
Reproducing Network Experiments in a
Time-controlled Emulation Environment

Diana Andreea Popescu
Computer Laboratory

University of Cambridge
Email: diana.popescu@cl.cam.ac.uk

Andrew W. Moore
Computer Laboratory

University of Cambridge
Email: andrew.moore@cl.cam.ac.uk

Abstract—Network emulation environments are a valuable
research tool that offer the possibility of conducting complex
network experiments and can be seen as an enabler of ex-
perimental reproducibility. Keen to quantify this approach, we
reproduce experiments presented in QJump [1] in the time-
controlled network emulation framework, called SELENA [2].
We first describe in detail how we built the experimental setup.
Next, we evaluate the SELENA emulation framework using real
world applications, Hadoop MapReduce, memcached and PTPd.
We demonstrate our findings, presenting the differences between
the results obtained on a hardware testbed and in the emulation
environment.

Index Terms—Network Experiments, Reproducibility, Time
Dilation, Network Emulation.

I. INTRODUCTION

When trying to reproduce the results presented in a network
systems research paper, we are faced with many challenges:
critical details missing, original source code unavailable or
unclear experimental setups. The practice of making code and
experimental procedures available is merely the beginning.
Reproducible network experiments should be the norm within
the networking community. Despite recent efforts in open
sourcing the code and experimental results [3], interest in the
area of experimental reproducibility remains low. We evaluate
a promising approach permitting canning of entire experiments
as virtual machines. Wishing to assess the value of the time-
controlled network emulation framework, SELENA [2], we
set out to reproduce the network experiments used in the
QJump project [1], based on the open source code and data
provided by the authors [3]. We reproduce their results both
on a hardware testbed and in SELENA, and we explore the
limits of experimental reproducibility for our chosen com-
plex network experiments. Our motivation for this work is
twofold: i) evaluating SELENA as a tool for running complex
experiments, and ii) providing an independent validation of
the QJump project, as a case study. We make the following
contributions:

• We present a reproduction of complex network experi-
ments permitting wide reuse, using the network emulation
framework SELENA on top of which we set up the
experiments used to evaluate the QJump [1] project.

• We quantify the practical tradeoff between experimenta-
tion time and accuracy of reproduction in time dilation
enabled emulation frameworks.

• We perform experiments to understand the limits of
network emulation in terms of reproducing network ex-
periments, focusing our measurements on latency and
clock offset.

The rest of the paper is organized as follows. Section
2 offers details about the SELENA framework. Section 3
explains the QJump project. Sections 4 and 5 describe the
experimental setup and the experiments that we ran, whereas
section 6 discusses our experimental results. We give an
overview of related work in section 7 and we conclude in
section 8.

II. THE SELENA FRAMEWORK

A. Architecture

We provide a brief overview of the network emulation
framework SELENA [2]. SELENA employs the technique of
time-dilation to slow down the progression of time in order
to overcome the scalability limitations of network emulation.
It uses OS-level virtualization and is built on the open-source
hypervisor Xen [4]. Each host or network device is mapped
to a VM, while each link is mapped to a pair of virtual
network interfaces bridged in Dom0 (the host domain, which
is the initial domain started by the Xen hypervisor on boot).
Figure 1 presents a simple network topology with 2 hosts
and one switch, which are mapped to different VMs, and the
network links between the switch and the two hosts, consisting
of the bridges between the guests’ virtual network interfaces.
A virtual network interface in Xen consists of a pair of devices:
the frontend device in green color and the backend device in
pink color as seen in Figure 1. The frontend device resembles a
physical Ethernet NIC in the guest domain and under Linux it
is bound to the xen-netfront driver [5]. The backend device
(the xen-netback driver) is transparent to the guest and is
interconnected with the frontend device using shared memory
rings [2].

SELENA provides a Python API that allows one to define
an experimental scenario consisting of the network topology
and the network parameters (link capacity and latency charac-
teristics). The scenario is deployed by SELENA, which uses
the xen-api API to create the VMs defined in the experiment
and the bridges between the VMs in Dom0. Each VM needs to
run an agent that communicates with a central communication



Fig. 1. SELENA emulation architecture built on Xen [2].

service running in Dom0 using a signalling protocol imple-
mented over the Xenstore service. After the VMs are booted
and the network interfaces are configured, the functionality
defined in the scenario is executed. The functionality of the
scenario consists of commands that need to be run on each of
the guests. These are transmitted to the guests via Xenstore by
the central communication service. SELENA uses the netem
qdisc [6], these qdiscs being configured on the egress queues
of the guests.

