Automating Access Control Logics in Simple Type Theory with LEO-II *

Christoph Benzmüller

Abstract Garg and Abadi recently proved that prominent access control logics can be translated in a sound and complete way into modal logic S4. We have previously outlined how normal multimodal logics, including monomodal logics K and S4, can be embedded in simple type theory and we have demonstrated that the higher-order theorem prover LEO-II can automate reasoning in and about them. In this paper we combine these results and describe a sound (and complete) embedding of different access control logics in simple type theory. Employing this framework we show that the off the shelf theorem prover LEO-II can be applied to automate reasoning in and about prominent access control logics.

1 Introduction

The provision of effective and reliable control mechanisms for accessing resources is an important issue in many areas. In computer systems, for example, it is important to effectively control the access to personalized or security critical files.

A prominent and successful approach to implement access control relies on logic based ideas and tools. Abadi’s article [2] provides a brief overview on the frameworks and systems that have been developed under this approach. Garg and Abadi recently showed that several prominent access control logics can be translated into modal logic S4 [18]. They proved that this translation is sound and complete.

We have previously shown [10] how multimodal logics can be elegantly embedded in simple type theory (STT) [15, 5]. We have also demonstrated that proof prob-
lems in and about multimodal logics can be effectively automated with the higher-
order theorem prover LEO-II [12].

In this paper we combine the above results and show that different access control
logics can be embedded in STT, which has a well understood syntax and semantics
[22, 4, 3, 9].

The expressiveness of STT furthermore enables the encoding of the entire trans-
lation from access control logic input syntax to STT in STT itself, thus making it as
transparent as possible. Our embedding furthermore demonstrates that prominent
access control logics as well as prominent multimodal logics can be considered and
treated as natural fragments of STT.

Using our embedding, reasoning in and about access control logic can be au-
tomated in the higher-order theorem prover LEO-II. Since LEO-II generates proof
objects, the entire translation and reasoning process is in principle accessible for
independent proof checking.

This paper is structured as follows: Section 2 reviews background knowledge
and Section 3 outlines the translation of access control logics into modal logic S4
as proposed by Garg and Abadi [18]. Section 4 restricts the general embedding
of multimodal logics into STT [10] to an embedding of monomodal logics K and
S4 into STT and proves its soundness. These results are combined in Section 5 in
order to obtain a sound (and complete) embedding of access control logics into
STT. Moreover, we present some first empirical evaluation of the approach with the
higher-order automated theorem prover LEO-II. Section 6 concludes the paper.

2 Preliminaries

We assume familiarity with the syntax and semantics and of multimodal logics and
simple type theory and only briefly review the most important notions.

The multimodal logic language ML is defined by

\[s,t ::= p | \neg s | s \lor t | \square_r s \]

where \(p \) denotes atomic primitives and \(r \) denotes accessibility relations (distinct
from \(p \)). Other logical connectives can be defined from the chosen ones in the usual
way.

A Kripke frame for ML is a pair \(\langle W, (R_r)_{r \in I} \rangle \), where \(W \) is a non-empty set
(called possible worlds), and the \(R_r \) are binary relations on \(W \) (called accessibility
relations). A Kripke model for ML is a triple \(\langle W, (R_r)_{r \in I}, \models \rangle \), where \(\langle W, (R_r)_{r \in I} \rangle \) is
a Kripke frame, and \(\models \) is a satisfaction relation between nodes of \(W \) and formulas
of ML satisfying: \(w \models \neg s \) if and only if \(w \not\models s \), \(w \models s \lor t \) if and only if \(w \models s \) or
\(w \models t \), \(w \models \Box_s \) if and only if for all \(u \) with \(R_r(w,u) \) holds \(u \models s \). The satisfaction
relation \(\models \) is uniquely determined by its value on the atomic primitives \(p \). A formula
\(s \) is valid in a Kripke model \(\langle W, (R_r)_{r \in I}, \models \rangle \), if \(w \models s \) for all \(w \in W \). \(s \) is valid in a
Kripke frame \(\langle W, (R_r)_{r \in I} \rangle \) if it is valid in \(\langle W, (R_r)_{r \in I}, \models \rangle \) for all possible \(\models \). If \(s \) is
valid for all possible Kripke frames \(\langle W, (R_r)_{r \in I} \rangle \), then \(s \) is called valid and we write \(\models^K s, s \) is called S4-valid (we write \(\models^K s \)) if it is valid in all reflexive, transitive Kripke frames \(\langle W, (R_r)_{r \in I} \rangle \), that is, Kripke frames with only reflexive and transitive relations \(R_r \).

Classical higher-order logic or simple type theory STT [5, 15] is a formalism built on top of the simply typed \(\lambda \)-calculus. The set \(\mathcal{T} \) of simple types is usually freely generated from a set of basic types \(\{o, t\} \) (where \(o \) denotes the type of Booleans) using the function type constructor \(\rightarrow \).

