds an overlay-scale NAT/PAT (Network
Address/Port Address Translation), while being more transpar-
ent to final users, since it restores all values before reaching
the destination. Other state-of-the-art solutions rely on virtual
private networks (VPN). Compared to VPN, our approach sim-
plifies management, thanks to the usage of standard OpenFlow
actions, and prevents from encapsulation overhead, and thus
potential performance degradations due to fragmentation.

III. IMPLEMENTATION AND DEMONSTRATION

The demonstration focuses on the control and forwarding
functions (Subsec. II-B). The objective is to show a working
testbed where fine-grained, overlay, QoS-based forwarding is
performed leveraging the SDN paradigm with a non-tunneling
approach. In previous work [4], we have proposed a joint
monitoring and routing solution to suit the needs of TEApp
and MonApp. While such a solution is left out of the scope of
this demonstration, for the sake of completeness, we consider
basic TEApp and MonApp implementations.

Fig. 2 shows the main components of our demonstrator:
a) Overlay network: emulated in mininet. A flexible

python script is provided to establish the overlay network.
Components of the network include: 1) overlay nodes at the
boundary of each overlay site, they are virtual OpenFlow-ca-
pable switches (OVS in this case), 2) end hosts belonging to
the different overlay sites, 3) IP routers, which represent the
Internet, and thus not configurable by the Overlay control and
4) backbone and access links.

b) Controller: based on pox controller. This python-
based controller, though simple, is suitable for our case where
the objective is to test the feasibility of the solution.

c) TEApp: based on a shortest path module, receiving as
input monitoring information and computing the shortest path
between two overlay nodes based on the Dijkstra algorithm.

d) MonApp: triggers PPG to measure paths’ delays. PPG
performs measurement thanks to ping linux command.
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Fig. 2: Demonstration architecture

All software components are publicly available4 under the
GNUv2 license.

To evaluate our implementation, we generate TCP and UDP
traffic between the different end hosts, and verify that it fol-
lows the path selected by the TEApp. Topology and backbone
delays can be easily modified to test several scenarios.

IV. CONCLUSION

We have demonstrated the viability of implementing a non-
tunneling overlay leveraging SDN architecture and OpenFlow
messages. This scheme has at least two benefits: it allows to
perform an intelligent management and control of the network,
thanks to a centralized view; and to handle flow forwarding at
a very fine grain, allowing sophisticated QoS aware routing.

In our ongoing work, we are pushing further our testbed
along four axes: real distant sites and integration of real
measurements, migration to opendaylight controller, and in-
tegration of our smart joint routing and monitoring technique.
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