B. Scaling Resources

Emulating fast networks with a high node count is chal-
lenging due to the difficulty in scaling resources. In order
to overcome this, SELENA implements a time virtualization
mechanism in the hypervisor to slow down the time pro-
gression on guests. In this way, the network, disk I/O rates,
memory and CPU resources in guests can be scaled. The time
is adjusted using a time dilation factor (TDF). In Figure 1, the
hosts and the switches perceive the time adjusted by the TDF,
while Dom0 and the hypervisor run in real-time. For example,
if we use a TDF factor of 10, then all resources (network, disk
I/O rates, CPU, memory) will appear increased tenfold within
the guests, a virtual time of 1 second corresponding to 10 real
time seconds. If we wish to scale only the network throughput,
but keep the other resources as if we were using TDF 1
(no time dilation), then we must use certain mechanisms to
scale down these other resources. In the case of CPU, we
can scale down by adjusting the amount of CPU time a guest
is receiving by changing the parameters of the Xen credit2
scheduler [7]. The Xen credit scheduler exposes the weight
and cap parameters for each domain, including Dom0. The
weight parameter specifies how much CPU a domain will
receive with respect to other domains on a contended host.
The cap parameter sets the maxim amount of CPU a domain
will be able to use, even if the machine running Xen has idle
CPU cycles, and it is expressed as a percentage of one physical
CPU. By default there is no upper cap.

Since we used compute-intensive workloads (memcached
and Hadoop MapReduce, see Subsection IV-C) in our experi-
ments, we needed to scale down the CPU that a guest can use.
Taking advantage of the capping mechanism offered by the
Xen credit scheduler, we set out to understand how accurate it
is. We used the Linpack benchmark [8] as a compute-intensive

Fig. 2. VMs run simultaneously the floating point performance benchmark.

Fig. 3. VMs run simultaneously the floating point performance benchmark.

floating point performance benchmark. We ran simultaneously
multiple VMs (1, 2, 5 and 10) for different TDF values (1,
10 and 20) and we report the aggregated MFLOPS value over
the VMs. In this experiment, we capped the VMs’ CPU time
according to the formula TDF × cap = 100. We notice
in Figure 2 that the growth of MFLOPS is not linear with
the number of VMs. This is likely to be caused by the
interference between VMs running simultaneously. However,
when capping the CPU time of the VMs, we obtain a linear
growth for MFLOPS with the number of VMs (Figure 3),
which represents the ideal aggregate MFLOPS that should
have been obtained for TDF 1 had it not been for the effect
of interference between VMs.

Besides CPU scaling, we also need to have the possibility
to scale down the memory access speed. Since our workloads
are not I/O intensive (the data used by Hadoop MapReduce is
stored in RAM), we have not scaled down the disk I/O rates,
but this is possible by using the cgroups mechanism [2].

III. THE QJUMP PROJECT

In this section, we explain QJump’s design and expected
behaviour. We chose to reproduce the network experiments
presented in the QJump paper due to the fact that all the soft-
ware and experiments setup are publicly available. QJump’s
goal is to control network interference in data centers. Network



Fig. 4. Network topology for our experiments (hosts H1 - H12 and switches)

interference is defined as the delay that latency-sensitive traffic
suffers from when congestion from throughput-intensive ap-
plications causes queueing in switches. QJump assigns levels
(priorities) to applications depending on the type of service
they require. If the application is latency sensitive, then it will
require a higher level (priority) in order to have guaranteed
bounded latency. On the other hand, it will be rate limited at
the end host, but it will avoid queueing in switches due to its
high priority. QJump thus offers the possibility of choosing
between having low variance latency with low throughput
or having high variance latency with high throughput for an
application. QJump is implemented as a Linux Traffic Control
(tc) module, taking advantage of the Linux queueing discipline
(qdisc) mechanism to rate-limit packets. QJump also provides
an application utility to set the priority of the application using
the SO_PRIORITY option in the socket setup system calls.
The application does not require any modifications, since the
application utility is injected into unmodified executables via
the Linux dynamic linker’s LD_PRELOAD support.

The experiments carried out to show that QJump can
solve network interference caused by throughput intensive
applications (Hadoop) to latency-sensitive applications (PTPd,
memcached) will be the focus of our reproducibility efforts.

IV. EXPERIMENTAL SETUP

We used the same topology as the authors of the QJump
paper, seen in Figure 4. We have replicated their experiments
on a hardware testbed and in SELENA.

A. Testbed setup

We run the applications described in the QJump paper on
our testbed, in order to validate them and to have our own
measurements to compare against. Our testbed consists of 12
machines, each having 6 cores Intel Xeon CPU E5-2430L v2
@ 2.40GHz with 64 GB of RAM.

B. SELENA setup

The SELENA framework was installed on a machine with
6 cores Intel Xeon CPU E5-1650 v3 @ 3.50GHz having
128GB of RAM, with hyper-threading disabled. Dom0 runs
on 2 vCPUs (virtual CPUs), while the remaining 4 vCPUs are
allocated to the other domains (virtual machines). We pinned
the guest domains and Dom0 to vCPUs, to reduce possible

artifacts that could affect our measurements due to scheduling
across CPUs. Each VM that is part of the Hadoop cluster can
use a maximum of 12GB of RAM, while the other VMs can
use up to 3 GB of RAM.

