
Dmap: Automating Domain Name Ecosystem
Measurements and Applications

Maarten Wullink, Giovane C. M. Moura, and Cristian Hesselman
SIDN Labs

Arnhem, The Netherlands

firstname.lastname@sidn.nl

Abstract—Behind each Internet domain name, there is a set of
entities/companies responsible for delivering the various services
associated with it, such as Web hosting and e-mail. Together,
they form what we refer to as DNS ecosystem. Currently, there
is no single measurement tool designed to measure this ecosystem
altogether. As a result, researchers that aim at analyzing (parts
of) this ecosystem often have to spend significant amounts of time
preparing and executing the multiple application measurements
and post-processing their heterogeneous raw datasets. Given that
time is a scare resource, this complexity diverts researcher’s time
from actual analysis, ultimately limiting how far many studies
go. To help researchers facing this situation, we present Dmap,
an active measurement application that reduces the complexity
of executing both measurements and analysis. It does so by (i)
automating the crawling of several application protocols (DNS,
HTTP, TLS/SSL, SMTP, both over IPv4 and IPv6) and (ii) storing
the results into a relational data base, enabling researchers to
quickly perform hypothesis tests within interactive response times
using SQL. Dmap current version has 40 classifiers that generate
166 derived features (e.g., CMS detection, page language), which
can be used by researchers and operators to build applications
and services. We present an evaluation of Dmap and show three
applications that it can be used for, such as profiling the Alexa 1
million domains. We use Dmap at SIDN (.nl registry) for research
on the .nl zone and make it open-source for researchers.

I. INTRODUCTION

The Internet Domain Naming System (DNS) provides a

global hierarchical naming space in which labels are used for

hosts, services, applications, and networks on the Internet [1].

It comprises one of the core services on the Internet [2].

Associated with each domain name, there is a diverse set of

entities/companies providing various services/functionalities,

forming what we refer to in this paper as DNS ecosystem. To

illustrate it, consider the domain wikipedia.org in Figure 1. To

register a domain, there are typically three entities involved:

registrant, registrar, and registry. A registrant (person or com-

pany) chooses a registrar (e.g., GoDaddy) which is accredited

by the top-level domain (TLD) registry (Public Interest Reg-

istry for .org) to register the domain (wikipedia.org) on behalf

of the registrant. After that, a registrant sets the authoritative

name servers [3] ({ns0,ns1,ns2}.wikimedia.org) to answer

queries to the domain. Each of these authoritative name servers

in turn can be run by different DNS providers (e.g., Dyn,

Amazon Route53) on different networks/locations.

After that, the registrant can associate diverse services

with the domain, such as web, and e-mail (using DNS MX

Services

SMTP

* Email

provider

* Network

* StartTLS

Others

HTTP

* Hosting

Provider

* Network

* Contents

TLS (HTTP)

* Certificate

* CA

Registration

* Registrant

* Registrar

* Registry

DNS Infra.

* Provider

* Auth.DNS

servers

wikipedia.org

Fig. 1. Domain Name Ecosystem

records [4]). Each of these services can also be provided by

different companies (e.g., GMail or Yahoo for e-mail).

This example illustrates the complexity of the DNS ecosys-

tem. Currently, there is no open-source measurement tool that

measures this ecosystem altogether. Instead, there is a set

of of application-specific tools that produce heterogeneous

datasets (§II). As a consequence, researchers often spend

valuable time on (i) both coordinating measurements (due

to heterogeneous tools) and (ii) preparing the collected data

(handling different formats), instead of spending time on

actual research questions. Ultimately, this complexity operates

as veiled limiting factor in many measurements studies, by

consuming time that otherwise could be spent on data analysis

and hypothesis tests.

To help researchers and operators facing this scenario, we

introduce DNS Ecosystem Mapper (Dmap, available at [5]), an

open-source, scalable, modular, and distributed RESTFul web

application [6] that reduces the complexity in both carrying

the measurements related to the domain name ecosystem and

the analyzing the collected data. It does that by (§III) (i)

automating the crawling of various application layer protocols

(DNS, HTTP, SMTP, and TLS, for both IPv4 and IPv6) for

any given domain name and by employing a unified relational

database model, which (ii) enables researchers to perform

hypothesis tests using SQL syntax, obtaining results within

interactive response times. Besides that, Dmap goes beyond

current tools by enriching the raw measurements with derived

features, which is done with the use of 40 classifiers that,

among others tasks, detect the language of a web page and

determine if and which content management system (CMS)

are deployed. Ultimately Dmap produces up to 166 features

for a given domain name.

At SIDN (.nl top-level domain (TLD) operator), we employ

Dmap to perform periodical full zone scans (∼ 5.8 million

domains) to support projects that focus both on improving se-

curity and stability of the DNS [7]. We assess its performance

and precision using a production DNS zone (.nl, §IV).

By significantly reducing the complexity associated with the

execution of measurements and data engineering, Dmap frees

researchers to spend more time in the data analysis and focus

on research questions. We show three applications of Dmap

and show how data analysis can be easily done with SQL (§V).

Finally, we make Dmap open for researchers [5].

II. YET ANOTHER SCANNER?

Over the last few years, the Internet measurement commu-

nity has been benefiting from both fast scanners and open

measurement data repositories. So one may wonder: do we

need yet another scanner?

To answer this question, we first lay out the requirements

for Dmap and then discuss how current tools/repositories do

not fulfill them.