The simple type theory language STT is defined by \((\alpha, \beta, o \in \mathcal{T}) \):

\[
s, t ::= p_{\alpha}[X_{\alpha}]((\lambda X_{\alpha} s_{\beta})\alpha \rightarrow \beta)(s_{\alpha \rightarrow \beta} t_{\alpha})\beta((\neg o \rightarrow o) s_{o})(s_{o} \lor o \rightarrow o t_{o})\alpha((\Pi(\alpha \rightarrow o) s_{\alpha \rightarrow o}) o)
\]

\(p_{\alpha} \) denotes typed constants and \(X_{\alpha} \) typed variables (distinct from \(p_{\alpha} \)). Complex typed terms are constructed via abstraction and application. Our logical connectives of choice are \(\neg, \lor, \rightarrow, \land, \bot, \) and \(\top \) for each type \(\alpha \). From these connectives, other logical connectives, such as \(\Rightarrow, \land, \bot, \) and \(\top \), can be defined in the usual way. We often use binder notation \(\forall X_{\alpha}, s \) and \(\exists X_{\alpha}, t \) for \((\Pi(\alpha \rightarrow o)(\lambda X_{\alpha} s_{o})) \) and \(\neg(\Pi(\alpha \rightarrow o)(\lambda X_{\alpha}, \neg s_{o})) \). We denote substitution of a term \(s_{\alpha} \) for a variable \(X_{\alpha} \) as a term \(t_{\beta} \) by \([s/X]t \). Since we consider \(\alpha \)-conversion implicitly, we assume the bound variables of \(B \) avoid variable capture. Two common relations on terms are given by \(\beta \)-reduction and \(\eta \)-reduction. A \(\beta \)-redex \((\lambda X_{\alpha} s) t \) \(\beta \)-reduces to \([t/X]s \). An \(\eta \)-redex \((\lambda X_{\alpha} s) X_{\alpha} \) where variable \(X \) is not free in \(s \), \(\eta \)-reduces to \(s \). We write \(s =_{\beta} t \) to mean \(s \) can be converted to \(t \) by a series of \(\beta \)-reductions and expansions. Similarly, \(s =_{\beta \eta} t \) means \(s \) can be converted to \(t \) using both \(\beta \) and \(\eta \).

Semantics of STT is well understood and thoroughly documented in the literature [9, 3, 4, 22]; our summary below is adapted from Andrews [6].

A frame is a collection \(\{D_{\alpha}\}_{\alpha \in \mathcal{T}} \) of nonempty domains (sets) \(D_{\alpha} \), such that \(D_{o} = \{T, F\} \) (where \(T \) represents truth and \(F \) represents falsehood). The \(D_{\alpha \rightarrow \beta} \) are collections of functions mapping \(D_{\alpha} \) into \(D_{\beta} \). The members of \(D_{t} \) are called individuals. An interpretation is a tuple \(\{\{D_{\alpha}\}_{\alpha \in \mathcal{T}}, I\} \) where function \(I \) maps each typed constant \(c_{\alpha} \) to an appropriate element of \(D_{\alpha} \), which is called the denotation of \(c_{\alpha} \) (the denotations of \(\neg, \lor \) and \(\Pi \) are always chosen as intended). A variable assignment \(\phi \) maps variables \(X_{\alpha} \) to elements in \(D_{\alpha} \). An interpretation \(\{\{D_{\alpha}\}_{\alpha \in \mathcal{T}}, I\} \) is a Henkin model (general model) if and only if there is a binary function \(\gamma \) such that \(\gamma_{\phi} s_{\alpha} \in D_{\alpha} \) for each variable assignment \(\phi \) and term \(s_{\alpha} \in L \), and the following conditions are satisfied for all \(\phi \) and all \(s, t \in L \): (a) \(\gamma_{\phi} X_{\alpha} = \phi X_{\alpha} \), (b) \(\gamma_{\phi} p_{\alpha} = I p_{\alpha} \), (c) \(\gamma_{\phi}(s_{\alpha \rightarrow \beta} t_{\alpha}) = (\gamma_{\phi} s_{\alpha \rightarrow \beta})(\gamma_{\phi} t_{\alpha}) \), and (d) \(\gamma_{\phi}(\lambda X_{\alpha} s_{\beta}) = \) function from \(D_{\alpha} \) into \(D_{\beta} \) whose value for each argument \(z \in D_{\alpha} \) is \(\gamma_{\phi} s_{\beta} \), where \([z/X_{\alpha}] \phi \) is that variable assignment such that \(([z/X_{\alpha}], \phi) X_{\alpha} = z \) and \(([z/X_{\alpha}], \phi) Y_{\beta} = \phi Y_{\beta} \) if \(Y_{\beta} \neq X_{\alpha} \).²