We replicated the topology used in the QJump paper using
the SELENA API. The host VMs were running the Ubuntu
operating system, with the Linux kernel version 3.16. The
switch VMs were running Open vSwitch [9] version 1.4.2
on top of the Debian operating system with kernel version
3.10.11. The capacity of the emulated links is 10 Gb/s with a
netem latency of 0.02 ms.

C. Workloads

PTPd (Clock Synchronization). PTPd 1 is used to synchro-
nize clocks in a computer network, achieving sub-microsecond
accuracy on a local network. We run the PTPd master on host
H8 and the client on host H1.

Memcached (Key-value Stores). Memcached is an in-
memory key-value store for small chuncks of data. The
memaslap 2 load generator is used to benchmark memcached
by measuring the request latency. The client is running a binary
protocol, with a mixed GET/SET workload of 1 KB requests
in TCP mode with 2 threads and 128 concurrent requests. The
memaslap client ran on the host H3, while the memcached
server ran on the host H11.

Hadoop MapReduce (Data processing). Hadoop MapRe-
duce is a system for distributed processing of large data sets.
The Hadoop workload is a natural join between two uniformly
randomly generated data sets. The input and output data are
stored in RAM and a replication factor of 6 was used, similar
to the QJump experiments. Due to memory constraints (each
VM was allocated 12 of RAM), we used only half of the input
data used in the QJump paper, that is 256 MB of input data.
The interference caused by running Hadoop MapReduce in
parallel with the other latency-sensitive applications is thus
smaller in comparison to the one described in the QJump
original experiments, due to the fact that a smaller quantity
of data is shuffled and replicated across the machines at the
end of the job. The Hadoop cluster ran on hosts H2 (master)
and H4, H5, H6, H7, H9, H10, H12 (slaves).

V. REPRODUCING QJUMP EXPERIMENTS IN SELENA

The QJump module and QJump application utility can be
run out of the box after being downloaded from the authors’
website [3] on a testbed. However, in order to reproduce
the experiments using the QJump module, we had to make
several adjustments to our setup in SELENA. The Linux kernel
version installed in the VMs needs to be 3.16 or newer in
order to support the use of multiple transmit and receive
queues per virtual interface. Prior to the Linux kernel version
3.16, the number of queues per virtual interface could not be
adjusted. The maximum number of queues per virtual interface
can be passed as a parameter to the Xen virtual Ethernet
driver xen-netfront using the max queues parameter. We set

1https://github.com/ptpd/ptpd
2http://libmemcached.org/libMemcached.html

https://github.com/ptpd/ptpd
http://libmemcached.org/libMemcached.html


the maximum number of transmit queues in each host (VM) to
8 (QJump uses 8 queues to prioritize the traffic). Since QJump
uses 802.1Q VLAN priorities for prioritizing traffic, VLANs
need to be configured on the hosts. We created the VLAN
interfaces to have 8 transmit queues and 1 receive queue.
Similarly to what was reported in [10], we had to configure the
VLAN interfaces using ifconfig in order to have the traffic
sent over them instead of the physical ones. SELENA uses the
Linux netem qdisc [6] to support constant or stochastic latency
in network links. Since QJump is implemented as a tc module,
it was installed as a child tc module of the netem module.

The most challenging part was replicating the behaviour of
the testbed switches in Open vSwitch. The authors’ testbed
used Arista DCS-7124fx switches and they relied on the
switches’ features in their experiments (8 queues per port and
VLAN based prioritization). In Open vSwitch all packets are
enqueued on queue 0 (the default queue). In order to support
priorities, we used the PRIO qdisc, which is a queueing
discipline that contains an arbitrary number of classes with
different priorities. PRIO acts like a scheduler, dequeuing the
classes in numerical descending order of priority. In order to
enqueue the packet on the class corresponding to its VLAN
priority, we use the tc filter extended matches ematch
on metadata on the vlan attribute. We build a filter that matches
on the VLAN tag taking into account the VLAN number and
VLAN priority.

The Time Stamp Counter (TSC) values exposed by Xen
are either native (accessed directly from the CPU register) or
emulated. Since the guests in our setup are paravirtualized,
the TSC is emulated [11]. The patched hypervisor used by
SELENA multiplies all time sources provided to a guest with
the TDF value. The QJump tc module relies on the TSC value
for timing related decisions, checking to see if it finds an
invariant TSC using the native cpuid instruction. We used the
kernel clock in the QJump module instead, similarly to [10].

VI. EXPERIMENTAL RESULTS

We followed the description of the experiments given by
Grosvenor et al. [1], [3]. The TDF should be chosen such that
it minimizes the maximum per-CPU utilization, because the
fidelity of experiments degrades if the computational resources
are underprovisioned [2].

