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Abstract—There is recent evidence that the core of the Internet,
which was formerly dominated by large transit providers, has
been reshaped after the transition to a multimedia-oriented
network, first by general-purpose CDNs and now by private
CDNs. In this work we use k-cores, an element of graph theory, to
define which ASes compose the core of the Internet and to track
the evolution of the core since 1999. Specifically, we investigate
whether large players in the Internet content and CDN ecosystem
belong to the core and, if so, since when. We further investigate
regional differences in the evolution of large content providers.
Finally, we show that the core of the Internet has incorporated
an increasing number of content ASes in recent years. To enable
reproducibility of this work, we provide a website to allow
interactive analysis of our datasets to detect, for example, “up
and coming” ASes using customized queries.

I. INTRODUCTION

The structure of the Autonomous System (AS) network has
been changing over the years driven by disruptive changes
on the Internet [1]. In the NSFNET era, the Internet had
a monolithic backbone deployed in the U.S. to interconnect
research and educational institutions [2]. After the US govern-
ment decommissioned the NSFNET, the interdomain network
moved onto a Transit era where the network had a hierarchical
structure [1], [3]. More recently, the Internet has transformed
into multimedia network, driven by high bandwidth demands
and low latency requirements, resulting in a Content era [4].

Content Delivery Networks (CDNs) have played a decisive
role in the evolution towards a multimedia network [5] and
the resulting flattening of the Internet [1], [6]. CDNs are
decentralized serving infrastructures that provide front-ends
close to users to reduce latency, maximize the throughput and
avoid delivering packets through long routes, which increase
latency and can be congested [7]. CDNs typically establish
a large number of peering agreements with ASes hosting
customers of their content (“eyeballs”). It is not necessary that
every Content Provider (CP) needs to deploy its own CDN. A
number of third-party CDNs provide hosting services without
being content generators, such as Akamai and LimeLight.
However, it is apparent that several CPs have transformed into
private CDNs with worldwide coverage instead of delivering
content through Transit Providers or third-party CDNs due to
a range of technical, economic, and legal reasons [8]–[13].

In addition to CDNs, Internet Exchange Points (IXPs) have
been crucial in morphing the hierarchical structure of the
AS internetwork, transforming it into a flat network [14].
The availability of IXPs is critical to CDNs, which prefer to

have direct peering relationships with as many ASes as they
can [15]. IXPs too are interested in hosting CDNs to provide a
cost-effective way for the IXP members to reach content [16].

In this paper we use the term “core” of the network to
refer to the subset of ASes that are densely connected. In
the past the “core” of the network mostly consisted of tier-
1 networks, which were large international transit providers
that were connected to all other tier-1 networks with peering
links and had no transit providers of their own. CPs, as well
as “eyeball” networks that were the destinations of traffic
sourced by CPs were on the edge of the network. However,
CPs and third-party CDNs have been building intercontinental
backbone networks as well as making thousands of peering
agreements in recent years. The growing significance of CPs
has led to discussion and speculation about whether CPs are
now the dominant players in the Internet ecosystem [4].

Our goal is to investigate what role CPs now play in the
Internet ecosystem, and in particular, if CPs are now a part
of the “core” of the Internet. Specifically, we motivate this
work with the following questions: How can we identify if a
CP does or does not belong to the core of the Internet? If the
core of the network does indeed include CPs, who are they?
As the AS ecosystem has shown striking differences according
to geographical regions [15], do we also see geographical
differences in the role of CPs and their presence in the “core”
of regional Internet structures? Finally, as more CPs deploy
their private CDNs, can we detect “up and coming” CDNs
that are not currently in the core of the network but are likely
to be in the future?