A. Requirements

The main requirement for Dmap is to reduce the complexity

associated with both execution and analysis of measurements

related to the domain name ecosystem (Figure 1). To achieve

that, it needs to fulfill the following sub-requirements:

1) Domain-centric: Dmap should take as input a list of

domains, as defined by its users, and not a list of IP

addresses. It can used by perform scans on entire DNS

zones or a subset of them.

2) Automate the crawling of multiple protocols: It should

crawl various protocols (DNS, HTTP, SMTP, and TLS,

currently), and generate a screenshot of the main page

of a domain, if exists.

3) IPv4 and IPv6 support: it should measure actively the

application protocols from #2 using both IPv4 and IPv6,

and store the results separately.

4) Completeness: Dmap should aim for completeness of

results, by having fail-safe mechanisms that allow for

retrial of measurements in case of transient failures.

Users should be able to set timeout and retry options

for each measurement.

5) Derived features using classifiers: Dmap should produce

derived features from raw datasets. Those features are

those that requires extra processing, such as identifica-

tion of CMSes and languages identification on Web sites,

among others.

6) SQL-based unified data model: features from the raw

measurement datasets should be extracted and then

stored in unified SQL-based data model, in an external

relational database management system (RDMBS). This

model enables researchers and engineers to analyze large

volume of data with interactive response times (seconds

to minutes), which is essential for hypothesis tests and

design of new applications [8], [9].

7) Modular: users should be able to control which appli-

cation protocols should be measured (#2).

8) Distributed: Dmap architecture should be distributed for

scalability.

9) Open-source: the tool should be open-source for re-

searchers, so users have a complete understanding on

how measurements are carried.

B. Current Tools and Services

Currently, there are various measurement tools that can

be used to carry out Internet measurements. However, none

of them carry multi-application measurements. As a conse-

quence, users have to use distinct applications for differ-

ent protocols, and some do not support IPv6. For example,

Masscan [10] and Zmap [11] are tools that have decreased

significantly the time required for perform IPv4 port scans,

while ZMap subtools [12] addressed specific applications, such

as HTTP and TLS.
While they have significant value, these problem with these

tools is fragmentation: for each type of measurement, one

needs to employ a specific tool, increasing the complexity.

And each of them have of them have a distinct data format.

As such, it does not fulfill sub-requirements #2 and #6.
Moreover, Masscan and ZMap are designed with a different

goal: scan the entire IPv4 space. Dmap, on the other hand, is

designed to scan domain names. The domain name space is

different from the IP address space, and given the prevalence

of web shared hosting [13] (in which many sites are hosted on

the same servers), IP-wide scans cannot be used to enumerate

(and measure) the domain name space, since such tools cannot

determine which are the domains present in shared hosting

services.
Other services such as DomainTools [14] provide similar

features as Dmap. However, they are paid services and not

open-source for researchers – violating requirement #9.

C. Public Data Repositories

Besides open measurement tools, Researchers have also

available several large public measurement data repositories.

CAIDA [15], USC/ISI’s ANT [16], scans.io [17] and censys.

io [18] are among the most popular ones.
Similarly to the existing tools, these datasets provide valu-

able data to the research community. However, they may

not cover all cases. For example, at SIDN, we periodically

scan our .nl zone at a frequency we find necessary. Other

researchers, for example, may use Dmap to scan other publicly

available zones [19] at their will. Thus, these repositories, of

course, cannot cope with the user’s specifics requirements, not

fulfilling requirement #1. Besides, they also come in different

data formats (#6) and may not support IPv6 (#3).

III. DMAP DESIGN PRINCIPLES

Different from most measurements tools, which are stand-

alone, Dmap has a distributed client/server architecture in form

Domains

DB

2.Crawler

service

3. Input

Queue

save

1.Crawler

controller

read random domain put it back if fails

7.Classifiers

Threads (n)

8. Persitence

Service

9. Results DB
read raw scan results

A. Data Preparation

B. Crawlers

C. Classifiers

RESTful API

4.Crawler

Threads (n)
5. Crawler Pipeline

REG,DNS, HTTP ,TLS,

SMTP,SCREENSHOT
6. Raw

Result

Queue

save

save

read

researchers/analysts

Fig. 2. Dmap Architecture

of a Representational state transfer (RESTFul) [6] web service

developed in Java. uses Spring Boot [20], which is a Java

framework that contains a series of libraries/tools that abstracts

part of the complexity in writing RESTFul applications. With

Dmap, users have full control of what, when, and what

protocols to measure.

Besides that, Dmap uses other third-party libraries

(e.g., Maxmind GeoIP database [21] for annotating IP ad-

dreses, PhantomJS [22] for screenshots, the Java VM, and

PostgreSQL [23] to store the final results). Even though Dmap

has a distributed architecture, it can run on a single server as

a .jar file.

Figure 2 shows the architecture of Dmap. It is divided in

three main modules: Data preparation (A), Crawlers (B), and

Classifiers (C). Next, we cover these in more details.

A. Data Preparation and Control (A)

The first module of Dmap consists of preparing the data

to be used in the scans. Note that Dmap can also be used to

scan individual domains using a web interface (also generating

JSON output) but in this section we focus on how it performs

scans in bulk, i.e., on thousands or million domain names.

First, a user invokes the Crawler controller via an URI

(step 1 on Figure 2) , using the RESTFul API. This triggers

the Crawler service (2), which has two main functions: read

the contents of a csv file containing the list of domains

to be scanned and storing it into Domains DB, which is a

PostgreSQL database.