A. Comparison with testbed

PTPd (Clock synchronization). In Figure 5, we show a
timeline of PTPd synchronizing a host clock in SELENA with
TDF 1 and on our testbed. We notice that when running in
SELENA with TDF 1, PTPd does not manage to keep the
clock synchronized. We repeat the test in SELENA using
different TDF values, as seen in Figure 6, and we see that as
the TDF increases in value, the clock offset becomes smaller.
Table I presents the values of the maximum absolute value for
the PTPd clock offset for the timelines from Figures 5 (testbed)
and 6 (we did not take into account the synchronization
period at the beginning of the interval). We can clearly see
that, amongst the TDF values that we tried, TDF 50 provides

0 250 500 750
Time since start [sec]

-1000
-750
-500
-250

0
250
500
750

1000

C
lo

ck
of

fs
et

[µ
s]

tdf1
testbed

Fig. 5. PTPd in SELENA with TDF 1 and on the testbed.

0 50 100 150
Time since start [sec]

-1000
-750
-500
-250

0
250
500
750

1000

C
lo

ck
of

fs
et

[µ
s]

tdf1
tdf10
tdf20
tdf50

Fig. 6. PTPd in SELENA with different TDF values.

TABLE I
MAXIMUM ABSOLUTE VALUE FOR PTPD CLOCK OFFSET.

Experiment Platform Maximum
clock offset (µs)

PTPd Testbed 20.626

PTPd SELENA TDF=1 158.547

PTPd SELENA TDF=10 131.354

PTPd SELENA TDF=20 139.284

PTPd SELENA TDF=50 32.033

PTPd + Hadoop Testbed 1240.142

PTPd + Hadoop SELENA TDF=10 31045.623

PTPd + Hadoop SELENA TDF=20 1406.18

the best fidelity for this experiment in comparison with the
testbed value, while the values for TDF 10 and 20 are similar.
If we were to use a TDF of 50 in our experiments, our
experiments will take 50 times more time. Hence, we chose
a TDF of maximum 20 for the subsequent experiments in
order to have an acceptable running time, but with good
experimental fidelity.

We next present timelines of PTPd synchronizing a host
clock while simultaneously running the Hadoop MapReduce
job in SELENA and on our testbed. With TDF 1, the clock
offset reaches values of 70000µs in SELENA, being higly



0 50 100 150 200 250
Time since start [sec]

-6000

-4000

-2000

0

2000

4000

6000

C
lo

ck
of

fs
et

[µ
s]

testbed
tdf 10
tdf 20

Fig. 7. PTPd and Hadoop MapReduce in SELENA with TDF 10 and TDF
20 and on the testbed.

TABLE II
COMPARISON OF REQUEST LATENCIES STATISTICS.

Experiment Platform Mean Std

Memcached Testbed 329.42 62.05

Memcached SELENA TDF=10 435.34 142.52

Memcached+Hadoop Testbed 369.09 158.08

Memcached+Hadoop SELENA TDF=10 2733.97 3303.93

unrealistic, while on the testbed the maximum clock offset is
1240.142µs. We see from Figure 7 and Table I that running
PTPd and the Hadoop MapReduce job in SELENA with TDF
20 produces the best fidelity compared to the testbed results.
If we were to use a higher TDF, we would obtain better exper-
imental fidelity. We apply the capping mechanism described
in Section II to the VMs running the Hadoop job in order to
limit the computational resources that the VM perceives as
an effect of the higher TDF. Figure 8 presents a timeline of
PTPd and a Hadoop MapReduce job running simultaneously
in SELENA with TDF 10 and using different values for the
cap parameter (5, 50 and no cap). We observe that when
limiting the CPU time to 10% on each VM, the runtime of
the Hadoop MapReduce job increased in comparison with the
runs in which we do not use a cap or we use a cap of 50%, but
the interference caused by Hadoop MapReduce is smaller in
amplitude. We notice a similar trend for TDF 20 in Figure 9.

As the TDF increases, the fidelity of the results obtained
in the emulation framework increases. When running PTPd
in SELENA with a high TDF value, the behaviour of the
application is very close to the one observed on the testbed.
However, in the case of compute or I/O intensive applications,
like Hadoop, the behaviour of the application changes due to
the increased resources it has access to, making it hard to
replicate its exact behaviour.