² Since \(\neg, \neg, \land \) are always chosen as intended, we have \(\gamma_{\phi} (\neg s) = T \) iff \(\gamma_{\phi} s = F \), \(\gamma_{\phi} (s \lor t) = T \) iff \(\gamma_{\phi} s = T \) or \(\gamma_{\phi} t = T \), and \(\gamma_{\phi} (\forall X_{\alpha} s_{\alpha}) = \gamma_{\phi} (\Pi(\alpha \rightarrow o)(\lambda X_{\alpha} s_{\alpha})) = T \) iff for all \(z \in D_{\alpha} \) we have \(\gamma_{\phi} s = \gamma_{\phi} t \) whenever \(s =_{\beta} t \).
If an interpretation $\langle \{ D_\alpha \}_{\alpha \in \mathcal{T}}, I \rangle$ is a Henkin model, the function V_{ϕ} is uniquely determined. An interpretation $\langle \{ D_\alpha \}_{\alpha \in \mathcal{T}}, I \rangle$ is a standard model if and only if for all α and β, $D_{\alpha \rightarrow \beta}$ is the set of all functions from D_α into D_β. Each standard model is also a Henkin model.

We say that formula $A \in L$ is valid in a model $\langle \{ D_\alpha \}_{\alpha \in \mathcal{T}}, I \rangle$ if and only if $V_{\phi}A = T$ for every variable assignment ϕ. A model for a set of formulas H is a model in which each formula of H is valid.

A formula A is Henkin-valid (standard-valid) if and only if A is valid in every Henkin (standard) model. Clearly each formula which is Henkin-valid is also standard-valid, but the converse of this statement is false. We write $\models_{ST} A$ if A is Henkin-valid and we write $\Gamma \models_{ST} A$ if A is valid in all Henkin models in which all formulas of Γ are valid.

3 Translating Access Control Logic to Modal Logic

The access control logic ICL studied by Garg and Abadi [18] is defined by

$$s ::= p | s_1 \land s_2 | s_1 \lor s_2 | s_1 \supset s_2 | \bot | T | A \ says s$$

p denotes atomic propositions, \land, \lor, \supset and \bot and T denote the standard logical connectives, and A denotes principals, which are atomic and distinct from the atomic propositions p. Expressions of the form $A \ says s$, intuitively mean that A asserts (or supports) s. ICL inherits all inference rules of intuitionistic propositional logic. The logical connective $\ says s$ satisfies the following axioms:

$$\vdash s \supset (A \ says s) \quad \text{(unit)}$$
$$\vdash (A \ says (s \supset t) \supset (A \ says s) \supset (A \ says t)) \quad \text{(cuc)}$$
$$\vdash (A \ says A \ says s) \supset (A \ says s) \quad \text{(idem)}$$

Example 1 (from [18]). We consider a file-access scenario with an administrating principal admin, a user Bob, one file file1, and the following policy:

1. If admin says that file1 should be deleted, then this must be the case.
2. admin trusts Bob to decide whether file1 should be deleted.
3. Bob wants to delete file1.

This policy can be encoded in ICL as follows:

$$(\text{admin says deletefile1}) \supset \text{deletefile1} \quad \text{(1.1)}$$
$$\text{admin says } ((\text{Bob says deletefile1}) \supset \text{deletefile1}) \quad \text{(1.2)}$$
$$\text{Bob says deletefile1} \quad \text{(1.3)}$$

The question whether file1 should be deleted in this situation corresponds to proving deletefile1 (1.4), which follows from (1.1)-(1.3), (unit), and (cuc).

Garg and Abadi [18] propose the following mapping $\lceil . \rceil$ of ICL formulas into modal logic $S4$ formulas (similar to Gödel’s translation from intuitionistic logic to $S4$ [19] and by providing a mapping for the additional connective $\ says s$).
\[[p] = \Box p \]
\[[s \land t] = [s] \land [t] \]
\[[s \lor t] = [s] \lor [t] \]
\[[s \supset t] = \Box (\Box s \supset \Box t) \]
\[[A \text{ says } s] = \Box (A \lor [s]) \]

Logic \(ICL \Rightarrow \) extends \(ICL \) by a \textit{speaks-for} operator (represented by \(\Rightarrow \)) which satisfies the following axioms:

\begin{align*}
\vdash A \Rightarrow A & \tag{refl} \\
\vdash (A \Rightarrow B) \supset (B \Rightarrow C) \supset (A \Rightarrow C) & \tag{trans} \\
\vdash (A \Rightarrow B) \supset (A \text{ says } s) \supset (B \text{ says } s) & \tag{speaking-for} \\
\vdash (B \text{ says } (A \Rightarrow B)) \supset (A \Rightarrow B) & \tag{handoff}
\end{align*}

The use of the new \(\Rightarrow \) operator is illustrated by the following modification of Example 1.

