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Abstract—A great deal of work has been devoted to the
study and detection of scanning. Existing detection of isolated
probing, however, only provides an incomplete picture of
scanning activities. Coordinated probing using several hosts, in
particular, cannot be accounted for with simple scan detection
that expects a single source. In this paper, we apply run-length
encoding concepts to characterize the IP address structure of
scanning events. We then employ graph techniques to uncover
hidden coordinated network scans as communities. These
coordinated events are split in accordance with the destination
port and targeted network prefixes. We evaluate the sensitivity
of our method with synthetic data and verify that our method
outperforms the current state-of-the-art approaches for both
stub and backbone network monitoring. Finally, we provide
a detailed analysis of several coordinated scans occurring in
real network traffic. Using these results, we verify that our
method is reliable and extracts coordinated scans that are
very consistent in terms of network traffic characteristics.

I. INTRODUCTION

Network scans, also called horizontal scans in the liter-
ature, are the primary reconnaissance technique to acquire
information on networks such as active hosts or services
(ports). Existing large-scale studies [2], [10], [12], [15],
[22], [26], [28] focus on single source probing activities.
They do not study coordinated scan despite evidence of
their occurrences (cf. analysis of a /0 scan [9] or the Internet
Census [1] and existing tools [11], [23]). For perpetrators,
this probing technique offers many advantages over single-
source scans. One can probe bigger networks at a faster
pace more stealthily. Furthermore, splitting probing across
several sources lets scan detection techniques detect only
a small number of isolated events, if any. The complete
probing scope remains hidden.

Our goal is to provide a coordinated scan identification
method for both stub and backbone traffic monitoring.
In other words, we aim for clustering groups of previ-
ously detected single-source network scans that operate
in a coordinated fashion. While existing coordinated scan
identification approaches target stub networks, backbone
traffic monitoring offers a broader point of view on network
traffic. This means that backbone traffic monitoring captures
a bigger proportion of scanning IP’s activity. In return,
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the method needs to account for phenomena such as in-
complete traffic due to asymmetric routing, which impedes
stateful analysis. Several works [3], [14] have addressed
the identification of coordinated scanning in the context
of stub network monitoring. Gates [14] proposed a greedy
aggregation method that groups scans starting with the
ones with the fewest destinations while ensuring properties
such as high coverage of destination IP address space. In
the context of backbone traffic monitoring, unrelated small
scans that target contiguous prefixes belonging to distinct
entities may however be grouped together. Baldoni et al.
[3] presented a method that identifies coordinated scans as
connected components of a graph where each edge links
two source IP addresses that generate failed connections
to contiguous destination IP addresses. This neighboring
criterion may however not always be verified, especially in
the context of backbone traffic monitoring.

We propose a novel approach that reliably aggregates
previously detected single-source network scans into co-
ordinated events. It relies on two criteria that leverage net-
work scans destination IP address structure. Our approach
employs a graph-based mining technique to avoid the
shortcoming of the greedy aggregation method [14] while
our single-source scan association criteria are more reliable
than that used in [3]. Moreover, our proposal exhibits a
very good versatility: it can be applied on both local and
backbone network traffic monitoring.

Our contribution is twofold. First, we propose a coordi-
nated scan identification method that uses simple criteria
to associate single-source scans into a graph where coordi-
nated scans are mined as communities. Using synthetic data,
we show that our method outperforms the existing work
[3], [14] for random and interleaving scans. Our second
contribution is to analyze coordinated scans observed in
backbone traffic and describe several case studies.

II. RELATED WORK

Single-source network scan detection has generated a lot
of research. Jung et al. [19] proposed a scheme that relies
on the assumption that scanning IPs (also called scanners)
will have a higher rate of unsuccessful connections than
legitimate Internet hosts. We refer the reader to the work
of Bhuyan et al. [4] for a more complete description of the
state-of-the-art single-source scan detection.
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Fig. 1. Method overview (1: destination IP address-based criteria associate network scans, see Section III-A; 2: criteria-based graph is built, see Section III-B;
3: coordinated scans are mined as communities, see Section III-C; 4: communities are split, see Section III-D).