Memcached (Key-Value Stores). Figure 10 shows the dis-
tribution (CDF) of memcached request latencies when running
on an idle network and on a shared network with Hadoop
MapReduce. Table II presents the mean and standard devia-
tion of request latencies for each experiment. When running
memcached on an idle network, the mean results on the testbed

0 200 400 600 800 10001200
Time since start [sec]

-6000

-4000

-2000

0

2000

4000

6000

C
lo

ck
of

fs
et

[µ
s]

cap 10
cap 50
no cap

Fig. 8. PTPd and Hadoop MapReduce in SELENA with TDF 10 using
different cap values

0 100 200 300 400 500 600 700
Time since start [sec]

-6000

-4000

-2000

0

2000

4000

6000

C
lo

ck
of

fs
et

[µ
s]

cap 5
cap 50
no cap

Fig. 9. PTPd and Hadoop MapReduce in SELENA with TDF 20 using
different cap values

0 500 1000 1500 2000

Request latency [µs]

0.0

0.2

0.4

0.6

0.8

1.0

alone testbed
+Hadoop testbed
alone tdf 10
+Hadoop tdf 10

Fig. 10. memcached and Hadoop MapReduce on the testbed and on SELENA
with TDF 10

and in SELENA with TDF 10 differ by approximately 100µs.
This difference is probably caused by the fact that the switch
in the testbed is an Arista switch, while we use Open vSwitch.
To mitigate the differences between the testbed switches and
the ones used in emulation, SELENA offers the possibility of
integrating a custom switch model. We leave to future work
the integration of a custom switch in our experiments.



0 500 1000 1500 2000

Request latency [µs]

0.0

0.2

0.4

0.6

0.8

1.0

no cap
50 cap
10 cap

Fig. 11. memcached on SELENA with TDF 10 and different cap values

0 500 1000 1500 2000

Request latency [µs]

0.0

0.2

0.4

0.6

0.8

1.0

no cap
50 cap
10 cap

Fig. 12. memcached and Hadoop MapReduce on SELENA with TDF 10 and
different cap values

When running Memcached on a shared network with
Hadoop MapReduce there is a significant difference between
the results on the testbed and in SELENA, showing that a
higher TDF is needed when running complex applications
like Hadoop MapReduce. Also, the CPU is increased 10
times and this leads to an increased number of memcached
requests being sent and to the Hadoop MapReduce job finish-
ing quicker. In order to mitigate this, we capped the CPU
time per VM using the cap parameter (see Figure 11 and
Figure 12). Although this lowered the number of requests sent
by the memaslap client, part of the requests started having
high latency, even when memcached was running on an idle
network, because the requests could not be processed timely
by memcached given the reduced CPU time. This experiments
show that compute-intensive or I/O intensive applications
are hard to emulate due to differences between running the
applications on the testbed (which has multi-core machines)
and in SELENA (VMs use a single core) and due to the effect
of time dilation.

50 250 500 1000 1500

Latency in µs

0.0

0.2

0.4

0.6

0.8

1.0

alone
+iperf
+iperf w/ QJ

Fig. 13. ping and iperf with and without Qjump in SELENA using TDF 20

0 500 1000 1500 2000

Request latency [µs]

0.0

0.2

0.4

0.6

0.8

1.0

alone
+Hadoop
+Hadoop w/ Qjump

Fig. 14. memcached and Hadoop with QJump in SELENA using TDF 10

B. QJump reduces network interference

The first experiment that uses QJump to resolve network
interference is running simultaneously ping (which emulates
low latency RPCs (Remote Procedure Calls)) and iperf (which
emulates bulk transfer). ping runs between H3 and H11 and
iperf runs between H1 and H12, and between H8 and H11 (2
distinct streams). We set ping to the highest QJump level 7.
The authors measured the packet latency across a switch, while
we measured the packet latency reported by ping. The packets’
latency is reduced by over 100 times when using QJump
(Figure 13). We obtain similar results to the original QJump
ones, showing that prioritization inside of switches does not
resolve all interference. The median ping latency in SELENA
is 44.9 µs and it increases to 1060 µs when iperf is running
alongside ping. But with QJump enabled, the median latency
decreases to 86.2 µs. From this experiment and the PTPd
ones, we can see that the behaviour of applications like PTPd
and ping, which are network-centered, can be successfully
emulated.

The second experiment aims to resolve network interference
experienced by memcached when it shares the network with
Hadoop. In this experiment, memcached is configured at an



intermediate QJump level (level 4) and rate-limited to 5Gb/s,
as explained in [3]. Figure 14 shows the distribution of mem-
cached request latencies when running on an idle network, a
shared network and a shared network with QJump enabled. In
this experiment, QJump reduces the network interference, but
it does not solve it completely. Using a lower rate limit for
memcached in the QJump configuration reduces even further
the network interference.