\textit{Example 2 (from [18])}. Bob delegates his authority to delete file1 to Alice (see (2.3)), who now wants to delete file1.

\begin{align*}
\text{(admin says deletefile1) } & \supset \text{ deletefile1} & \tag{2.1} \\
\text{admin says ((Bob says deletefile1) } & \supset \text{ deletefile1)} & \tag{2.2} \\
\text{Bob says Alice } & \Rightarrow \text{ Bob} & \tag{2.3} \\
\text{Alice says deletefile1} & \tag{2.4}
\end{align*}

Using these facts and (handoff) and (speaking-for) one can prove deletefile (2.5)

The translation of \(ICL \Rightarrow \) into S4 extends the translation from \(ICL \) to S4 by

\[[A \Rightarrow B] = \Box (A \supset B) \]

Logic \(ICL^B \) differs from \(ICL \) by allowing that principals may contain Boolean connectives (\(a \) denotes atomic principals distinct from atomic propositions):

\[A, B ::= a | A \land B | A \lor B | A \supset B | \bot | \top \]

\(ICL^B \) satisfies the following additional axioms:

\begin{align*}
\vdash (\bot \text{ says } s) \supset s & \tag{trust} \\
\text{If } A \equiv \top \text{ then } & \vdash A \text{ says } \bot & \tag{untrust} \\
\vdash ((A \supset B) \text{ says } s) \supset (A \text{ says } s) \supset (B \text{ says } s) & \tag{cuc'}
\end{align*}

Abadi and Garg show that the \textit{speaks-for} operator from \(ICL \Rightarrow \) is definable in \(ICL^B \). The use of \(ICL^B \) is illustrated by the following modification of Example 1.

\textit{Example 3 (from [18])}. admin is trusted on deletefile1 and its consequences (3.1), (3.2) says that admin further delegates this authority to Bob.

\begin{align*}
\text{(admin says } \bot) & \supset \text{ deletefile1} & \tag{3.1} \\
\text{admin says ((Bob } & \supset \text{ admin) says deletefile1)} & \tag{3.2} \\
\text{Bob says deletefile1} & \tag{3.3}
\end{align*}
Using these facts and the available axioms one can again prove (3.4). The translation of ICL^B into $S4$ is the same as the translation from ICL to $S4$. However, the mapping $[A \text{ says } s] = \Box(A \lor \lceil s \rceil)$ now guarantees that Boolean principal expressions A are mapped one-to-one to Boolean expressions in $S4$.

Garg and Abadi prove their translations sound and complete:

Theorem 1 (Soundness and Completeness). $\vdash s$ in ICL (resp. $ICL \Rightarrow$ and ICL^B) if and only if $\vdash \lceil s \rceil$ in $S4$.

Proof. See Theorem 1 (resp. Theorem 2 and Theorem 3) of Garg and Abadi [18].

4 Embedding Modal Logic in Simple Type Theory

Embeddings of modal logics into higher-order logic have not yet been widely studied, although multimodal logic can be regarded as a natural fragment of STT. Gallin [16] appears to mention the idea first. He presents an embedding of modal logic into a 2-sorted type theory. This idea is picked up by Gamut [17] and a related embedding has recently been studied by Hardt and Smolka [20]. Carpenter [14] proposes to use lifted connectives, an idea that is also underlying the embeddings presented by Merz [24], Brown [13], Harrison [21, Chap. 20], and Kaminski and Smolka [23].

In our previous work [10] we pick up and extend the embedding of multimodal logics into STT as studied by Brown [13]. The starting point is a characterization of multimodal logic formulas as particular λ-terms in STT. A distinctive characteristic of the encoding is that the definiens of the \Box_R operator λ-abstracts over the accessibility relation R. As we have shown this supports the formulation of meta properties of encoded multimodal logics such as the correspondence between certain axioms and properties of the accessibility relation R. And some of these meta properties can be efficiently automated within our higher-order theorem prover LEO-II.

The general idea of this encoding is very simple: Choose base type ι and let this type denote the set of all possible worlds. Certain formulas of type $\iota \rightarrow o$ then correspond to multimodal logic expressions, whereas the modal operators \lnot, \lor, and \Box, itself become λ-terms of type $(\iota \rightarrow o) \rightarrow (\iota \rightarrow o)$, $(\iota \rightarrow o) \rightarrow (\iota \rightarrow o) \rightarrow (\iota \rightarrow o)$, and $(\iota \rightarrow (\iota \rightarrow o)) \rightarrow (\iota \rightarrow o) \rightarrow (\iota \rightarrow o)$ respectively.

The mapping $\lceil \cdot \rceil$ translates formulas of multimodal logic ML into terms of type $\iota \rightarrow o$ in STT:

\[
\begin{align*}
\lceil p \rceil &= p_{1\rightarrow o} & |p| &= p_{1\rightarrow o} \\
\lceil r \rceil &= r_{1\rightarrow o} & |r| &= r_{1\rightarrow o} \\
\lceil \lnot s \rceil &= \lambda X.\lnot (\lceil s \rceil X) & |\lnot| &= \lambda A_{1\rightarrow o}.\lambda X.\lnot (AX) \\
\lceil s \lor t \rceil &= \lambda X.\lnot (\lceil s \rceil X) \lor (\lceil t \rceil X) & |\lor| &= \lambda A_{1\rightarrow o}.\lambda B_{1\rightarrow o}.\lambda X.\lnot (AX) \lor (BX) \\
\lceil \Box r, s \rceil &= \lambda X.\forall Y.((\lceil r \rceil Y) \Rightarrow (\lceil s \rceil Y)) & |\Box| &= \lambda R_{1\rightarrow o\rightarrow o}.\lambda A_{1\rightarrow o}. \\
\qquad \quad \lambda X.\forall Y.((RX Y) \Rightarrow (AY))
\end{align*}
\]
The expressiveness of STT (in particular the use of λ-abstraction and $\beta\eta$-conversion) allows us to replace mapping $[\cdot]$ by mapping $[\cdot]$ which works locally and is not recursive.\(^3\)