We use the concept of k-cores to analyze the structure
of the AS-level internetwork over the last two decades. We
first focus on seven large CPs, and confirm that they are
all currently in the core of the Internet. We then dig deeper
into the evolution of these large players to correlate observed
topological characteristics with documented business practices
which can explain when and why these networks entered
the core. We then take a broader view, characterizing the
set of ASes in the core of the Internet in terms of business
type and geography. Our analysis reveals that an increasing
number of CPs are now in the core of the Internet. Finally, we
demonstrate that the k-core analysis has the potential to reveal
the rise of “up and coming” CPs. To encourage reproducibility
of our results, we make our datasets available via an interactive
query system at http://cnet.fi.uba.ar/TMA2018/.

http://cnet.fi.uba.ar/TMA2018/


II. RELATED WORK

The increasing importance of CDNs in the Internet ecosys-
tem has produced a vast literature on this topic, which shares
some of the goals of the present article. Several articles studied
the internal structure of CDNs [17]–[20], where the focus was
on the economic and technical benefits of CDNs, the need
of data replication, techniques for content distribution and
cache updates, and cache placement. CDN literature has also
acknowledged the rising importance of private CDNs. Indeed,
there have been several studies about the largest private CDNs.
Google’s CDN has been studied from many points of view:
the growth of the serving infrastructure in recent years [21],
QoE performance [22], internal load balancing [10], traffic
engineering strategy run by its WAN SDN [9] and so on.
Facebook’s CDN was studied from the point of view of data
replication [23], network administration [24], and Facebook’s
SDN [11]. Bottger et al. [25] studied the Netflix serving infras-
tructure, called Open Connect, due to its remarkably different
architecture from other CDNs as well as the importance of
Netflix in overall traffic share. Calder et al. analyzed Mi-
crosoft’s CDN, known as Azure, as a representative example
of an anycast CDN [26].

IXPs have also received a great deal of attention in the
research and operational literature during the last decade.
During the 2000s, IXPs were in part responsible for a peer-
ing revolution, offering neutral points for ASes to establish
settlement-free peering agreements. IXPs encourage peering in
order to keep traffic local and to avoid reaching local neighbors
via either paid transit links or longer circuitous routes [3].
A well documented phenomenon is that the proliferation of
IXPs has contributed to a flattening of the Internet [14],
with hundreds of IXPs spread all over the world facilitating
connectivity between thousands of co-located networks. In
the research literature, a number of papers have studied the
anatomy of large IXPs [6] as well as the role of IXPs in
developing regions [27], [28].

Recently, Geoff Huston observed the wide-ranging effects of
the flattening structure of the Internet and the rise of CPs [4].
Huston suggests that these trends are marginalizing the role
of Transit Providers, terming this as “The Death of Transit”.

There is a vast body of previous literature on applying
graph theoretic concepts to study the AS graph structure. Some
examples of such work are papers that have introduced k-core
decomposition to study properties of the network [29]–[31].
These works mainly take a mathematical perspective about the
structure of the AS graph. In this work, we also utilize the k-
core decomposition technique from graph theory to study the
role specifically of CPs in the Internet over the years. However,
we pair the graph-theoretic concept with domain knowledge,
insights from other measurement datasets, and documented
strategies and actions of the CPs themselves, which gives
further context and explanation for the observed phenomenon.

III. METHODOLOGY AND DATASET

k=1 k=2

k=3

Fig. 1. Example of a k-core decomposition of a given graph.

k-core decomposition: Our goal is to study changes in the
structure of the AS-level Internet ecosystem from the perspec-
tive of content providers and CDNs, specifically, whether large
CPs are now part of the core of the network, and the historical
evolution of when such a transition occurred. For this purpose,
it is necessary to define a methodology to determine which
ASes are part of the core of the network.

We refer to the core of the network as the subset of ASes
that are densely connected. To compute the set of such ASes,
we use k-core decomposition, a naturally applicable tool from
the graph-theoretic literature. Although simpler graph metrics,
such as node degree, may indicate whether an AS is densely
connected or not, these metrics are not as robust as the k-core.
For instance, to define the core using node degree, it would
be necessary to set a threshold, while the k-core inherently
defines a community of densely connected nodes.