Some approaches directly analyze traffic. Treurniet [25]
uses network traffic’s distributed nature and protocol be-
havior to find anomalies. Anomalies are then iteratively
extracted as group of sessions. Coordinated scans are ex-
tracted after network scans. This means that some elements
of coordinated network scans may be wrongly considered
as isolated scans while extracted coordinated scans may
be incomplete. Baldoni et al. [3] propose a collaborative
architecture to identify coordinated scans. Local sensors
generate alarms that are analyzed by a central entity to find
distributed activities. Baldoni et al., however, assume that
scanning activities generate failed connections to contigu-
ous destination IP addresses. This is a restrictive hypothesis,
especially for backbone traffic.

Another existing approach is aggregating previously de-
tected scans to uncover coordinated scans. Bou-Harb et
al. proposed several techniques to merge similar probing
activities. One [8] is a statistic-based technique that uses
many criteria such as a probing technique, probing strategy,
and malware activity, while another [6] leverages probing
temporal patterns. These criteria however do not ensure
that similar scans target the same region of the IP address
space. Similar single-sources scans may thus correspond
to several perpetrators using the same tool on different
targets. For HTTP scanning detection, Xie et al. [27] use
a bipartite graph that associates source IP addresses with
HTTP resource paths. Coordinated HTTP scans are then
extracted as clusters from this graph. This approach is
however difficult to translate to network scans because the
only available information is network and transport protocol
headers. Relying on only this may cause a high number
of false positives. Gates [14] proposed a coordinated scan
identification method for stub network monitoring. It ap-
plies a set coverage technique to destination IP address sets
of previously detected network scans. It greedily merges
small scans together while ensuring a small overlap between
scans. Unrelated small scans may thus be erroneously
grouped into coordinated events. Furthermore, for single-
point backbone traffic monitoring, a subset of all sources
of a coordinated scan may be observed. This means that
even if a network is targeted, observed probing packets may
only reach a subset of this network. This clearly makes their
coverage-related criteria (see Section IV-D2) unfit for single
point backbone traffic monitoring. For a detailed survey
of coordinated scan identification techniques, we refer the

reader to the works of Bhuyan et al. [4] and Bou-Harb et
al. [7].

The state-of-the-art most similar to our proposal is that of
Baldoni et al. [3]. Our network scan association criteria are
however more reliable. Our approach can thus be applied in
both stub and backbone traffic monitoring scenarios. Other
existing methods do not exhibit such versatility.

III. MINING COORDINATED SCANS

Coordinated scanning is initiated by many sources con-
trolled by a single entity. It increases scanning speed and
reduces detection odds while maintaining a small probing
footprint. The goal of this work is to uncover coordinated
scans from previously detected single-source scans. In other
words, we aim to find groups of network scans, which,
as a whole, target a large number of IP addresses in an
orchestrated manner. The rationale of our method is to
use criteria to compare single-source scans and extract
groups of events whose behavior appears to be coordinated.
Figure 1 illustrates the overview of our proposed algorithm.
First, we apply two criteria (destination IPs overlap-based
and destination IPs structure-based, see Section III-A) to
build a graph representing relationships between scans (see
Section III-B). We then extract groups of strongly connected
nodes from the graph (see Section III-C) representing
coordinated events. Finally, we perform a post-processing
splitting step that aims at extracting consistent groups of
scans (see Section III-D).

A. How to correlate network scans

The first question that arises when one intends to corre-
late network scans is what criteria will determine whether
two events are actually associated. The next two subsections
describe the criteria we use.