Then, the same Crawler service reads n random domains

from Domain DB and inserts these into the Input Queue (3),

which in fact is a in-memory database used by the crawlers to

start the scan. We employ Hazelcast [24] as our Input Queue,

which is a lightweight open-source in-memory database.

The Crawler service also monitors the size of Input Queue

as the scans take place, and once it drops below a configurable

threshold, it then fetches more random domains from Domains

DB and inserts then into Input Queue. We choose to place

n random domains (e.g.,15,000) each time at Input Queue

instead of all of them in order to Dmap’s reduce memory

footprint and to minimize possible data loss during scans in

case of application errors. This allow us to re-start the scan

from where it stopped just by looking at the domain’s states

stored in DomainsDB (§III-D).

B. Crawlers Module (B)

The crawler module (B) of Dmap is responsible for car-

rying out the actual application level measurements. We first

describe how they work in broad terms, and then cover the

specifics of each crawler.

After storing n random domains in Input Queue (step 3),

the application starts x Crawler Threads (step 4 in Figure 2,

configurable by the user). Each thread then reads one domain

from the Input Queue and executes the Crawler Pipeline (5)

for the domain.

The Crawler Pipeline defines the sequences of measure-

ments that will be executed. Currently, it is composed of ten

stages: eight designed to measure application protocols (DNS,

HTTP, TLS, and STMP), each of them carrying out measure-

ments over IPv4 and IPv6 (thus one stage per application/IP

stack version); another stage used to capture a screenshot

of a website and one stage (REG) to retrieve domain name

registration information (typically internal to TLD registries,

but it could be extended to support third-party APIs).

Each individual crawler of the pipeline can also be option-

ally activated/deactivate for each measurement. For example,

a user interested only in DNS information can disable all other

crawlers, thus reducing the total measurement time.

Dmap keeps the state of each measurement. To do that,

its Crawler Service (2) keeps in DomainsDB metadata that

indicate which domains have been crawled, which need to be

retried, which protocols need to still to be crawled.

After performing its measurements, each crawler in the

pipeline stores its raw measurement results into the the Raw

Result Queue (step 6), which is a Java queue implementation.

We refer to this queue as “raw” since it contains different

data formats, such as html (for HTTP measurements). By

default, Dmap does not store the raw measurement results –

only results as specified in our data model (§III-F) (we are

currently working on implementing a module to export this

raw datasets, so it can be further analyzed using other solutions

such as Elasticsearch [25]).

C. Crawlers Details

We have developed each crawler of the pipeline from

scratch, using a series of external third-party libraries. The

reasons for doing this is that it allows us to have full control

over the measurement data and processing, enabling us to

extract whatever features we needed. Next we discuss each

crawler.

1) DNS crawler: the DNS is used to store various types

of records. For example, A [1] and AAAA [26] records are

used to stores IP addresses (IPv4 and IPv6 respectively, the

“classic” name to IP mapping). However, there are other record

types too: MX records [4] specify mail exchange for the

domain (e.g., smtp.example.nl), while SOA specifies the start

of the zone authority. TXT records [4], on the other hand, hold

descriptive data, and are use in DMARC [27] and DKIM [28]

protocols. Our crawler downloads all these records, which are

later processed by classifiers that annotate them with other

features.

2) HTTP crawler: we use Apache’s HttpClient [29] library,

which provides an implementation of the HTTP client pro-

tocol. We have implemented, however, the logic behind the

crawler, and handled a series of issues. For example, if a

domain redirects to another domain or subdomain, our crawler

will follow to the redirect page (up to a certain number of

redirects configured by the user). Also it is able to handle

many cornercases such as websites that continue streaming

large amounts of data, by using timeouts and maximum bytes

allowed to download.

3) TLS crawler: The crawler attempts to establish a

HTTPS connection to the domain name, and download its

X.509 certificate [30] (which is not part of the protocol). We

disable all Java security controls, to prevent that exceptions are

raised occur during this phase, so we are able to determine if

there is an error with a certificate, what error it is (expired,

self-signed, etc.).

4) SMTP crawler: the SMTP crawler crawls all configured

mail servers (given by MX records) and verifies if they

supports StartTLS (opportunistic TLS) [31]. The crawler will

try to create a connection to each mail server IP address (over

both IPv4 and IPv6).

5) Screenshot crawler: it creates a screenshot of the

main web page and uses PhantomJS for that. This is a rela-

tively expensive operation because all the website resources

(e.g., HTML, JavaScript, Images) must be download and then

the page has to be rendered. Therefore, we disable this crawler

by default to speed up large zone scans. However, users can

activate as they wish.

6) REG crawler: we use it internally at our .nl registry, and

we retrieve information such as registration date and registrar.

Our open-source version has these features disabled, since they

are registry only. This crawler could be extended to connect to

third-party APIs or whois services to extract more features.

D. Fail-safe Mechanisms

Measurements results may be affected by transient er-

rors [32], such as connectivity issues and packet loss. To

handle such errors, we have built into Dmap various fail-safe

mechanisms.

First, for each domain d, we keep in the DomainsDB

metadata about the stage in which the domain is in the

pipeline. If one of the crawlers in the pipeline fails, Dmap

stores extra information associated with that – such as when

it failed, and the respective error. It also keeps a counter for

number of retries and a time for the next time it should be

retried (both parameters configurable by the user).

We also handle different exceptions for each type of crawler.