It is easy to check that this local mapping works as intended. For example,

$$[\Box_r p \lor \Box_r q] := [\lor (\Box [r] | p) (\Box [r] | q)] = \beta\eta [\Box_r p \lor \Box_r q]$$

Further local definitions for other multimodal logic operators can be introduced this way. For example, $[\Box] = \lambda A_1 \ldots \lambda B_1 \ldots \lambda X_1. (AX) \Rightarrow (BX)$, $[\bot] = \lambda A_1 \ldots \bot$, $[\top] = \lambda A_1 \ldots \top$, and $[\land] = \lambda A_1 \ldots \land \lambda B_1 \ldots \land, \lambda X_1 \ldots \land (AX) \land (BX)$.

A notion of validity for the λ-terms (of type $t \rightarrow o$) which we obtain via definition expansion is still missing: We want $A_{1 \rightarrow o}$ to be valid if and only if for all possible worlds w_1 we have $(A_{1 \rightarrow o} w_1)$, that is, $w \in A$. This notion of validity is again introduced as a local definition:

$$[M \forall 1] := \lambda A_{1 \rightarrow o} \forall W_1. AW$$

Garg and Abadi’s translation of access control into modal logic as presented in Section 3 is monomodal and does not require different \Box_r-operators. Thus, for the purpose of this paper we restrict the outlined general embedding of multimodal logics into STT to an embedding of monomodal logic into STT. Hence, for the remainder of the paper we assume that ML provides exactly one \Box_r-operator, that is, a single relation constant r.

We next study soundness of this embedding. Our soundness proof below employs the following mapping of Kripke frames into Henkin models.

Definition 1 (Henkin model M^K for Kripke Model K). Given a Kripke model $K = \langle W, (R_r)_r, \models \rangle$. Henkin model $M^K = \langle \{D_\alpha\}_{\alpha \in \prec}, I \rangle$ for K is defined as follows: We choose the set of individuals D_1 as the set of worlds W and we choose the $D_{\alpha \rightarrow \beta}$ as the set of all functions from D_α to D_β. Let p^1, \ldots, p^m for $m \geq 1$ be the atomic primitives occurring in modal language ML. Remember that \Box_r is the only box operator of ML. Note that $[p^i] = p^i_{1 \rightarrow o}$ and $[r] = r_{1 \rightarrow 1 \rightarrow o}$. Thus, for $1 \leq i \leq m$ we choose $I p^i_{1 \rightarrow o} \in D_{1 \rightarrow o}$ such that $(I p^i_{1 \rightarrow o})(w) = T$ for all $w \in D_1$ with $w = p^i$ in Kripke model K and $(I p^i_{1 \rightarrow o})(w) = F$ otherwise. Similarly, we choose $I r_{1 \rightarrow 1 \rightarrow o} \in D_{1 \rightarrow 1 \rightarrow o}$ such that $(I r_{1 \rightarrow 1 \rightarrow o})(w, w') = T$ if $R_r(w, w')$ in Kripke model K and $(I r_{1 \rightarrow 1 \rightarrow o})(w, w') = F$ otherwise. Clearly, if R_r is reflexive and transitive then, by construction, $I r_{1 \rightarrow 1 \rightarrow o}$ is so as well. It is easy to check that $M^K = \langle \{D_\alpha\}_{\alpha \in \prec}, I \rangle$ is a Henkin model. In fact it is a standard model since the function spaces are full.

\(^3\) Note that the encoding of the modal operators \Box_r is chosen to explicitly depend on an accessibility relation r of type $t \rightarrow o \rightarrow o$ given as first argument to it. Hence, we basically introduce a generic framework for modeling multimodal logics. This idea is due to Brown and it is this aspect where the encoding differs from the LTL encoding of Harrison. The latter chooses the interpreted type num of numerals and then uses the predefined relation \leq over numerals as fixed accessibility relation in the definitions of \Box_r and \Diamond_r. By making the dependency of \Box_r and \Diamond_r on the accessibility relation explicit, we cannot only formalize but also automatically prove some meta properties of multimodal logics as we have previously demonstrated [10].
Lemma 1. Let $M^K = \langle \{D_a\}_{a \in \mathcal{A}}, I \rangle$ be a Henkin model for Kripke model $K = \langle W, (R_i)_{i \in I}, \models \rangle$. For all $q \in L$, $w \in W$ and variable assignments ϕ the following are equivalent: (i) $w \models q$, (ii) $\mathcal{V}^{[w/z_i], \phi}[[q]Z] = T$, and (iii) $\mathcal{V}^{[w/z_i], \phi}[[q]Z] = T$.