1) Destination IP addresses overlap-based criterion: To
acquire knowledge on a network, scanners send probing
packets to all the IP addresses inside the targeted network.
The optimal strategy is to send packets to each destination
without probing the same destination more than once.
The perpetrator of a coordinated network scan divides the
probing load among multiple scanners and ensures that
they do not target the same IP address. The perpetrator
may however attempt to hide the coordination between his
scanners by purposely generating small overlaps between
targeted IP addresses of controlled scanners. To account
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Fig. 2. IP addresses probed (grey cells) by two scans S1 and S2 and associated Empty Run-Length ERL, IP address Coverage IC and ERL-based
criterion CERL values. The notation A.B.C.* means that all IP addresses are located in the same /24 network.

for this behavior, our algorithm allows overlapping between
sets of destination IP addresses of scanning events. Let us
consider two network scans Si and Sj and their destination
IP addresses sets. We define the overlap Ω between Si
and Sj as the Jaccard index J , a standard measure of set
similarity:

Ω(Si, Sj) = J(Si, Sj) =
|Si ∩ Sj |
|Si ∪ Sj |

. (1)

We define a threshold TΩ to control the overlap between
Si and Sj : Ω(Si, Sj) ≤ TΩ. This is our first criterion.

2) Destination IP address-space structure-based crite-
rion: As explained above, the perpetrator of a coordi-
nated network scan splits the probing load among several
controlled scanners. To aggregate previously detected net-
work scans, we analyze the structure of the destination
IP address sets of each scan. Several scanning patterns
have been documented such as consecutive [2], interleaving
[23], or reversed byte order [9]. The emergence of high-
speed scanning tools [11], [16], [20] that use pseudoran-
dom patterns and studies of darknet traffic [8], [13] show
that non-consecutive scanning constitutes a non-negligible
proportion of probing events. Specifically, Bou-Harb et al.
[8] found that 66% of events in 2013 were random, while
Fukuda et al. [13] showed that, in November 2006, 10-
15% behaved randomly. Leonard et al. [21] also proved
that the carefully designed non-consecutive probing pattern
they used [20] minimizes detection odds by state-of-the-art
IDS (Snort and Bro). We thus hypothesize that coordinated
scans use non-consecutive patterns.

The goal of probing is to reach as many destinations
as possible in an IP address range in order to have a
complete picture of an entity’s network. In the context of
coordinated probing, each source thus probes a subset of
the considered range. We first define an index derived from
run-length encoding called empty run-length or ERL. It
measures the gap between two IP addresses. ERL values of
a network scan S, noted ERL(S), are the successive ERL
values between targeted destination IP addresses. To assess

the improvement in address coverage that the merging of
two scans provides, we then define an index called IP
address space Coverage (IC) based on the index defined
above. The IC value of a scan S is obtained by computing
the median of its ERL values and is defined as:

(2)IC(S) = med(ERL(S)).

Thanks to the median operator, IC is robust against un-
usually high ERL values caused by missing packets. IC
takes positive integer values (i.e. IC > 0). Figure 2
displays a generic example with two interleaving network
scans. The empty run-length values are: ERL(S1) =
{4, 4, 4, . . .}, ERL (S2) = {4, 4, 4, . . .}, and ERL(S1 ∪
S2) = {2, 2, 2, . . .}, and the corresponding IC values are
IC(S1) = IC(S2) = 4 and IC(S1 ∪ S2) = 2. The value
of IC(S1 ∪ S2) is lower than the two scans considered in
isolation, meaning that these two scans operate in such a
way that the coverage of their union is better than that of
events considered separately. We leverage this characteristic
of IC to build the index for our second criterion. CERL is
defined as:

CERL (Si, Sj) = min (IC (Si) , IC (Sj))− IC (Si ∪ Sj) .
(3)

We consider that two network scans Si and Sj are
correlated when CERL(Si, Sj) > 0. In Figure 2, IC (S1) =
IC (S2) = 4 and IC (S1 ∪ S2) = 2. These two scans
operate in a coordinated manner. Here CERL (S1, S2) = 2,
our criterion is thus verified.

B. Graph building

We build a graph (see step 2 of Figure 1) where each
vertex represents a previously detected network scan and
each edge associates two network scans that satisfy the
two criteria defined in Sections III-A1 (Ω) and III-A2
(CERL). The generated graph is unweighted and undirected.
This graph represents probed address relationships between
detected scans.



C. Community extraction

In the generated graph, coordinated scans are represented
as groups of vertexes that are well connected with each
other. Ideally, inside each group of vertexes, every pair
of vertexes should be connected, thus forming a clique.
However, traffic monitoring sometimes only allows partial
observation of probing activities. Coordinated scans may
thus be represented as densely connected vertexes, i.e. com-
munities. Community mining has been extensively studied
and several methods are available. In our case, we use the
Louvain algorithm [5] (see step 3 of Figure 1) to partition
the graph into communities.