VII. RELATED WORK

A. Reproducibility

Our study is an in-depth performance analysis of the SE-
LENA network emulation framework while concomitantly re-
producing experiments described in the NSDI 2015 paper [1].
Several other papers described the experience of reproducing
experiments from previously published papers. In [12], the au-
thors described the experiments from 3 published networking
research papers they had reproduced using Mininet Hi-Fi, a
container-based emulation framework [12]. Additionally, the
authors presented the experience of students attending a net-
working class, whose final project was reproducing networking
research. The students managed to reproduce results from 16
other published networking research papers in Mininet Hi-
Fi and documented their work on the class blog. However,
the link speed in some experiments was scaled down to 100
MB/s from 1GB/s or 10GB/s, due to Mininet’s difficulty to
emulate high throughput links, but the results reproduced are
quantitatively equivalent to the results in the papers. The
experiment code of the 3 projects reproduced was obtained
directly from the original authors. Howard et al. [13] repeated
the performance analysis of the Raft consensus protocol. They
developed a new implementation of the protocol and an event-
driven simulation framework. They managed to reproduce
the original results and they also proposed optimizations to
the protocol, acknowledging the instrumental help of the
authors of the Raft protocol in their reproducibility efforts.
Another reproducibility study centers around repeating the
performance analysis of Xen [14]. The authors were successful
in reproducing the results and they also extended the analysis
with additional tests.

Several studies focus only on determining whether the
information needed to reproduce the results presented in a
research paper is available, without actually repeating all
the experiments associated with the papers and comparing
their results with the original results. Kurkowski et al. [15]
surveyed the 2000-2005 proceedings of the ACM International
Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc) (114 papers that used simulation) and found that
less than 15% of them are repeatable. Kovacevic [16] analyzed
15 papers published in the IEEE Transactions on Image Pro-
cessing and contended that for none of the papers the authors
had provided the source code of the algorithms described,
while for 33% of them the input data is available. A more
detailed study [17] of 134 papers published in the same journal
in 2004 concludes that only 9% of the papers have code
available online, while one third have input data available. The

SIGMOD conference set up an experimental reproducibility
initiative in 2008 which has been running ever since [18]. A
methodology for reproducibility is presented in [19]. For 21
papers accepted at the Euro-Par 2013, a reproducibility score
is computed based on the criteria defined in the methodology.
More recently, Collberg et al. [20] studied 613 papers from top
systems conferences and journals to see if they can build and
execute the source code of the projects. They were successful
in less than 25% of the cases.

B. Network Simulation and Emulation Tools

Network simulation or emulation frameworks represent a
powerful tool for researchers. In the context of reproducibility,
these frameworks offer the possibility of setting up experimen-
tal environments similar to testbeds on which the experiments
one wants to reproduce were run, but without using additional
hardware and without incurring the overhead of building the
testbed. However, the experimental results obtained on such
frameworks are not always realistic due to different factors.

Simulation based frameworks are often employed by re-
searchers in order to evaluate their prototypes. The most
popular simulators being ns-2 [21], ns-3 [22] and OMNET++
[23]. Simulators employ an event-driven simulation clock and
simplified models for hardware and network protocols. Sim-
ulations are usually lengthy in time, while their experimental
fidelity may not be ideal due to the network models used.

Emulation brings more realism in the experimental results
by allowing the use of unmodified applications and operating
systems. DieCast [24] is an emulator that employs full-system
virtualization and it is based on Xen. It uses time dilation
[25] to scale the resources. DieCast offers mechanisms for
scaling down the disk I/O rates and CPU in order to support
disk intensive applications. However, DieCast requires guest
modifications and its patches for time dilation are outdated and
do not work with newer Xen versions. It also does not offer
an API to construct scenarios, making it difficult to use as a
tool for reproducing experiments. Mininet [12] is a popular
emulation framework. It uses lightweight virtualization based
on Linux Containers. Unfortunately, as reported in [2], Mininet
fails to provide experimental fidelity for scenarios with high-
throughput links or larger networks. VT-Mininet [26] enhances
Mininet with a time dilation mechanism similar to TimeKeeper
[27], modifying the Linux kernel time-related system calls.
VT-Mininet provides virtual time per container or a global
virtual time and has a TDF adaptor that dynamically adjusts
the TDF based on the CPU utilization to ensure faster experi-
ment completion while maintaining experimental fidelity. We
chose SELENA as our framework for reproducing network
experiments due to its high experimental fidelity and because
the project is open source.

VIII. CONCLUSION

In this paper, we explore the tradeoff between experimental
time and fidelity of reproduction in SELENA [2] by reproduc-
ing network experiments presented in QJump [1]. While we
were successful in reproducing the experiments with a degree



of error, we realized that SELENA’s emulation capabilities are
limited for measurements with microsecond granularity and
with respect to certain applications. As presented in [2], SE-
LENA manages to successfully emulate high throughput links
and millisecond granularity accuracy for measurements, but
our measurements require microsecond granularity. Compute-
intensive and I/O intensive applications’ behaviour is difficult
to replicate in a VM which runs on a single core, while
on the testbed these applications were run on multi-core
machines. Also, because time dilation scales all the resources,
applications like Hadoop are hard to emulate. On the other
hand, network-centered applications, like PTPd, ping and to
a certain extent memcached (if the workload used is network
bound), can be successfully emulated.