Proof. We prove (i) if and only if (ii) by induction on the structure of q. Let $q = p$ for some atomic primitive $p \in L$. By construction of M^K, we have $\mathcal{V}^{[w/z_i], \phi}[[p]Z] = \mathcal{V}^{[w/z_i], \phi}((p_{\neg \alpha}).Z) = (I_{(p_{\neg \alpha})}(w) = T$ if and only if $w \models p$. Let $p = \neg s$. We have $w \models \neg s$ if and only $w \not\models s$. By induction we get $\mathcal{V}^{[w/z_i], \phi}[[s]Z] = F$ and hence $\mathcal{V}^{[w/z_i], \phi}[[s]Z] = B$. By induction we get $\mathcal{V}^{[w/z_i], \phi}[[s]Z] = T$. Case $p = (s \vee t)$ is similar. Let $q = \Box_r s$. We have $w \models \Box_r s$ if and only for all u with $R_r(w, u)$ we have $u \models s$. By induction, for all u with $R_r(w, u)$ we have $\mathcal{V}^{[u/z_i], \phi}[[s]V] = T$. Hence, $\mathcal{V}^{[u/z_i], \phi}(((r)ZV) \Rightarrow ((s)V)) = T$ and $\mathcal{V}^{[u/z_i], \phi}((r)ZV) \Rightarrow ((s)Y)) = T$. We leave it to the reader to prove (ii) if and only if (iii).

We now prove soundness of the embedding of normal monomodal logics K and $S4$ into STT. In the case of $S4$ we add axioms that correspond to modal logic axioms T (reflexivity) and 4 (transitivity). Here we call these axiom R and T.

Theorem 2 (Soundness of the Embedding of K and $S4$ into STT). Let $s \in ML$ be a monomodal logic proposition.

1. If $\models_{STT}[Mvals] s$ then $\models^K s$.
2. If $\{R, T\} \models_{STT}[Mval] s$ then $\models_{S4} s$, where R and T are shorthands for $\forall X_{i=0} \ldots$, $\exists X_{i=0} \ldots, \forall X_{i=0} \ldots, \exists X_{i=0} \ldots, \forall X_{i=0} \ldots, \exists X_{i=0} \ldots$, respectively.

Proof. (1) The proof is by contraposition. For this, assume $\not\models^K s$, that is, there is a Kripke model $K = \langle W, (R_i)_{i \in I}, \models \rangle$ with $w \not\models s$ for some $w \in W$. By Lemma 1, for arbitrary ϕ we have $\mathcal{V}^{[w/z_i], \phi}[[s]W] = F$ in Henkin model M^K for K. Thus, $\mathcal{V}^{\phi}((VW, [s]W) = \mathcal{V}^{\phi}[[Mval] s] = F$. Hence, $\not\models_{STT}[Mval] s$.

(2) The proof is by contraposition. From $\not\models_{S4} s$ we get by Lemma 1 that $[Mval] s$ is not valid in Henkin model $M^K = \langle \{D_a\}_{a \in \mathcal{A}}, I \rangle$ for Kripke model $K = \langle W, (R_i) \rangle$. R_i in K is reflexive and transitive, hence, the relation $(I_r) \in D_{i=0} \ldots$ is so as well. We leave it to the reader to verify that axioms R and T are valid in M^K. Hence, $\not\models_{STT}[Mval] s$.

Reasoning problems in modal logics K and $S4$ can thus be considered as reasoning problems in STT. Hence, any off the shelf theorem prover that is sound for STT, such as our LEO-II, can be applied to them. For example, $\models_{STT}[Mval \Box \top], \models_{STT}[Mval \Box, a \Box a], a \Box a, a \Box a, a \Box a, a \Box a$ are automatically proved by LEO-II in 0.024 seconds, 0.026 seconds, and 0.035 seconds respectively. All experiments with LEO-II reported in this paper were conducted with LEO-II version v0.98 on a notebook computer with a Intel Pentium 1.60GHz processor with 1GB memory running Linux.

\footnote{Note that $T = (\Box, s \Box s)$ and $4 = (\Box, s \Box r, s \Box r, s)$ are actually axiom schemata in modal logic. As we show here, their counterparts in STT actually become proper axioms.}

\footnote{LEO-II is available from http://www.ags.uni-sb.de/~leo/.
More impressive example problems illustrating LEO-II’s performance for reasoning in and about multimodal logic can be found in our previous work [10]. Amongst these problems is also the equivalence between axioms \(\Box r \sigma \supset \Box s \sigma \) and \(\Box r \sigma \supset \Box s \Box r \sigma \) and the reflexivity and transitivity properties of the accessibility relation \(r \):

Example 4. \(\models^{STT} (R \land T) \leftrightarrow (\text{refl} r \land \text{trans} r) \) where \(R \) and \(T \) are the abbreviations as introduced in Theorem 2 and \(\text{refl} \) and \(\text{trans} \) abbreviations for \(\lambda X. X \land X \) and \(\lambda Y, Z. X Y \land Y Z \Rightarrow X Y Z \). LEO-II can solve this modal logic meta-level problem in 2.329 seconds.