D. Community splitting

After the community mining, scan groups represent
events that target the same region of the IP address space
in a complementary manner. We may, however, only par-
tially observe single-source scans of a coordinated event.
Unrelated single-source scans that probe the same prefix
and whose destinations exhibit a small overlap (see Sec-
tion III-A1) with the targets of a coordinated event, may
thus be associated with this group. We cope with this issue
by splitting communities into group of scans with consistent
network traffic characteristics (see step 4 of Figure 1).

First, we determine whether a community should be split.
A community of scans should be split if their destination
ports or their targeted network prefixes are too different. We
thus build scanners’ destination port distributions and check
whether they are similar. Our criterion relies on the Jensen-
Shannon Divergence (JSD), a standard similarity measure
between probability distributions:

JSDπ1,...,πn
(P1, . . . , Pn) = H

(
n∑
i=1

πiPi

)
−

n∑
i=1

πiH(Pi)

(4)
where π1, . . . , πn are weights for the distributions
P1, . . . , Pn, and H is the normalized Shannon Entropy.
JSD = 0 when all Pi are identical and JSD 6= 0
when Pi differ. We here use πn = 1

n ∀i ∈ 1 . . . n. If
JSDπ1,...,πn

(P1, . . . , Pn) > TJSD, we consider that this
community is inconsistent.

Regarding targeted destination IP addresses, we first build
the smallest network prefix that contains all destinations of
all scans in the considered community. We then compare
the prefix length of the network prefix previously built with
the length of each individual scans’s targeted prefix. We
then define the prefix distance dP between two prefixes
NPi and NPj whose prefix lengths are li and lj as:
dP (NPi, NPj) = |li − lj |. If dP > TdP , we consider that
the community is inhomogeneous. If either of these two
criteria is verified, we split the community.

During the splitting phase, we examine every existing
edge in the considered community. We reuse and adapt
the above destination port and network prefix criteria. The
destination port criterion remains the same but is here
applied to only two scans (the ones linked by the considered

edge). The network prefix criterion is slightly modified. If
either scan’s prefix is included in or equal to that of the
other, we verify that dP < TdP . If there is no inclusion
between prefixes, the prefix-based criterion is not met. Any
edge that meets no criteria is removed.

Finally, we examine source IP addresses of scans inside
communities. If all scans in one community have the same
source IP address, this community represents the activity of
a single scanner, so we discard the whole group.

IV. EVALUATION WITH SYNTHETIC DATA

To validate our approach, we first perform a sensitivity
analysis of the proposed method regarding parameters of
the community splitting phase (cf. Section III-D). We then
compare our method with those of Baldoni et al. [3] and
Gates [14]. The evaluation relies on synthetic data due to
lack of publicly available ground-truth data. Throughout the
paper, we use the conservative overlap threshold TΩ = 0
to avoid potential false positives.

A. Synthetic data generation

The goal of our algorithm is to extract coordinated
events from previously detected network scans. We thus
generate both isolated and coordinated scans. The former
is composed of unrelated single-source scans, and the latter
is composed of several complementary single-source scans.
Parameters of isolated and coordinated scans are randomly
generated. They both target full network prefixes that are
generated by choosing a random IP address inside a prefix
P and a random prefix length between an upper and lower
bounds. The values of prefix P and prefix size bounds are
explained below. In our scenario, every scanner sends a
single packet to each destination IP address. The sources
number n (or scanners number) inside coordinated scans
follows a uniform distribution between 20 and 100. We
choose to generate 300 isolated scans and a variable number
of coordinated scans. We generate a large number of both
types of scans, and results are similar across our experi-
ments. The chosen values for the number of scans reduce
algorithms’ workload. We use two scanning algorithms for
coordinated scans: randomly spread across sources as in
ZMap [11] (using the Fisher-Yates shuffle) and interleaving
pattern of length n (= the source number) as in NSAT [23].
Half the generated coordinated scans follow the random
pattern, and the rest the interleaving pattern, There is no
overlap between scanners of a coordinated scan.