For example, for the DNS crawler, we do not retry if a domain

name resolution was answered with an NXDOMAIN [1],

which indicates the requested domain does not exist. If there

TABLE I
SIX OUT OF THIRTY DMAP CLASSIFIERS AND FEATURES

Classifier Features

TLSCert extract X.509 cert. info and type of cert
ServerClass OS and Web server fingerprint
Parking if a domain is parked and/or for sale
CMSClass CMS, shopping cart and forum detection

if a domain has a registrar placeholder page
Business type of site (online shop)
LetsEncrypt if domain uses Let’s Encrypt Certs

is a timeout, however, Dmap retries again to crawl the domain

after a configurate time interval.

E. Classifiers Module (C)

Classifiers have two roles on Dmap: extract the required

features from the raw measurement data and enrich this data

with other derived features. Such derived features is one of

the biggest differences between Dmap and other tools: it

generates by default a richer set of features that would require

researchers to manually implement them.

Table I shows 6 of these classifiers and their respective

features. For example, ServerClass attempts to perform OS

and Web server identification, while TLSCert reads the X.509

certificates, extract its type, CA, among others. Many domains

are also “parked” [33], i.e., a domain that is not developed

and usually used in automatically generated advertisement.

The CMS classifier attempts to identify a content manage-

ment system (CMS), such as Joomla, is in use on a website,

besides detecting the presence of forums or shopping carts

(used to detect online stores). To do that, we have manually

inspected various CMSes and produced matching patterns for

42 of them. For example, to identify Wordpress, we look

into the generator tag found in the HTML code of the

main page and perform substring match with Wordpress

and WPML. In addition, we also search for internal links

with wp-content and wp-includes on their paths (these

matching patterns need to be updated as new versions of

CMSes are released).

Table II shows 65 features produced by HTTP classi-

fiers, from the raw HTML code and its metadata. Features

such as httpStatus, total number of links and internal

links (htmlLinksInt, htmlLinksAll), and site lan-

guage (pageLan) can be directly used by researchers to build

classifiers to detect, for example, malicious web sites.

Currently, there are 40 classifiers on Dmap. Each classifier,

in turn, is associated to one crawler type only. For example, the

Parking classifier (Table IV) process the raw html data from

the HTTP cralwer. Users can also develop new classifiers

or modify existing ones. Users cannot, however, disable indi-

vidual features – they can either enable or disable crawlers

(§III-C), but once a crawler is activated, their respective

classifiers will generate the entire set of features.

Ultimately, the classifiers store the results into Results

DB (9), an external database upon which analysts can carry

out their hypothesis tests and build other applications We cur-

TABLE II
65 HTTP IPV4 FEATURES PRODUCED BY DMAP FOR EN.WIKIPEDIA.ORG.

domainname:"wikipedia.org",

crawlRun:764,

ipVersion:4,

url:null,

crawlName:"www.wikipedia.org",

crawlUrl:"https://www.

wikipedia.org/",

crawlDomain:"wikipedia.org",

crawlDate:"2018-05-15

T09:28:48.642+0000",

crawlStatus:0,

crawlPages:2,

crawlRetries:0,

networkLoadTime:24,

networkLoadTimeAll:[

{

url:"http://www.wikipedia.org",

type:"index",

time:24,

status:"OK"},

{ url:"https://www.wikipedia.

org/",

type:"redirect",

time:46,

status:"OK"}],

httpStatus:200,

httpBytesLen:75232,

htmlTitle:"Wikipedia",

htmlDescription:"Wikipedia is

a free online encyclopedia,

created and edited by

volunteers around the world and

hosted by the

Wikimedia Foundation.",

htmlKeywords:null,

serverEngine:null,

serverEngineVersion:null,

pageDefault:false,

pageSuspended:false,

pageLang:"mul",

pageLangMulti:false,

pageLangProb:100,

pageFingerprint: (ommit)

httpRedirect:false,

httpRedirectCount:1,

httpRedirectChain:"www.wiki

pedia.org,www.wikipedia.org",

httpRedirectHttps:true,

httpRedirectTld:false,

tldStart:"org",

tldEnd:"org",

htmlLinksAll:320,

htmlLinksInt:0,

htmlLinksExt:320,

htmlLinksImg:0,

htmlVersion:"HTML 5",

htmlFrameCount:0,

htmlSpiderBlocked:false,

appCms:null,

appCmsOther:null,

appForum:null,

appShoppingCart:null,

pageType:"Content",

parkingProvider:null,

pagePlaceholder:false,

serverOs:null,

statsWordCount:619,

trustMark:null,

secHsts:"max-age=106384710;

includeSubDomains; preload",

secPubKeyPin:null,

secPubKeyPinReport:null,

secContentSecPol:null,

cookiesCount:3,

cookiesPersistentCount:2,

privacyPolicyAvail:false,

businessCocNo:null,

businessVatNo:null,

businessBankNo:null,

businessBicNo:null,

businessPhoneNo:null,

businessAddress:null

rently implement ResultsDB using PostgreSQL, but for larger

datasets, one can export this data to other Big data databases,

that support SQL syntax, such as Impala [34] (we use Im-

pala to analyze authoritative DNS traffic in ENTRADA[35],

another open-source tool we developed).

F. Data Model

Dmap uses a SQL-based data model with 44 tables. The 166

features produced per every single input domain are distributed

over six result tables – one per service: DNS (30, which 4 are

nested JSON fields); HTTP (65, 2 are nested); SMTP (11, of

which 1 is nested); TLS (37); REG (8) and Screenshot (15).

Nested features may have a variable number of subfeatures,

as networkLoadTimeAll in Table II. The other tables are

used to storate metadata associated with the crawling (status,

error, for example). Due to space constraints, we omit the

complete data model here and make it available at [5].