5 Embedding Access Control Logic in Simple Type Theory

We combine the results from Sections 3 and 4 and obtain the following mapping \(\| \cdot \| \) from access control logic \(ICL \) into \(STT \):

\[
\| p \| = [\Box r p] = \lambda X. \forall Y. r_{1 \rightarrow 0} X Y \Rightarrow p_{1 \rightarrow 0} Y \\
\| A \| = |A| = a_{1 \rightarrow 0} \quad (\text{distinct from the } p_{1 \rightarrow 0}) \\
\| \land \| = \lambda S, \lambda T. |S \land T| = \lambda S_{1 \rightarrow 0}. \lambda T_{1 \rightarrow 0}. \lambda X. S X \land T X \\
\| \lor \| = \lambda S, \lambda T. |S \lor T| = \lambda S_{1 \rightarrow 0}. \lambda T_{1 \rightarrow 0}. \lambda X. S X \lor T X \\
\| \supset \| = \lambda S, \lambda T. |S \supset T| \\
= \lambda S_{1 \rightarrow 0}. \lambda T_{1 \rightarrow 0}. \lambda X. \forall Y. r_{1 \rightarrow 0} X Y \Rightarrow (S Y \Rightarrow T Y) \\
\| \top \| = |\top| = \lambda S_{1 \rightarrow 0}. \top \\
\| \bot \| = |\bot| = \lambda S_{1 \rightarrow 0}. \bot \\
\| \text{says} \| = \lambda A, \lambda S, [\Box r (A \lor S)] \\
= \lambda A_{1 \rightarrow 0}. \lambda S_{1 \rightarrow 0}. \lambda X. \forall Y. r_{1 \rightarrow 0} X Y \Rightarrow (A Y \lor S Y)
\]

It is easy to verify that this mapping works as intended. For example:

\[
\| \text{admin} \text{ says } \bot \| := \| \text{says} \|| | \text{admin} \| | \bot \|
= \beta_{\eta} \lambda X. \forall Y. r_{1 \rightarrow 0} X Y \Rightarrow (\text{admin}_{1 \rightarrow 0} Y \lor \bot) \\
= \beta_{\eta} [\Box r (\text{admin} \lor \bot)] = \beta_{\eta} [\Box r (\text{admin} \lor \bot)] \\
= [\| \text{admin} \text{ says } \bot \|]
\]

We extend this mapping to logic \(ICL^B \) by adding a clause for the speaks-for connective \(\Rightarrow \):

\[
\| \Rightarrow \| = \lambda A, \lambda B, [\Box r (A \Rightarrow B)] = \lambda A_{1 \rightarrow 0}. \lambda B_{1 \rightarrow 0}. \lambda X. \forall Y. r_{1 \rightarrow 0} X Y \Rightarrow (A Y \Rightarrow B Y)
\]

For the translation of \(ICL^B \) we simply allow that the ICL connectives can be applied to principals. Our mapping \(\| \cdot \| \) needs not to be modified and is applicable as is.
The notion of validity for the terms we obtain after translations is chosen identical to before

\[\models_{\text{STT}} \] for problems in access control logic ICL.

Theorem 3 (Soundness of the Embeddings of ICL, ICL* and ICL^B in STT). Let \(s \in \text{ICL} \) (resp. \(s \in \text{ICL}^* \), \(s \in \text{ICL}^B \)) and let \(R \) and \(T \) be as before. If \(\{ R, T \} \models_{\text{STT}} \models_{\text{ICLvals}} \) then \(\models s \) in access control logic ICL (resp. ICL*, ICL^B).

Proof. If \(\{ R, T \} \models_{\text{STT}} \models_{\text{ICLvals}} \) then \(\models s \) by Theorem 2 since \(\models_{\text{ICLvals}} = \models_{\text{STT}} \). This implies that \(\models s \) for the sound and complete Hilbert System for S4 studied by Garg and Abadi [18]. By Theorem 1 we conclude that \(\models s \) in access control logic ICL (resp. ICL*, ICL^B).

Completeness of our embeddings of ICL, ICL* and ICL^B into STT can be shown by similar means [8]. This also implies soundness and completeness for the entailed embedding of intuitionistic logic into STT.

We can thus safely exploit our framework to map problems formulated in control logics ICL, ICL*, or ICL^B to problems in STT and we can apply the off the shelf higher-order theorem prover LEO-II (which itself cooperates with the first-order theorem prover E [25]) to solve them. Times are given in seconds.

Table 1 shows that LEO-II can effectively prove that the axioms unit, cuc and idem hold as expected in our embedding of ICL in STT. This provides additional evidence for the correctness of our approach. Example 1 can also be quickly solved by LEO-II. Problems unit^K, cuc^K, idem^K, and Ex1^K modify their counterparts by omitting the axioms R and T. Thus, they essentially test whether these problems can already be proven via a mapping to modal logic K instead of S4. LEO-II answers this questions positively for the cases of cuc^K, and Ex1^K.