A k-core of a graph G is the maximum induced subgraph
in which all the vertices have at least degree k (see [32]). A
vertex or node that belongs to a k-core has at least k neighbors
which all have degree at least k. Moreover, a node that belongs
to core k also belongs to any core j < k, thus the shell-
index is given by the maximum core that a node belongs
to. Figure 1 displays k-cores using a small graph example
where nodes are colored to indicate their shell-index. As the
figure shows, the shell-index (or simply “core”) is given by
the degree of the node as well as the degree of the neighbors
in the induced graph. This can be seen in the example where
some four-degree nodes are in core 2 while nodes of degree 3
are in core 3. Furthermore, AS graphs are core-connected [33],
which means that there are k different paths between two ASes
of the same k-core.

The central part of the network is made of ASes that belong
to the maximum core kmax. In our analysis we study the
evolution of cores of the CPs. However, the kmax as well
as the k-indices of the AS graph change over time. For this
reason, we normalize k in each snapshot by its kmax index,
which leads to a normalized k with values between 0 and 1,
referred to as k∗. For now on, TOPcore will refer to k∗ = 1.
To calculate k-core decomposition on each snapshot of an AS
graph we used two tools, LaNet-vi [33], which also provides
network visualization, and NetworkX, a python library.
AS graph datasets: To apply the above k-core decom-
position methodology on the Internet graph longitudinally,



we need periodic historical snapshots of the Internet’s AS-
level topology. We rely on publicly available AS topology
snapshots from CAIDA. CAIDA curates AS topology data
from both BGP and traceroute-derived sources. The BGP AS
relationship dataset (1) is derived from BGP dumps taken
from RouteViews and RIPE RIS collectors [34] from 1998 to
present, and contains AS links observed at the BGP collectors
along with an inferred business relationships. We use a second
dataset which consists of AS links extracted from traceroutes
from CAIDA’s Archipelago [35] vantage points towards every
routed /24 prefix2. The two datasets can provide somewhat
different views of the Internet’s AS-level topology. While the
number of edges in each BGP data snapshot is larger than
in traceroute data snapshots, traceroute often reveals peer-to-
peer links which are not seen at BGP collectors [36]. To get
the most complete picture of AS-level connectivity, we chose
to combine data from both the BGP and Ark datasets, which
we refer to as the “Ark+BGP” dataset. This dataset consists
of monthly snapshots dating from 1998 to present, which is
sufficiently long to detect the evolution of the number of peers
of CPs. To view the k-core decomposition using only the BGP
dataset or traceroute dataset, we refer the reader to a website
with these visualizations.3

A limitation of our methodology is that CPs also serve
content from caches located within ISPs [12], [25], which
are not visible as AS links in BGP or traceroute. Even CPs
that follow an in-network caching strategy, however, generally
need to peer in order to reach ISPs that are not willing to
host caches in their networks, to fill the caches, and to serve
dynamic content that cannot be cached. In this work we only
study the evolution of AS-level connectivity of CPs; we leave
an analysis of cache infrastructure to future work.

IV. A FIRST LOOK INTO THE CORE EVOLUTION OF CPS

A well-documented trend in the evolution of the Internet
is that the set of ASes responsible for generating most of
the traffic has been shrinking; recent studies have shown that
only few tens of ASes together generate most of the traffic,
while in the past that number was in the thousands [1],
[37]. Given this trend toward traffic consolidation, we track
the core evolution of seven big players, which we refer to
as the Big Seven: Akamai (AS20940), Amazon (AS16509),
Apple (AS714), Facebook (AS32934), Google (AS15169),
Microsoft (AS8075) and Netflix (AS2906). Although CPs may
have more than one ASN, we study the evolution of their
primary ASNs. Publicly available AS sibling datasets can be
incomplete and need semi-manual verification; we leave a
consideration of sibling ASes for future work.

We chose these CPs based on publicly available information
such as PeeringDB [38] and Sandvine reports [39]. According
to their PeeringDB records, Akamai, Facebook and Netflix

1CAIDA’s BGP serial-1 dataset:http://data.caida.org/datasets/as-
relationships/serial-1/

2The Ark dataset was merged with skitter dataset http://data.caida.org/
datasets/topology/skitter-aslinks/.