G. Ethical and legal considerations:

As any active Internet measurement tool, Dmap users should

evaluate the ethical implications of their measurements [36]

and the impact it may have on the measured systems, as well as

managing the collected data. We do not cover the legal issues

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

OK Malformed URL

Unknown host

Network Error

IO Error

Redirect Error

Too Many Redirecs

Connection Refused

TLS Error

Content Decode Error

Others

D
o

m
a

in
s
 (

lo
g

)

IPv4

IPv6

Fig. 3. HTTP crawler result codes

in this paper, but we have developed, together with our legal

department, a publicly available data privacy framework [37]

that conforms to both EU and Dutch laws. This framework

has been implemented, including a privacy board that oversees

SIDN Labs research.

IV. EVALUATION

To evaluate Dmap , we have carried out a full zone on our

.nl TLD zone on September 3rd, 2017 from our corporate

network. In total, 5,766,118 domains were used as input. We

ran it on a single virtual machine with 8x 1.4GHz CPU cores

with 32GB of RAM, and 1 Gbps shared line. We activated 6

crawlers (screenshot was disabled), with 300 Crawler threads

and 50 Classifier threads (Figure 2).

A. Precision/Completeness

To determine how precise and complete Dmap is, we

compare its results for DNS services against OpenIntel [38],

a project that daily perform DNS scans of various DNS zones

and that uses a different vantage point from ours.

On September 3rd, 2017, after scanning all .nl domains for

DNS records, OpenIntel listed 913,511 domains that had a

AAAA record associated to it, i.e.,a IPv6 address (∼15.8% of

the total – not every domain needs to have an IPv6 AAAA

record). Dmap, in turn, found that 913,593 .nl domains had

AAAA records – a very similar figure. The small difference

(82 domains) can be explained by transient changes in these

domains setups while being measured.

For DNS zones, such as .nl, we can expect that not all

domains have a Web page (some not used for Web, others

not depeloped yet). We then show the results for the HTTP

crawler over the .nl zone. As discussed in §III-B, this crawler

downloads the main page associated with a domain (obtained

from its A or AAAA records). Figure 3 shows the results

of the HTTP crawlers. Out of 5,766,118 domains, 4,756,943

(82.49%) had an active Web page on IPv4 (OK on x axis), and

811,425 had an IPv6 page (14.07%) (note that we found that

914,593 domains had an IPv6 AAAA record associated to it,

but only 811,425 had a Web server running on this address).

Fail-safe mechanism: as discussed in §III-B, we have built a

fail-safe mechanism in each crawler. To evaluate its behavior,

we analyze how many tries the HTTP-crawler had perform

before it could connect to the domains with available pages.

We found that only 40 domains for IPv6 required at least one

connection retrial (after the first failed), and only 38 for IPv4.

After that, if they did not responded, we collected the error

codes shown in Figure 3. As such, most connections either

work for the first time or not worked at all.

B. Performance

Performance is an important feature of any Internet mea-

surement application. In our single VM setup, Dmap crawled,

on average, 11.34 domain per second (980,000/day), with all

crawlers activated except for the Screenshot crawler. However,

Dmap is designed to scale horizontally in terms of perfor-

mance, i.e., adding more crawling nodes (part B and C on

Figure 2) can linearly improve the performance whenever

needed. Also, depending on the user’s needs, some crawlers

from the pipeline can be disabled, thus reducing the total

measurement time.

C. Comparison with other tools

Given the lack of comparable open-source tools that produce

the same number of features (§II), it is hard to draw a direct

comparison with Dmap.

Still, compared to other stateless IPv4 scanners such as

Masscan and ZMap (which produces far fewer features),

Dmap performance may seem humble. However, there are

reasons for that: first, the number of features (up to 166)

generated, which required 5 crawlers that performed tasks

such as resolving domain names, establishing TLS sessions,

retrieving certificates, HTTP connections over both IPv4 and

IPv6, and run a series of classifiers on the data. Therefore,

there is intrinsic a trade-off between number of features and

performance.

This performance difference between IPv4 scanners and

Dmap is less critical also given the differences in scan space.

For example, for second-level domains (e.g., example.nl and

not portal.example.nl), the .com zone, which is the biggest, has

∼ 130 million second-level domain names. Comparatively, the

IPv4 address space has more than 4 billion addresses and the

IPv6 has 3.4× 10
38 addresses.

V. APPLICATIONS

In this section, we present three applications for which we

have used Dmap. We do not intend to present a comprehensive

list of applications; rather we show how easy Dmap can be

used for different use cases.

A. Profiling Alexa 1 Million

The Alexa 1 million domains list which ranks sites based

on their toolbar users [39], [40]. We crawled this list of

domains with Dmap on February 21st, 2018 and present here

a descriptive analysis of the results obtained. We also make

available the resulting dataset (PostgreSQL database) and SQL

code for this analysis available in [5].