Tables 2 and 3 extend this experiment to the other access control logics, axioms and examples presented in Section 3.

In a separate technical report [8] we present the concrete encoding or our embedding together with the problems unit, cuc, idem, and Ex1 in the new TPTP THF syntax [11], which is also the input syntax of LEO-II.

6 See Theorem 8 of Garg and Abadi [18] which is only given in the full version of the paper available from http://www.cs.cmu.edu/~dg/publications.html.
Table 2 Performance of LEO-II when applied to problems in access control logic ICL^\triangleright

<table>
<thead>
<tr>
<th>Name</th>
<th>Problem</th>
<th>LEO (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>refl</td>
<td>$(R,T) \vdash^\STT \rightarrow ICL\val (A \implies A)$</td>
<td>0.052</td>
</tr>
<tr>
<td>trans</td>
<td>$(R,T) \vdash^\STT \rightarrow ICL\val (A \implies B) \triangleright (B \implies C) \triangleright (A \implies C)$</td>
<td>0.105</td>
</tr>
<tr>
<td>sp.-for</td>
<td>$(R,T) \vdash^\STT \rightarrow ICL\val (A \implies B) \triangleright (A \text{ says s}) \triangleright (B \text{ says s})$</td>
<td>0.062</td>
</tr>
<tr>
<td>handoff</td>
<td>$(R,T) \vdash^\STT \rightarrow ICL\val (B \text{ says } (A \implies B)) \triangleright (A \implies B)$</td>
<td>0.036</td>
</tr>
<tr>
<td>Ex2</td>
<td>$(R,T,| ICL\val (2.1)|,| ICL\val (2.4)|) \vdash^\STT \rightarrow ICL\val (2.5)$</td>
<td>0.698</td>
</tr>
</tbody>
</table>

Table 3 Performance of LEO-II when applied to problems in access control logic ICL^\triangleright

<table>
<thead>
<tr>
<th>Name</th>
<th>Problem</th>
<th>LEO (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>trust</td>
<td>$(R,T) \vdash^\STT \rightarrow ICL\val (\bot \text{ says s}) \triangleright s$</td>
<td>0.049</td>
</tr>
<tr>
<td>untrust</td>
<td>$(R,T,| ICL\val (\bot \equiv \top)|) \vdash^\STT \rightarrow ICL\val (\bot \equiv \top)$</td>
<td>0.053</td>
</tr>
<tr>
<td>cuc'</td>
<td>$(R,T) \vdash^\STT \rightarrow ICL\val ((A \triangleright B) \text{ says s}) \triangleright (A \text{ says s}) \triangleright (B \text{ says s})$</td>
<td>0.131</td>
</tr>
<tr>
<td>Ex3</td>
<td>$(R,T,| ICL\val (3.1)|,| ICL\val (3.4)|) \vdash^\STT \rightarrow ICL\val (3.4)$</td>
<td>0.076</td>
</tr>
<tr>
<td>trustK</td>
<td>$(| ICL\val (\bot \equiv \top)|) \vdash^\STT \rightarrow ICL\val (\bot \equiv \top)$</td>
<td>0.041</td>
</tr>
<tr>
<td>untrustK</td>
<td>$(| ICL\val (\bot \equiv \top)|) \vdash^\STT \rightarrow ICL\val (\bot \equiv \top)$</td>
<td>0.041</td>
</tr>
<tr>
<td>cucK</td>
<td>$(| ICL\val (\bot \equiv \top)|) \vdash^\STT \rightarrow ICL\val (\bot \equiv \top)$</td>
<td>0.041</td>
</tr>
<tr>
<td>Ex3K</td>
<td>$(| ICL\val (3.1)|,| ICL\val (3.4)|) \vdash^\STT \rightarrow ICL\val (3.4)$</td>
<td>0.076</td>
</tr>
</tbody>
</table>

6 Conclusion and Future Work

We have outlined a framework for the automation of reasoning in and about different access control logics in simple type theory. Using our framework off the shelf higher-order theorem provers and proof assistants can be applied for the purpose. Our embedding of access control logics in simple type theory and a selection of example problems have been encoded in the new TPTP THF syntax and our higher-order theorem prover LEO-II has been applied to them yielding promising initial results. Our problem encodings have been submitted to the higher-order TPTP library [1] under development in the EU project THFPTP and are available there for comparison and competition with other TPTP compliant theorem provers such as TPS [7].

Recent experiments have shown that the scalability of our approach for reasoning within access control logics still poses a challenge to LEO-II. However, more promising is the application of LEO-II to meta-properties of access control logics analogous to Example 4 and its use for the exploration of new access control logics.

Acknowledgments: Catalin Hritcu inspired this work and pointed to the paper by Garg and Abadi. Chad Brown, Larry Paulson, and Claus-Peter Wirth detected some problems and typos in an earlier version of this paper. Also Deepak Garg provided very valuable feedback to this work.
References