3Graph visualization website:http://cnet.fi.uba.ar/TMA2018/.

have heavily outbound traffic with levels over 10 Tbps, 1 Tbps
and 1 Tbps, respectively. In addition, Sandvine reported in
2016 that Netflix dominated the peak period traffic with 35%
of the traffic share, followed by YouTube with 17% and
Amazon Video with 4% [39] in North America. The report
also mentioned that FaceTime and iCloud (Apple) and Skype
and Xbox (Microsoft) are among the top sources of peak
period traffic. Cloud computing is also responsible for large
data transfers, and this market is led by Amazon with 42% of
the share, Microsoft 15% and Google 7% [40].

Our a priori hypothesis is that all of these CPs currently
belong to the TOPcore. We check whether our hypothesis
is true, and if so, when and how quickly they reached the
TOPcore. We then attempt to dig deeper into the reasons why
we observe these CPs in the TOPcore, and correlate with
external factors such as legal disputes, market expansions, QoE
improvements, services releases etc. to explain why the CPs
appeared in the TOPcore at a certain time.

We also investigate whether CPs belong to the TOPcore
in each geographical region, defined as the Regional Internet
Registries (RIR) regions. We repeat the analysis of speed and
date of arrival for each CP in every RIR with a focus on
detecting differences by region, especially systematic delays
in when certain CPs appeared in specific regions.

A. Tracking the evolution of the Big Seven

Figure 2 shows the monthly evolution of the normalized CP-
core on the Ark+BGP dataset. A first observation is that as of
the end of 2017, all the studied CPs have already joined the
TOPcore, which is indicated by the fact that the normalized
core value for each CP is 1.

There appear to be two groups among the studied CPs, one
composed of Akamai, Google and Microsoft which reached
the TOPcore by 2005, and another comprising Amazon, Apple,
Facebook and Netflix, which became members of the TOPcore
between 2010 and 2015. The CPs in the first group are
arguably more established, and have been providing a variety
of online services for many years. The second group consists
of CPs that at some point decided to deploy their own infras-
tructure and stop serving content using third-party CDNs [41]
as multimedia content began to dominate the Internet traffic
share [42]. Moreover, the transition from lower cores to upper
cores among the members of the latter group is faster than
in the former group. The fast evolution of Amazon, Apple,
Facebook and Netflix cores is likely to have been encouraged
by the vast number of peering facilities which appeared during
the last decade [3], [43].

Next we dig deeper into the evolution of CPs individ-
ually. Specifically, we attempt to correlate the topological
characteristics of the CPs (their core) with business strategies,
acquisitions, or other factors which could explain why the CP
entered the TOPcore.

a) Akamai: Akamai has been in the TOPcore since 2005.
Akamai is a pioneer in content-delivery, and since its business
model relies on providing high-availability low-latency hosting

http://data.caida.org/datasets/as-relationships/serial-1/
http://data.caida.org/datasets/as-relationships/serial-1/
http://data.caida.org/datasets/topology/skitter-aslinks/
http://data.caida.org/datasets/topology/skitter-aslinks/
http://cnet.fi.uba.ar/TMA2018/


1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
80.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
n
o
rm

a
liz

e
d
 c

o
re

core evolution of CPs in Ark+BGP dataset
Akamai

Amazon

Apple

Facebook

Google

MSFT

Netflix

Fig. 2. k-core evolution of the Big Seven. All of these CPs have reached the
TOPcore.

rather than generating content, they have always aimed to have
a large number of peers. Moreover, Akamai acquired Speedera
networks, a rival third-party CDN, in 2005 to consolidate its
market position as well as to enlarge its platform. According
to Figure 2, Akamai had already reached the TOPcore when
it purchased Speedera networks.

b) Amazon: Amazon’s infrastructure deployment appears
to have occurred in two steps, according to Figure 2. This
is further corroborated by information provided on Amazon’s
website [44]. In 2009 Amazon established its datacenter in
Northern California, which matches with the first growth.
Between 2010 and 2012, Amazon established datacenters in
several parts of the world, which would explain the second
growth spurt from 2010 to 2012. In addition to the datacenter
deployment, Amazon established dozens of PoPs all over the
world to boost expansion, which correlates with its rise to
the TOPcore. Finally, we find that the WHOIS record for
Amazon’s DNS nameservers zone (e.g. awsdns-39.net)
was created in late 2010, which coincides with the last
spurt in its core growth. DNS nameservers are essential
elements of Amazon’s cloud infrastructure, required to load
balance traffic among locations. For instance, Slack, which is
hosted on Amazon, has slack.com NS records pointing to
ns-606.awsdns-11.net among other AWS nameservers.