ACKNOWLEDGMENTS

We thank the reviewers and our shepherd, Marco Mellia, for valuable
comments regarding the paper. The authors would like to thank Dimosthenis
Pediaditakis, Matthew Grosvenor and Charalampos Rotsos for their assistance
during the course of this project. Diana Andreea Popescu is funded by the
EU FP7 Marie Curie ITN METRICS (grant agreement no. 607728).

REFERENCES

[1] Grosvenor, Matthew P. and Schwarzkopf, Malte and Gog, Ionel and
Watson, Robert N. M. and Moore, Andrew W. and Hand, Steven
and Crowcroft, Jon, “Queues Don’t Matter when You Can JUMP
Them!” in Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’15. Berkeley, CA,
USA: USENIX Association, 2015, pp. 1–14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2789770.2789771

[2] D. Pediaditakis, C. Rotsos, and A. W. Moore, “Faithful reproduction
of network experiments,” in Proceedings of the Tenth ACM/IEEE
Symposium on Architectures for Networking and Communications
Systems, ser. ANCS ’14. New York, NY, USA: ACM, 2014, pp. 41–
52. [Online]. Available: http://doi.acm.org/10.1145/2658260.2658274

[3] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson, A. W.
Moore, S. Hand, and J. Crowcroft, “Jump The Queue,” http://www.cl.
cam.ac.uk/research/srg/netos/qjump/, 2015, online; accessed 13 Decem-
ber 2015.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles, ser. SOSP ’03. New York,
NY, USA: ACM, 2003, pp. 164–177. [Online]. Available: http:
//doi.acm.org/10.1145/945445.945462

[5] Xen, “Xen Networking,” http://wiki.xenproject.org/wiki/Xen
Networking, online; accessed 14 December 2015.

[6] S. Hemminger, “Network emulation with NetEm,” 2005.
[7] Xen , “Xen Credit Scheduler,” http://wiki.xen.org/wiki/Credit

Scheduler, online; accessed 14 December 2015.
[8] Linpack , “The LINPACK Benchmark,” http://people.sc.fsu.edu/

∼jburkardt/c src/linpack bench/linpack bench.html, online; accessed
15 December 2015.

[9] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and
M. Casado, “The Design and Implementation of Open vSwitch,”
in Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’15. Berkeley, CA,
USA: USENIX Association, 2015, pp. 117–130. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2789770.2789779

[10] A. Klimovic and C.-Z. Lee, “CS 244 ’15: QJUMP-
DELAY GUARANTEES IN DATACENTER NETWORKS,”
https://reproducingnetworkresearch.wordpress.com/2015/05/31/
cs-244-15-qjump-delay-guarantees-in-datacenter-networks/, 2015,
online; accessed 12 December 2015.

[11] Xen, “Xen,” http://xenbits.xen.org/docs/4.3-testing/misc/tscmode.txt,
online; accessed 15 December 2015.

[12] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown, “Reproducible Network Experiments Using Container-
based Emulation,” in Proceedings of the 8th International Conference
on Emerging Networking Experiments and Technologies, ser. CoNEXT
’12. New York, NY, USA: ACM, 2012, pp. 253–264. [Online].
Available: http://doi.acm.org/10.1145/2413176.2413206

[13] H. Howard, M. Schwarzkopf, A. Madhavapeddy, and J. Crowcroft,
“Raft refloated: Do we have consensus?” SIGOPS Oper. Syst.
Rev., vol. 49, no. 1, pp. 12–21, Jan. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2723872.2723876

[14] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. Herne, and
J. N. Matthews, “Xen and the art of repeated research,” in Proceedings
of the Annual Conference on USENIX Annual Technical Conference, ser.
ATEC ’04. Berkeley, CA, USA: USENIX Association, 2004, pp. 47–47.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1247415.1247462

[15] S. Kurkowski, T. Camp, and M. Colagrosso, “Manet simulation
studies: The incredibles,” SIGMOBILE Mob. Comput. Commun.
Rev., vol. 9, no. 4, pp. 50–61, Oct. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1096166.1096174

[16] J. Kovacevic, “How to encourage and publish reproducible research,”
in Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE
International Conference on, vol. 4, April 2007, pp. IV–1273–IV–1276.

[17] P. Vandewalle, J. Kovacevic, and M. Vetterli, “Reproducible research in
signal processing,” Signal Processing Magazine, IEEE, vol. 26, no. 3,
pp. 37–47, May 2009.

[18] I. Manolescu, L. Afanasiev, A. Arion, J. Dittrich, S. Manegold,
N. Polyzotis, K. Schnaitter, P. Senellart, S. Zoupanos, and D. Shasha,
“The repeatability experiment of sigmod 2008,” SIGMOD Rec.,
vol. 37, no. 1, pp. 39–45, Mar. 2008. [Online]. Available: http:
//doi.acm.org/10.1145/1374780.1374791

[19] A. Carpen-Amarie, A. Rougier, and F. Lubbe, “Stepping stones
to reproducible research: A study of current practices in parallel
computing,” in Euro-Par 2014: Parallel Processing Workshops,
ser. Lecture Notes in Computer Science. Springer International
Publishing, 2014, vol. 8805, pp. 499–510. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-14325-5 43

[20] C. Collberg, T. Proebsting, G. Moraila, A. Shankaran, Z. Shi, and
A. Warren, “Measuring reproducibility in computer systems,” University
of Arizona, Tech. Rep., 2014.