Table III shows a profile of the Alexa 1M domains divided

by protocol, for both IPv4 and IPv6. Let’s start with the DNS

TABLE III
ALEXA 1 MILLION PROFILING

DNS

IPv4 IPv6 IPv6/IPv4

Domains (OK) 972,155 153,485 0.16
Unique NSes 289,014 26,127 0.09
Unique IP 210,650 19,754 0.09
Unique ASes 18,418 3,178 0.17
CDN Cloudflare 117,538 115,396 0.98

HTTP

IPv4 IPv6 IPv6/IPv4

Domains (OK) 968,338 153,485 0.16
HTML 5 681,757 116,066 0.17
Bytes (median) 53,889 64,735 1.20
External links (median) 7 8 1.14
Internal links (median) 67 75 1.12
Cookies (median) 1 1 1.00

TLS

IPv4 IPv6 IPv6/IPv4

Domains (OK) 772,455 129,443 0.17
Let’s Encrypt 165,526 10,466 0.06

SMTP

IPv4 IPv6 IPv6/IPv4

Domains (OK) 843,126 190,736 0.23
Unique SMTP 501,848 24,311 0.05
Unique IP 286,504 10,113 0.04
Unique StartTLS 302,871 8,016 0.03

protocol: the row # Domains OK show the number of domains

that had at least one of its authoritative serves (defined by

NS records in DNS) with IPv6 (defined by a AAAA record

associated to a NS record).

Then, we see that ∼289K authoritative servers (NS records,

such as ns.google.com) were shared among 1M domains.

These authoritative, in turned, were mapped to ∼210K

IPv4 addresses, distributed over ∼18K Autonomous Sys-

tems (ASes). We select two findings from this data:

IPv6 adoption is slightly faster on SMTP: the number of

domains that support IPv6 is higher for e-mail servers (0.23)

than other services (0.16–0.17). We can see that one DNS

Provider (Cloudflare) accounts for ∼117K domains (IPv4), or

12.18% of all domains crawled. Besides, we see that ∼60%

of the unique SMTP servers support StartTLS [41], which is

an extension to SSL/TLS to enable encrypted communications

over a plain-text connection.

77.2% of domains deploy Web encryption (IPv4), and 1 in 5

now use Let’s Encrypt: To enable web encryption, a Web site

needs an X.509 certificate [30], which is issued by a Certificate

Authorities (CAs). We found that 77.2% of all domains now

have Web encryption over IPv4. Among the available CAs,

Let’s Encrypt [42] foundation has drawn significant attention

over the last years since it was the first CA to provide both

free X.509 certificates and automated software for that. In a

previous study, we evaluated the first year of Let’s Encrypt in

terms of certificate issuance [43] for all domains and found

that Let’s Encrypt grew very fast in the first year. Now, we can

see how many domains of the 1M list deploy Let’s encrypt

certificates on second-level domain. As can be seen, for IPv4,

21.4% of domains that support SSL/TLS over HTTP employ

Let’s Encrypt.

TABLE IV
TLS/SSL WEB DEPLOYMENT ON .NL ZONE OVER IPV4

20170903 20180201

Zone size 5,766,118 5,801,191
TLS/SSL 2,595,281 (45.10%) 2,674,877 (46.10%)

Types of Certificates

Unknown 382 (0.01%) 407 (0.01%)
self-signed 883,844 (34.05%) 749,033 (28.01%)

DV 1,406,072 (54.17%) 1,618,575 (60.5%)
OV 269,284 (10.37%) 272,318 (10.18%)
EV 35,699 (1.37%) 34,544 (1.29%)

Let’s Encrypt DV deployed certificates share

Let’s Encrypt (%DV) 366,623 (14.12%) 523,029 (32.31%)

B. Longitudinal Studies on Web Encryption Adoption

Dmap can be used to crawl periodically the same domains

and support longitudinal studies of changes in a domain name

set. In this section, we show how it enables to characterize and

determine how much Web encryption adoption has changed for

the .nl zone.

With other tools, this rather straightforward question may

take researchers significant amounts of time to both measure

and analyze it. With Dmap, a researcher can used the SQL

query showed in Listing 1 to retrieve the results. In our setup,

it took 8s to run this query.

1 s e l e c t count (domainname) from c r a w l r e s u l t t l s where

2 c r a w l r e s u l t t l s . t l s a v a i l = t ru e and

3 c r a w l r e s u l t t l s . c r a w l r u n =$ID
4 and t l s h t t p s s t a t u s =200

Listing 1. SQL query to analyze web encryption on the .nl zone.

We choose two dates roughly 5 months apart and compare

how Web encryption adoption has changed in the .nl zone:

Sept. 3rd, 2017, in which there were 5.7 million in the zone

file and on, Feb. 2nd, 2018, with 5.8 million domains. Table IV

shows the results. In this five months, the .nl zone went from

45% to 46% of all domains with enabled Web encryption.

X.509 certificates used for Web encryption are usually

offered in three types by CAs: domain validated (DV), organi-

zation validated (OV), and extended validation (EV). They all

employ the same encryption measures — they differ on how

the CA verifies the user’s identity (e.g. if the user is the legal

owner of the domain). Using a similar query to Listing 1, we

can determine the type of X.509 certificates [30] employed

by .nl domains. Table IV shows the results. As can be seen,

there has been a drop on the number of self-singed certificates,

followed by an increase in number of DV certificates (OV and

EV remained relatively stable).

We can use Dmap to determine what is the market size

of Let’s Encrypt CA on the entire .nl zone. Table IV show

these numbers. In this period, more than 150,000 sites obtained

a certificate from Let’s Encrypt, being currently responsible

for 32.31% of all DV certificates by February 2018 (it only

provides DV certificates), from 14.12% in September 2017.

In total, ∼9% of all .nl domains employ Let’s Encrypt, while

16.5% of the Alexa 1M employ it (Table III).