c) Apple: We find that Apple’s AS reached the TOPcore
in 2015 after a fairly quick growth. According to publicly
documented information, Apple has been steadily off-loading
its content from Akamai onto its own CDN since 2013 [45].
Apple’s traffic share has been growing rapidly in recent years
fueled by large data transfers due to software updates, such a
new OS releases [46] or security patches. This is one of the
motivating reasons for Apple to build its own CDN. Further,
the company has recently announced that is planning to break
into the TV market, producing original television shows, which
will be served from Apple’s CDN [47].

d) Facebook: Facebook’s AS32934 got close to the
TOPcore in 2010 after a rapid growth in its normalized core
between 2008 and 2010. The number of users on Facebook
grew exponentially from 12M in December 2006 to 350M

by the end of 2009 [48] which coincides with Facebook’s
expansion period and rise to the TOPcore. Although Facebook
has kept on growing exponentially since then, the massive
growth during that period encouraged Facebook to establish
multiple peering agreements that enabled it to reach the
TOPcore. In addition, the WHOIS record for fbcdn.net,
which stands for Facebook CDN, was created in 2007 when
Facebook’s expansion was happening.

e) Google: Google was launched in September 1997 and
in just a couple of years became the most popular search en-
gine [49]. Over time, as Google started serving large volumes
of video traffic via the acquisition of YouTube in 2006 [50],
it expanded its CDN to get as close as possible to “eyeball”
networks and achieve high QoE for users. However, looking
carefully into Google’s peers in the early days, between 1999
and 2003, even before the CDN was deployed, it had several
agreements with tier-1 transit providers. Before December
2002, Google already peered with Level3 (AS3549), TATA
(AS6453), Telstra (AS4637), NTT (AS2914), Zayo (AS6461),
Qwest (AS209), GTT (AS3257) and Cogent (AS174). Links
with a number of large Transit Providers resulted in Google
becoming part of the same core level as those transit providers.

f) Microsoft: Similar to Google, Microsoft has been
serving large volumes of online content since the mid-1990s,
such as hotmail and MSN. Figure 2 shows that Microsoft
entered the TOPcore in late 2002. An analysis of Microsoft’s
peers shows that by December 2002, Microsoft had a large
number of connections with tier-1 Transit Providers, e.g.,
Level3 (AS3549), TATA (AS6453), Telia (AS1299), Telefon-
ica (AS12956), Sprint (AS1239) and NTT (AS2914). The
presence of peering links with multiple tier-1 ASes which
were in the TOPcore resulted in Microsoft also entering the
TOPcore.

g) Netflix: In 2012, it took Netflix less than a year to
move from core k∗ = 0.1 to the TOPcore. Netflix started
to offer video streaming in 2007 using third-party CDNs and
transit providers. With the growing popularity of the service
and increasing traffic volumes, the company moved content to
its own Open Connect [51] platform in 2012. Netflix’s strategy
to switch from third-party CDNs to its own infrastructure
manifests itself as a sharp increase in its normalized core
value between 01/2012 and 09/2012 as shown in Figure 2.
The transition of Netflix from using third-party CDNs to using
its OpenConnect platform also led to a number of peering
disputes with large access providers over interconnection fees,
e.g., with Comcast in 2013 [52].

In summary, all of the studied CPs moved from third-party
CDNs to private CDNs and entered the TOPcore. In particular,
Apple, Facebook, Microsoft and Netflix all off-loaded content
from Akamai. These changes led to significant loss of revenue
for Akamai and a drop in its share price [41]. Despite losing
major clients, Figure 2 shows that Akamai is still in the
TOPcore, which means that Akamai’s peering agreements do
not depend exclusively on these large clients.
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Fig. 3. k-core evolution of the Big Seven in each RIR. The dashed line displays the beginning of NetAcuity geolocation database.