[21] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2,
1st ed. Springer Publishing Company, Incorporated, 2008.

[22] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley, “Ns-3 project
goals,” in Proceeding from the 2006 Workshop on Ns-2: The IP
Network Simulator, ser. WNS2 ’06. New York, NY, USA: ACM,
2006. [Online]. Available: http://doi.acm.org/10.1145/1190455.1190468

[23] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in Proceedings of the 1st International Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops, ser. Simutools ’08. ICST, Brussels, Belgium,
Belgium: ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2008, pp. 60:1–60:10. [Online].
Available: http://dl.acm.org/citation.cfm?id=1416222.1416290

[24] D. Gupta, K. V. Vishwanath, M. McNett, A. Vahdat, K. Yocum,
A. Snoeren, and G. M. Voelker, “Diecast: Testing distributed
systems with an accurate scale model,” ACM Trans. Comput. Syst.,
vol. 29, no. 2, pp. 4:1–4:48, May 2011. [Online]. Available:
http://doi.acm.org/10.1145/1963559.1963560

[25] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vahdat,
and G. M. Voelker, “To infinity and beyond: Time-warped network
emulation,” in Proceedings of the 3rd Conference on Networked Systems
Design & Implementation - Volume 3, ser. NSDI’06. Berkeley, CA,
USA: USENIX Association, 2006, pp. 7–7. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267680.1267687

[26] J. Yan and D. Jin, “Vt-mininet: Virtual-time-enabled mininet for scalable
and accurate software-define network emulation,” in Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, ser. SOSR ’15. New York, NY, USA: ACM, 2015, pp. 27:1–
27:7. [Online]. Available: http://doi.acm.org/10.1145/2774993.2775012

[27] J. Lamps, D. M. Nicol, and M. Caesar, “Timekeeper: A lightweight
virtual time system for linux,” in Proceedings of the 2Nd ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation, ser. SIGSIM
PADS ’14. New York, NY, USA: ACM, 2014, pp. 179–186. [Online].
Available: http://doi.acm.org/10.1145/2601381.2601395

http://dl.acm.org/citation.cfm?id=2789770.2789771
http://doi.acm.org/10.1145/2658260.2658274
http://www.cl.cam.ac.uk/research/srg/netos/qjump/
http://www.cl.cam.ac.uk/research/srg/netos/qjump/
http://doi.acm.org/10.1145/945445.945462
http://doi.acm.org/10.1145/945445.945462
http://wiki.xenproject.org/wiki/Xen_Networking
http://wiki.xenproject.org/wiki/Xen_Networking
http://wiki.xen.org/wiki/Credit_Scheduler
http://wiki.xen.org/wiki/Credit_Scheduler
http://people.sc.fsu.edu/~jburkardt/ c_src/linpack_bench/linpack_bench.html
http://people.sc.fsu.edu/~jburkardt/ c_src/linpack_bench/linpack_bench.html
http://dl.acm.org/citation.cfm?id=2789770.2789779
https://reproducingnetworkresearch.wordpress.com/2015/05/31/cs-244-15-qjump-delay-guarantees-in-datacenter-networks/
https://reproducingnetworkresearch.wordpress.com/2015/05/31/cs-244-15-qjump-delay-guarantees-in-datacenter-networks/
http://xenbits.xen.org/docs/4.3-testing/misc/tscmode.txt
http://doi.acm.org/10.1145/2413176.2413206
http://doi.acm.org/10.1145/2723872.2723876
http://dl.acm.org/citation.cfm?id=1247415.1247462
http://doi.acm.org/10.1145/1096166.1096174
http://doi.acm.org/10.1145/1374780.1374791
http://doi.acm.org/10.1145/1374780.1374791
http://dx.doi.org/10.1007/978-3-319-14325-5_43
http://doi.acm.org/10.1145/1190455.1190468
http://dl.acm.org/citation.cfm?id=1416222.1416290
http://doi.acm.org/10.1145/1963559.1963560
http://dl.acm.org/citation.cfm?id=1267680.1267687
http://doi.acm.org/10.1145/2774993.2775012
http://doi.acm.org/10.1145/2601381.2601395

	Introduction
	The SELENA framework
	Architecture
	Scaling Resources

	The QJump project
	Experimental setup
	Testbed setup
	SELENA setup
	Workloads

	Reproducing QJump experiments in Selena
	Experimental results
	Comparison with testbed
	QJump reduces network interference

	Related work
	Reproducibility
	Network Simulation and Emulation Tools

	Conclusion
	References