TABLE V
CMS AND WEB SERVER USAGE .NL ZONE (20170903)

CMS Total (%) Web Server Total (%)

Wordpress 848,083 (73.84%) Apache 3,397,930 (77.05%)
Joomla 99,865 (8.69%) nginx 696,697 (15.79%)
Drupal 40,798 (3.55%) MS ISS 249,367 (5.65%)
Blogo 20,749 (1.80%) cloud-nginx 60,530 (1.13%)
Wix 17,861 (1.53%) Coyote 4,237 (0.01%)

Others 121,232 (10.43%) Others 905 (0.00%)
Total 1,148,408 Total 4,409,666

C. CMS and Web server Usage

CMS, such as Wordpress and Joomla, are popular solu-

tions for managing the content of websites. They provide an

abstraction layer in which the content creation is separated

from the website design and coding. Due to their popularity,

vulnerabilities in one specific version of a CMS can be

re-used to exploit in other sites that run the same CMS

version. Thus, CMS presence has been positively correlate

with webserver compromise [44], [13]. Therefore, we have

developed a classifier that attempts to identify if websites are

running CMSes as well as web server software (§III-E).

Table V shows the results for .nl domains for the 20170903

zone scan. WordPress is the most popular CMS, and Apache

is the most popular web server. Dmap can help researchers

and security experts in identifying vulnerable systems, which

can be notified in order to mitigate potential attacks.

VI. RELATED WORK

Dmap is the first open-source active measurements appli-

cation that focus on crawling various applications, extracting

a series of features from the raw datasets and producing a

derived features with its classifiers, and storing the results in

a relational data base. We have previously discussed existing

measurement tools in §II.

There are other works that are similar but not directly

related. For example, OpenIntel [38] focus on daily crawls

of DNS records of multiple zones (thus comparable to our

DNS crawler – §III-C). However,it does not crawl applications

other than DNS. Dmap , besides DNS, also crawls HTTP, TLS,

SMTP protocols as well, enriching the raw data with a series

of derived features with the aid of its classifiers.

Another similar work is our previous open-source EN-

TRADA, which is data streaming warehousing for authorita-

tive DNS traffic. However, ENTRADA is designed to collect

and store passive measurement data, while Dmap is an active

measurement tool. However, both tools provide a SQL inter-

face for data analysis.

VII. CONCLUSION AND FUTURE WORK

Internet measurements can be complex and demand sig-

nificant efforts in planning, executing, and analyzing the

collected data [32]. All this “heavy lifting” must be carefully

executed before a researcher can begin to answer their research

questions. This is still the case for many researchers, especially

when public data repositories and tools do not fulfill the

researchers’ requirements. As such, this complexity is in fact

a limiting factor for many studies.

In this paper, we presented Dmap, a measurement tool

which its main goal is to reduce the complexity in both

carrying measurements and analyzing the collected data by

automating multi-application measurements and data prepa-

ration. Researchers (and DNS operators), thus, can profit

from Dmap by spending their valuable time in hypothesis tests

and data analysis. We make Dmap source-code and binaries

available for researchers [5]. As future work, we intend to add

other crawlers to Dmap, so new application layer protocols

can be supported and develop new classifier to produce more

derived features.

Overall, we hope Dmap can be useful for researchers and

operators to build applications that help to improve both

security and stability of global DNS.

Acknowledgments: We would like to thank Moritz Müller

and the anonymous TMA reviewers for their valuable com-

ments on paper drafts.

REFERENCES

[1] Mockapetris, P.: Domain names - concepts and facilities. RFC 1034
(1987)

[2] Moura, G.C.M., de O. Schmidt, R., Heidemann, J., de Vries, W.B.,
Müller, M., Wei, L., Hesselman, C.: Anycast vs. DDoS: Evaluating the
November 2015 Root DNS Event. In: Proceedings of the 2016 ACM
Conference on Internet Measurement Conference. (October 2016) 255–
270

[3] Hoffman, P., Sullivan, A., Fujiwara, K.: DNS Terminology. RFC 7719
(December 2015)

[4] Mockapetris, P.: Domain names - implementation and specification.
RFC 1035 (November 1987)

[5] SIDN Labs: Dmap (May 2018) . https://dmap.sidnlabs.nl/.
[6] Fielding, R.T.: Architectural Styles and the Design of Network-based

Software Architectures. PhD thesis (2000) University of California,
Irvine.

[7] Hesselman, C., Moura, G.C.M., d. O. Schmidt, R., Toet, C.: Increasing
DNS Security and Stability through a Control Plane for Top-Level
Domain Operators. IEEE Communications Magazine 55(1) (January
2017) 197–203

[8] Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S., Tolton,
M., Vassilakis, T.: Dremel: Interactive Analysis of Web-Scale Datasets.
In: Proc. of the 36th Int’l Conf on Very Large Data Bases. (2010) 330–
339

[9] Wullink, M., Moura, G.C., Müller, M., Hesselman, C.: Entrada: A high-
performance network traffic data streaming warehouse. In: Network
Operations and Management Symposium (NOMS), 2016 IEEE/IFIP,
IEEE (April 2016)

[10] Graham, R.D.: Masscan: TCP port scanner, spews SYN packets
asynchronously, scanning entire Internet in under 5 minutes. https:
//github.com/robertdavidgraham/masscan (February 2018)

[11] Durumeric, Z., Wustrow, E., Halderman, J.A.: Zmap: Fast internet-
wide scanning and its security applications. In: Proceedings of the 22nd
USENIX Security Symposium. (2013)

[12] ZMap: The ZMap Project (September 2017) . https://zmap.io.
[13] Tajalizadehkhoob, S., van Goethem, T., Korczyński, M., Noroozian, A.,