B. Evolution by geographical region

Next, we compare the evolution of the Big Seven by
geographical region. To determine which regions an AS is
present in, we use the NetAcuity [53] geolocation database
to geolocate each prefix advertised by an AS in a given
snapshot. The (in)accuracy of geolocation databases has been
studied extensively [54]. However, previous work has found
that the NetAcuity database is mostly reliable for country-level
geolocation [55]. We use RIR-level granularity in this work, so
we believe that this analysis is not affected by inaccuracies in
geolocation. After geolocating ASes, we combine the monthly
“Ark+BGP” snapshots with the mapping between AS and RIR
to create monthly RIR subgraphs.

There are two issues with this basic methodology that we
need to account for. First, we need AS geolocation information
throughout the duration of “Ark+BGP” dataset. However,
CAIDA only had NetAcuity records since November 2011,
while our topology dataset starts in January 1998. Second,
NetAcuity appears to incur a time lag between when a prefix
is active in a new location and when it appears at that location
in the database. For example, NetAcuity started reporting
the presence of Netflix in the LACNIC region in December
2016, while a June 2015 Wayback Machine snapshot 4 already
showed Netflix as a member of a Brazilian IXP. As our goal
is to track historical evolution, it is necessary to include an
AS in the RIR subgraph when changes are actually happening
and not once they have already happened. To account for these
issues we made two modifications to the basic methodology.

1) We assume that the 7 CPs we study have always had
a presence in every RIR. While building the RIR sub-
graph, however, we only include observed connectivity
between the CPs and other ASes geolocated to the RIR.

2) We assume that prior to November 2011 (the start of our
Netacuity dataset), ASes had the same locations that they
had in November 2011.

4Wayback Machine snapshot of members of Brazilian IXP. 06/2015:http:
//web.archive.org/web/20150617231252/http://ix.br/particip/sp

While this methodology allows us to create RIR subgraphs,
we cannot infer where the connection between two ASes
actually happens when those ASes have presence in multiple
RIR subgraphs. For instance, Google and Level3, which are
currently present in every RIR subgraph, may not have a
physical link in each RIR.

1) Geographical evolution of the Big Seven: Figure 3
shows the evolution of each CP by RIR. We find that all CPs
have reached the TOPcore in every RIR although the arrival
date varies by CP and RIR.

Amazon and Facebook show differences between RIRs in
their growth in the late 2000s and early 2010s. Amazon first
established datacenters and PoPs in the US before 2009, then
expanded to Singapore (APNIC) in 2010, Brazil (LACNIC)
in 2011, and several locations in Europe (RIPE) in 2011 [44].
Figure 3 shows that Amazon’s core trends follow its docu-
mented infrastructure deployment. Facebook, which has been
part of the worldwide TOPcore since 2009, lagged in APNIC,
LACNIC and AFRINIC, where it got to the TOPcore several
years after ARIN and RIPE. Facebook got to the TOPcore
in ARIN in August 2010, APNIC in August 2012, LACNIC
in August 2013 and in AFRINIC in March 2013. In RIPE,
Facebook has been in the upper cores (k∗ ≥ 0.9) since early
2010, however, it finally reached the TOPcore in January
2012. Facebook publicly acknowledged its lack of presence
in developing regions and took steps to correct in order to
improve user QoE in those regions [56].