B. Performance metrics

Coordinated scan identification methods extract groups
of single-source scans. This is thus a classification problem
with several classes. Several mappings of the found groups
to the ground-truth are used in the literature. We here
associate each identified scan group with the coordinated
scan from the ground-truth with which it intersects the most.
Formally, an extracted group of scans Gi is associated with
a ground-truth coordinated scan Ggtj if:
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(5)|Gi ∩Ggtj |> |Gi ∩Ggtk | ∀k ∈ {1 . . . n} − {j}.

Each identified group is only associated with a single
coordinated scan from the ground-truth, and, reciprocally,
each ground-truth event is associated with at most one
identified group of scans. To this end, we successively asso-
ciate identified and ground-truth scan groups by decreasing
intersection size. The number of true positives is thus the
sum of all the intersection sizes extracted with the above
method. Every individual scan reported as belonging to a
coordinated event, but not associated with a coordinated
scan from the ground truth, is considered as a false positive.
Similar methods are used in other n-class classification
problem evaluation such as clustering.

C. Sensitivity analysis

We perform a sensitivity analysis on the parameters of the
splitting phase presented in Section III-D. Throughout our
experiments, we generate 50 runs for each parameter value
and compute 95% confidence intervals. Small intervals thus
mean that our results are consistent. Targeted prefix sizes
of isolated and coordinated scans range from 16 to 24 and
prefix P length is equal to 20.

Figure 3 presents the results of our sensitivity analysis.
The blue curves describe our method’s performance for
different JSD thresholds TJSD. Here, we do not use the
prefix distance-based criteria. For TJSD = 0, all edges
inside communities are removed. Every community thus
disappears and our method does not identify any coor-
dinated event. When TJSD increases, communities that
contain scans targeting different destination ports are split
into consistent groups. As TJSD further increases, fewer
and fewer communities are split, and thus TPR decreases
and FPR increases. The optimal value here is TJSD = 0.01.

The green curve depicts the performance of our method
for several values of prefix distance threshold TdP . The
JSD-based criterion is deactivated here. When TdP = 0,
the splitting criterion is always met, all edges inside all
communities are removed. Consequently, our tool does
not identify any coordinated events. Similarly to TJSD,

when TdP increases, our method’s performance suddenly
increases because our method is now able to remove edges
between scans whose targeted prefix lengths (and thus,
prefix) are different. When TdP continues to increase,
our splitting step is less and less efficient. The optimal
value here is TdP = 1. We however use a slightly more
conservative value for both thresholds in order to account
for noise. We use TJSD = 0.1 and TdP = 2.

D. Other approaches

1) Local attack graph coordinated scan identification
[3]: This method is a two-step collaborative approach to
identify coordinated scans. In the first step, local entities
monitor stub networks and extract groups of source IP
addresses that exhibit suspicious behaviors. In the second
step, an algorithm merges alerts raised by local monitoring
entities and performs a post-processing step to improve
the extracted groups of source IP addresses. We however
only use the first step of this method since we consider a
single point measurement use case. This first step builds
a graph, called a Local Attack Graph (LAG), where edges
link source IP addresses that generate failed connections
to the same port on contiguous destination IP addresses.
In our case, we consider that all probing packets generate
failed connections. Overlap in terms of targeted IPs is not
allowed. This method then identifies coordinated scans as
connected components in the previously built graph.

2) Greedy coordinated scan identification [14]: This
method first performs a greedy aggregation of scans that
target the same destination port number and exhibit a small
overlap. The algorithm then ensures that an extracted group
of scans verifies criteria regarding coverage, overlap, and
hit rate. If it does not, the method removes individual scans
from groups of events to reach these properties. Gates de-
fines the coverage ζ of a group of scans G = {S0, . . . , Sn}
that targets a network prefix P as ζ(G) = an−a1+1

|A| where
a1 and an are the first and last IP addresses scanned in A
(in IP-address space, not time). Hit rate H is defined as
H = |AC |

an−a1+1 where |AC | is the number of IP addresses
targeted inside A. Gates [14] also defines the overlap as
the Jaccard index J (see Section III-A1). This definition is
however not suitable for a coordinated event that contains
more than two scans. We thus generalize the Jaccard index
and define the overlap θ of a coordinated scan G as