Böhme, R., Moore, T., Joosen, W., van Eeten, M.: Herding Vulnerable
Cats: a Statistical Approach to Disentangle Joint Responsibility for Web
Security in Shared Hosting. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’17, New
York, NY, USA, ACM (2017) 553–567

[14] DomainTools: Threat Intelligence, Threat Hunting, Incident Response,
Whois: DomainTools. https://www.domaintools.com/ (February 2018)

[15] CAIDA: CAIDA Data - Overview of Datasets, Monitors, and Reports.
http://www.caida.org/data/overview/ (February 2018)

[16] ISI/USC: ANT Datasets. https://ant.isi.edu/datasets/index.html (Febru-
ary 2018)

[17] Team, C.: Internet-Wide Scan Data Repository. https://scans.io/
(February 2018)

[18] Censys: Security Driven by Data. https://censys.io/ (February 2018)
[19] ICANN: Centralized Zone Data Service. https://czds.icann.org/en

(February 2018)
[20] Spring: Spring Boot (February 2018) https://projects.spring.io/

spring-boot/.
[21] Maxmind: GeoIP2 City Database Demo (February 2018) https://dev.

maxmind.com/geoip/geoipupdate/.
[22] PhantomJS: PhantomJS (September 2017) . http://phantomjs.org/.
[23] PostgreSQL: The world’s most adavanced open source database (Febru-

ary 2018) https://www.postgresql.org/.
[24] Hazelcast: Hazelcast IMDG - the leading In-memory Data Grid

(February 2018) https://hazelcast.org/.
[25] Gormley, C., Tong, Z.: Elasticsearch: The Definitive Guide. 1st edn.

O’Reilly Media, Inc. (2015)
[26] Thomson, S., Huitema, C., Ksinant, V., Souissi, M.: DNS Extensions

to Support IP Version 6. RFC 3596 (October 2003)
[27] Binet, D., Boucadair, M., Vizdal, A., Chen, G., Heatley, N., Chandler,

R., Michaud, D., Lopez, D., Haeffner, W.: An IPv6 Profile for 3GPP
Mobile Devices. RFC 7849 (May 2016)

[28] Crocker, D., Hansen, T., Kucherawy, M.: DomainKeys Identified Mail
(DKIM) Signatures. RFC 6376 (September 2011)

[29] Apache: Apache HttpComponents (February 2018) https://hc.apache.
org/.

[30] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk,
W.: Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. RFC 5280 (Proposed Standard) (May
2008) Updated by RFC 6818.

[31] Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (August 2008)

[32] Paxson, V.: Strategies for Sound Internet Measurement. In: Proceedings
of the 4th ACM SIGCOMM Conference on Internet Measurement. IMC
’04, New York, NY, USA, ACM (2004) 263–271

[33] Vissers, T., Joosen, W., Nikiforakis, N.: Parking sensors: Analyzing and
detecting parked domains. In: Proceedings of the 22nd Network and
Distributed System Security Symposium (NDSS 2015), Internet Society
(2015) 53–53

[34] Kornacker, M., Behm, A., Bittorf, V., Bobrovytsky, T., Ching, C., Choi,
A., Erickson, J., Grund, M., Hecht, D., Jacobs, M., et al.: Impala: A
modern, open-source SQL engine for Hadoop. In: Proceedings of the
Conference on Innovative Data Systems Research (CIDR’15). (2015)

[35] Wullink, M., Moura, G.C.M., Müller, M., Hesselman, C.: ENTRADA:
A high-performance network traffic data streaming warehouse. In:
NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management
Symposium. (April 2016)

[36] Partridge, C., Allman, M.: Ethical considerations in network measure-
ment papers. Communications of the ACM 59(10) (2016) 58–64

[37] C. Hesselman, J. Jansen, M. Wullink, K. Vink, and M. Simon: A
privacy framework for DNS big data applications. Technical re-
port (2015) https://www.sidnlabs.nl/uploads/tx sidnpublications/SIDN
Labs Privacyraamwerk Position Paper V1.4 ENG.pdf.

[38] van Rijswijk-Deij, R., Jonker, M., Sperotto, A., Pras, A.: A High-
Performance, Scalable Infrastructure for Large-Scale Active DNS Mea-
surements. IEEE Journal on Selected Areas in Communications 34(6)
(June 2016) 1877–1888

[39] Alexa: Keyword Research, Competitive Analysis, & website ranking.
https://www.alexa.com (February 2018)

[40] Englehardt, S., Narayanan, A.: Online Tracking: A 1-million-site
Measurement and Analysis, booktitle = Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. CCS
’16, New York, NY, USA, ACM (2016) 1388–1401

[41] Hoffman, P.: SMTP Service Extension for Secure SMTP over Transport
Layer Security. RFC 3207 (February 2002)

[42] Let’s Encrypt: Free SSL/TLS Certificates. https://letsencrypt.org/
[43] Aertsen, M., Korczyński, M., Moura, G.C.M., Tajalizadehkhoob, S.,

van den Berg, J.: No Domain Left Behind: Is Let’s Encrypt Democra-
tizing Encryption? In: Proceedings of the Applied Networking Research
Workshop. ANRW ’17, New York, NY, USA, ACM (2017) 48–54

[44] M. Vasek and J. Wadleigh and T. Moore: Hacking is not random: A
case-control study of webserver-compromise risk. IEEE Transactions
on Dependable and Secure Computing 13(2) (March 2016) 206–219