Since the Big Seven are all U.S. based companies, one
might expect that they first reached the TOPcore in ARIN,
and later expanded to developing regions such as LACNIC and
AFRINIC. Figure 3 shows, however, that Akamai, Google and
Microsoft showed negligible differences across RIRs in the
early 2000s, which does not match documented information
about their CDN deployment. For instance, Google established
a PoP in Argentina only in 2011 [57]. The reason for this
discrepancy is that Akamai, Google and Microsoft had peering
links with tier-1 transit providers present in those regions,

http://web.archive.org/web/20150617231252/http://ix.br/particip/sp
http://web.archive.org/web/20150617231252/http://ix.br/particip/sp


TABLE I
PERCENTAGE OF LOCAL PEERS IN EACH REGION
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ARIN
2007 0.33 1.0 0.73 0.51 1.0 0.68 0
2012 0.45 0.49 0.6 0.49 0.43 0.52 0.86
2017 0.41 0.4 0.42 0.44 0.39 0.43 0.39

RIPE
2007 0.75 0.0 0.0 0.68 0.0 0.42 0
2012 0.74 0.75 0.15 0.75 0.81 0.76 0.14
2017 0.71 0.68 0.67 0.73 0.7 0.7 0.77

APNIC
2007 0.21 0.0 0.4 0.21 0.0 0.13 0
2012 0.45 0.24 0.29 0.37 0.27 0.24 0.0
2017 0.47 0.37 0.4 0.37 0.38 0.37 0.39

LACNIC
2007 0.0 0.0 0.0 0.11 0.0 0.0 0
2012 0.11 0.35 0.0 0.36 0.07 0.08 0.0
2017 0.56 0.53 0.17 0.51 0.56 0.5 0.57

AFRINIC
2007 0.05 0.0 0.0 0.11 0.0 0.04 0
2012 0.0 0.0 0.0 0.05 0.0 0.0 0.0
2017 0.23 0.03 0.07 0.14 0.07 0.1 0.1

which caused the CPs to be in the TOPcore of those regions
as well. A look at peering relationships in the early 2000s
confirms this hypothesis — Google was not present in the
LACNIC region, however, it peered with Level3 (AS3549),
TATA (AS6453) and Qwest (AS209), which were present in
LACNIC. We confirmed that the tier-1 ASes were present in
LACNIC because they peered with the two largest Argentinian
ISPs, Cablevision (AS10318) and TASA (AS4926), which
were only present in Argentina at the time.

Netflix and Apple were the latest to enter the worldwide
TOPcore as well as the TOPcore of each RIR. Netflix was in
the lower cores (k∗ < 0.3) in every RIR in January 2012. By
January 2014 it moved to the TOPcore in every RIR. Apple’s
growth was similar — in June 2014 it was in cores lower than
0.5. One year later it was in the TOPcore of every RIR except
LACNIC where it reached the TOPcore in Jan 2017.

2) Local Peers: The analysis of the previous section
showed that core evolution does not necessarily reflect the
geographical expansion of CPs. Here we present a comple-
mentary analysis. Table I shows the percentage of peers of a
CP in a region that are registered in that region (according to
WHOIS records). For example, Google had 38% of local peers
in APNIC in 2017, meaning that 38% of Google’s links with
ASes present in APNIC were with ASes registered in APNIC,
while the remaining 62% were with ASes present in APNIC
but registered elsewhere. This metric provides information
about when a CP first arrived in a region, as that would
intuitively lead to an increase in the local peering metric.

Table I shows that Akamai, Google and Microsoft signifi-
cantly increased the number of local peers in Latin America
(LACNIC) in the last five years. APNIC has also shown
a growth in the number of local peers, but slower than in
LACNIC. In contrast to Figure 3 where all of the CPs belong
to every TOPcore, Table I shows a fairly low number of local
peers of these CPs in AFRINIC. As of 2017, Akamai had the
largest fraction with 0.23, Facebook second with 0.14 and all
the rest were under 0.10.
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Fig. 4. Date of first arrival at the TOPcore for ASes which currently compose
the TOPcore.

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
70.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
o
n
te

n
t 

T
ra

n
si

t 
Fr

a
ct

io
n

Fraction by type in the TOPcore
Content
Transit

Fig. 5. Monthly evolution of the fraction of CPs and Transit in the TOPcore.

While the percentage of local peers of CPs increases over
the years in regions where they initially had a small fraction
of local peers, ARIN shows the opposite trend. This is likely
because the studied CPs are U.S. companies. Consequently,
their number of local peers in ARIN saturates, while the
number of non-local peers increases as companies outside the
U.S. deploy infrastructure in ARIN and peer with the CPs.