(6)θ(G) = max

( |Si ∩⋃(Gi)|
|Si ∪

⋃
(Gi)|

)
where Gi = {S1, . . . , Sn} − {Si} ∀i ∈ 1 . . . n. Gates
[14] does not provide any recommendation for these three
thresholds. We thus choose them conservatively in order to
reduce the false positive rate. Our implementation thus al-
ways ensures ζ(G) > 0.95, H(G) > 0.95 and θ(G) < 0.2.

E. Performance comparison

Figure 4 presents the results of our synthetic evaluation.
The first part of our evaluation (Figure 4a) simulates the
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monitoring of a stub network and thus fits the original
context of [3], [14]. We generate synthetic coordinated
scans that probe network prefixes whose sizes are be-
tween 16 and 20 that completely include the monitored
network. This network is actually P (cf. Section IV-A)
and its prefix size is 20. This inclusion ensures that the
coverage ζ and hit rate H of generated coordinated scans
will always be 1 and thus greater than the previously set
threshold of 0.95 (cf. Section IV-D2). Isolated scans target
smaller network prefix sizes between 20 and 24 inside P .
Figure 4a shows the evaluation results when the number
of synthetic coordinated scans varies from 1 to 10. The
results obtained for one coordinated scan are consistent with
those by Gates [14] regarding TPR. The greedy approach
is able to reliably extract a single coordinated scan. This
figure however clearly shows that the performances of the
greedy method degrade as the number of coordinated scans
increases. This behavior may be extremely detrimental to
real world performance as it is highly unlikely that a single
coordinated scan occurs at any given time. The observed
FPR is much bigger in our experiments than in those of
Gates [14]. This is likely due to the difference in terms
of isolated scans. While we completely control isolated
scans’ characteristics, Gates [14] extracts scans from real
network traffic. These scans may thus have had a much
bigger coverage of P than the events we generated. The
isolated scans used by [14] may thus overlap. This may have
prevented single-source scans from being merged together
due to the overlapping criterion θ. Regarding Baldoni et
al. [3], as the number of coordinated scans increases, we
observe that its TPR decreases. This phenomenon is due
to coordinated scans with an interleaving pattern. Since all
coordinated scans target the same network, unexpected links
appear during the graph building. Connected component
extraction then merges two (or more) coordinated scans
together. The results of our method are very good in the
context of stub network monitoring.

Figure 4b presents the second part of our evaluation. We
here define a setup similar to backbone traffic monitoring.
We here randomly discard half the single-source scans of
each coordinated scan to emulate the fact that single point

backbone monitoring may only partially observe the traffic
targeting a given prefix. Targeted prefix sizes of isolated
and coordinated scans now range from 16 to 24. We here
gradually decrease the size of P from a prefix length of
24 to 8. When the prefix size of P is 24, all scans will
target the same network. Consequently, they will be much
more spread out in the IP address space, when the prefix
length of P is 8. We here generate 10 synthetic coordinated
scans. The greedy method here cannot use the coverage
criterion ζ due to all coordinated scans not necessarily
targeting a specific network prefix. We thus here do not use
ζ but keep using the hit rate criterion H and the overlap
criterion θ. For sizes of P greater than or equal to 16,
the greedy method’s performances remain similar to those
obtained for stub network monitoring. However, when P
size is smaller than 16, performance quickly degrades. This
is due to the step that tries to remove noise (single-source
scans wrongly aggregated) in order to increase the hit rate
H. To this end, the greedy method performs the following
step: the biggest gap is found and the set of aggregated
scans is split in half. Scans located in the smallest half are
removed. Here, coordinated scans tend to be grouped with
more single-source events that do not overlap with them
due to them being increasingly spread in the IP address
space. Coordinated events thus have higher odds of being
discarded during the noise removal step described above.
Similarly, groups of single-source scans that generated false
positives for smaller P size are spread in the IP space
when P size increases and thus yield smaller FPRs. The
LAG approach here yields results worse than those of the
stub network scenario. It suffers from its use of a criterion
on destination IP address contiguousness. The discarded
single-source scans remove some contiguousness between
scans belonging to the same group. Coordinated scans
with interleaving patterns are thus often split into several
components. Our method’s results here are very satisfactory.
Our method achieves higher TPR rates than both the greedy
[14] and LAG approaches [3] and much lower FPR than the
greedy method and similar FPR with LAG.



V. COORDINATED SCANS IN THE WILD

A. Dataset

We analyze network traffic traces from the MAWI
repository, which is a collection of daily 15-minute-long
traces captured on a backbone link connecting Japanese
universities and research institutions to the Internet. Ten
prefixes of lengths ranging from 16 to 24 are visible. The
MAWI repository mainly consists of international traffic
between universities and commercial ISPs captured since
January 2001. In this work, we use Day in the Life of
the Internet (DITL) traces, which are part of a worldwide
effort of simultaneous traffic data collection. The MAWI
repository contains DITL traces that last at least 24 hours
and are captured on the same link used to perform the
daily measurements. Unlike the publicly available MAWI
traces where IP addresses are anonymized, our dataset
contains original IP addresses to monitor scanners across
different traces. We remove traffic corresponding to the IP
addresses of the outage detector, Trinocular [24], because it
significantly increases the workload of our analysis without
providing new information.

Abnormal events appearing in the MAWI repository are
automatically reported in the MAWILab [12] database and
then classified and annotated with a taxonomy designed
for network backbone anomalies [22]. In this paper, we
make use of these results and study the characteristics of
traffic annotated with network scan labels (i.e. labels with
the prefix ntsc). These labels ensure that corresponding
traffic has a single source and a high number of destinations
(> 20). Protocol header information (SYN, ACK, FIN flags
for TCP and ICMP type Echo request, Netmask request
and Timestamp request for ICMP) is also used to identify
different types of network scan. The taxonomy ensures that
each destination receives fewer than 15 packets.

To assess the reliability of MAWILab, we compare the
source IP address of events annotated as network scans in
the MAWI traces with the IP addresses reported by the
SANS Internet Storm Center (ISC) [17] from November
2014 to March 2015. 55% of IP addresses in MAWILab
are also present in ISC’s suspicious domains. This shows
that most IP addresses labeled as scans are also detected by
the firewalls participating in the DShield project.

B. Case study

In this section, we analyze backbone traffic traces and
present several case studies. TCP network scans are more
prevalent than UDP and ICMP ones. We thus focus on TCP.

We analyze the 72-hour-long 2013 DITL trace cap-
tured from June 25th to 27th. MAWILab identifies 3132
single-source scans originated from 1484 distinct source
IP addresses. Our method extracts 22 coordinated events
that contain 844 single-source scans performed from 388
source IP addresses. Further analysis of coordinated and
isolated scans’ durations reveals that coordinated events
last longer than isolated ones. Furthermore, more than

(a) SSH short coord. scan (b) SMB long coord. scan
Fig. 5. Coordinated scan case studies from 2013 DITL trace: (a) SSH
coordinated scan and (b) SMB (and others) coordinated scan.

TABLE I
EXAMPLES OF COORDINATED SCANS IN MAWI (OC: OVERALL

COVERAGE; SD: STANDARD DEVIATION, DUR.: DURATION).
DESTINATION PORTS: 22 - SSH ; 445 - SMB ; 5900 - VNC.

# src Dst prefix Dst prefix Dst Dur. # dst addr Figure
IP size OC port mean ± SD graph
3 /19 0.31 22 3s 850 ± 25.7 5(a)
3 /22 0.99 22 3s 340 ± 29.5 5(a)
6 /16 0.27 445 68.2h 462 ± 248.2 5(b)

314 /16 0.47 5900 57.5h 99 ± 23.4

60% of coordinated scans last more than 24 hours. The
other coordinated scans are much shorter, typically lasting
less than 6 minutes. This difference is also apparent for
targeted network prefixes: long-lasting scans’ prefix sizes
are between 0 and 16, while short-lasting scans’ prefix sizes
are between 7 and 22. Short lasting coordinated scans also
have fewer sources (2 or 3), while long coordinated events
contain between 2 and 314 scanners.