V. THE TOPCORE BEYOND THE BIG SEVEN

We conclude our analysis by looking at other networks in
the TOPcore. Specifically, we investigate how many networks
are in the TOPcore, what type of networks they are (transit or
content), what fraction of the TOPcore networks are accounted
for by content networks, and how quickly those networks
reached the TOPcore. To identify ASes in the TOPcore, we
use the criterion that an AS must be in k∗ > 0.975 at any point
in time, and in k∗ ≥ 0.95 during the last six months of our
dataset (Mar-2017 to Oct-2017). Note that this definition of
the TOPcore is broader than that used in the previous section
where the criterion for belonging to the TOPcore was k∗ = 1.
By this broader definition, we had 314 ASes in the TOPcore
— 59 Content Providers and 255 Transit/Access Providers
according to CAIDA’s AS classification [58].



TABLE II
ORIGIN ACCORDING TO WHOIS FOR TOPCORE ASES

ARIN RIPE APNIC LACNIC AFRINIC Unknown
Content 36 20 3 0 0 -
Transit 35 165 38 3 8 6
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Fig. 6. Correlation between speed of growth and date of arrival at the
TOPcore.

Figure 4 shows the fraction of these 314 ASes (separated
into Content and Transit) that first reached the TOPcore
over time. This plot clearly shows that over time, more CPs
have been peering aggressively and joining the TOPcore.
Interestingly, 75% of the CPs in the studied set first entered
the TOPcore after 2011. Moreover, we see two distinct phases
in the CP curve — the rate at which CPs arrive in the TOPcore
has increased since 2011. The arrival of Transit Providers, on
the other hand, appears steady over the years.

Table II shows the geographical distribution of ASes in
the TOPcore. We see that CPs in the TOPcore are mostly
from ARIN and RIPE (with the exception of 3 from APNIC).
However, among Transit Providers, RIPE has significantly
more ASes than other regions. AFRINIC and LACNIC have
negligible or no presence in either category. APNIC has a
considerable number of Transit Providers but few CPs.

Figure 6 shows a heatmap of the number of ASes that
arrived at the TOPcore at a certain time and at a certain
speed. We define speed as the number of months to move
from k∗ = 0.3 to k∗ = 0.975, and this definition is based
on the transitions from lower to upper cores seen in Figure 2.
Figure 6 shows that 172 of the 314 ASes joined the TOPcore
between 2011 and 2018 and most of them moved from lower
cores in just a few months, where the average speed was 61
months. This fast evolution of the TOPcore in recent years can
be possibly explained by the growth of the number of peering
facilities and participants at those facilities in this time frame.

Next, we investigate the composition of ASes in the TOP-
core over time. In Figure 5, we applied the TOPcore criterion
to determine which ASes belong to the TOPcore every month,
and then classified the ASes in the TOPcore as Content or
Transit. We find that the fraction of CPs in the TOPcore has
been steadily increasing; as of the October 2017 snaspshot,
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Fig. 7. k-core evolution of CPs other than the Big Seven.

22% of ASes in the TOPcore were CPs. Note that the absolute
number of ASes in the TOPcore has been increasing as well,
which implies that the TOPcore has been incorporating more
CPs than Transit ASes over time.

Finally, Figure 7 shows the evolution of seven CPs that
have joined the TOPcore in recent years (different from the
Big Seven). Interestingly, there are ASes in this set that
are not normally considered among the top CPs, such as
Booking.com or Spotify. We believe that analysis of core
evolution can be a possible tool to identify ASes that are
increasing in significance, the so-called “up and coming” CPs.
We refer the reader to the following website to replicate our
results:http://cnet.fi.uba.ar/TMA2018/

VI. CONCLUSIONS

In this work we demonstrated that CPs have taken a decisive
role in the AS ecosystem, where seven large companies in the
Internet content market have moved towards the core of the
network. By analyzing the evolution of the cores of the CPs,
we were able to identify possible reasons related to business
practices, strategies, and geographical expansion that explain
the rise of these networks to the top core. Furthermore, we
showed the core of the network has been rapidly incorporating
content ASes over time.
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