Table I details some of the coordinated scans found in
the 2013 DITL trace. For each coordinated scan, we provide
the size of the targeted network prefix, its overall coverage
(i.e. percentage of destination IP addresses reached in
the considered prefix), dominant destination port, duration,
mean, and standard deviation of the number of destinations
targeted by scanners and the reference of the associated
graph in Figure 5. The first two coordinated scans of Table I
are composed of the same three contiguous IP addresses.
The two targeted prefixes are located inside the same /16
network. Scanners’ activity periods are synchronized: they
start and finish their probing within a 50 ms window.
Figure 5(b) displays the community of the third event in
Table I. Despite a graph density of 0.8, this community
is not a clique. Missing links between hosts are due to
small overlaps Ω between scanners. The fourth coordinated
scan presented in Table I contains 314 distinct source IPs.
This event seems to be linked to a sudden surge in the
number of scanners targeting port 5900 that is observed
by ISC’s TCP/UDP Port Activity service [18] from June
22nd to 26th. This high number of scanners provides
strong evidence that a botnet was involved. These examples
show that our method groups scanners that exhibit similar
characteristics in terms of duration and number of reached
destination IP addresses. Since, we only use destination
IP address structure and port information, this consistency
further proves that our method is reliable. The targeted
destination prefix coverages of these coordinated events also
show that their scanners behave in an orchestrated manner.



VI. DISCUSSIONS

The evaluation presented in Section IV shows that our
method reliably extracts coordinated network scans in the
context of both stub and backbone traffic monitoring and
outperforms LAG [3] and greedy [14] approaches. By not
relying on hypothesis such as destination IP addresses con-
tiguousness [3] and complete coverage [14], our method re-
mains robust in the context of backbone traffic monitoring.
Furthermore, we are confident that extracted coordinated
scans shown in Section V are actually real coordinated
events due to the consistency of their network traffic-related
characteristics. This shows that our method reliably extracts
coordinated scans in real data. We do not assess the impact
of TΩ on results due to the lack of space but intend to
address this aspect in future work.

Our method uses previously extracted network scans as
input. We thus depend on the reliability of the probing
detection. Our method, however, yields low FPRs (cf.
Section IV). Scanning detection may thus be tuned in a
sensitive way in order to avoid false negatives without
impacting our method’s performance.

Our two criteria (destination IP address overlap, and
structure-based) provide reliable hint regarding hidden co-
ordination patterns between network scans. These criteria
are extremely simple to understand and process. Moreover,
community mining uncovers meaningful structures among
network scans that clearly represent coordinated activities.
Along with the introduction of new criteria, the ability of
our method to work on local and backbone network traffic
(cf. Section IV) also represents a significant improvement
w.r.t to the state-of-the-art methods. In addition to the
work of Dainotti et al. [9], this work also provides further
evidence that large groups of hosts perform coordinated
probing.

Our splitting technique currently relies on destination
port distribution and network prefix consistency as criteria
to assess extracted communities’ purity. One way to im-
prove this step would be to use other criteria. We could
for example use some criteria proposed by Bou-Harb [6],
[8]. However, some criteria such as the probing rate should
be avoided because they are easy to purposely falsify. We
should therefore choose new criteria with extreme care.

VII. CONCLUSIONS

We propose a new method to accurately extract coordi-
nated scans from previously detected scans. Our proposal
efficiently associates previously extracted scanning events.
We introduce two criteria that rely on destination IP address
structure of network scans. A graph-based method then
identifies scan groups as communities. Finally, we split
communities into scan groups with consistent character-
istics. Our synthetic data-based evaluation shows that our
proposal outperforms existing approaches for random and
interleaving scanning patterns in both stub and backbone
traffic monitoring. An analysis of MAWI backbone traffic

provides several use cases of real coordinated scans and
reveals that coordinated scans last either a few minutes or
tens of hours.
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