TRIPARTITE CONCURRENT SIGNATURES

Willy Susilo and Yi Mu

Centre for Information Security Research

School of Information Technology and Computer Science
University of Wollongong

Wollongong 2522, Australia

Email: {wsusilo, ymu}@uow.edu.au

Abstract:

Fair exchange in digital signatures has been considered as a
fundamental problem in cryptography. The notion of concurrent
signatures was introduced in the seminal paper of Chen, Kudla
and Paterson in Eurocrypt 2004 Chen et al., 2004. In this paper,
we partially solve an open problem proposed in Chen et al.,
2004. We extend the notion of two party concurrent signatures
to tripartite concurrent signature schemes. In tripartite
concurrent signatures, three parties can exchange their
signatures in such a way that their signatures will be binding
concurrently. We present a model of tripartite concurrent
signatures together with a concrete scheme based on bilinear
pairings. It was noted in Chen etal., 2004 that extending
concurrent signatures to a multi-party scheme, where there are
three or more participants, cannot be achieved by trivially
modifying their construction in Chen et al., 2004.

Key words: Tripartite Concurrent Signatures, Multi-party Fair Exchange.

426 Willy Susilo and Yi Mu

1. INTRODUCTION

Fair exchange in digital signatures has been considered as a fundamental
problem in cryptography. Fair exchange is a necessary feature in many
applications for electronic commerce. Typical applications include contract
signing where two parties need to exchange their signature on a contract.

Two party fair exchange has been studied extensively in the literature. In
general, the method can be broadly divided into two types, namely with or
without a trusted party TTP. It was believed that fair exchange without a
TTP is not practical, since it requires a large number of communication
rounds, until the recent work of Chen, Kudla and Paterson in Chen et al.,
2004 that shows a weaker version of two party fair exchange can be done
efficiently without any involvement of a TTP. In concurrent signatures, two
parties can produce two signatures in such a way that from any third party’s
point of view, both signatures are ambiguous. However, after additional
information, called the keystone, is released by one of the parties, both
signatures are binding concurrently. It was noted in Chen et al., 2004 that
this type of signature scheme falls just short of providing a full solution to
the problem of fair exchange of signatures. In the same paper, they
questioned the existence of multi party concurrent signatures. They noted
that if multi party concurrent signatures can be constructed and modeled
correctly, this will move closer to the full solution of multi party fair
exchange. They also mentioned that their scheme cannot be trivially
extended to include multiple matching signers, since the fairness of the
scheme will not be achieved.

Our Contribution

In this paper, we present a novel model of tripartite concurrent signatures
that allows three parties to exchange their signatures in a fair way. Our
model guarantees fairness as in the seminal paper of Chen et al., 2004. We
also provide a concrete scheme that satisfies our model, based on bilinear
pairings. We provide a set of security analysis for our concrete scheme.

1.1 Related Work

In Rivest et al., 2001, the notion of ring signatures was formalized and an
efficient scheme based on RSA was proposed. This signature can be used to
convince any third party that one of the people in the group (who know the
trapdoor information) has authenticated the message on behalf of the group.

Tripartite Concurrent Signatures 427

The authentication provides signer ambiguity, in the sense that no one can
identify who has actually signed the message.

Designated Verifier Proofs were proposed in Jakobsson et al., 1996. The
idea is to allow signatures to convince only the intended recipient, who is
assumed to have a public-key. As noted in Rivest et al., 2001, ring signature
schemes can be used to provide this mechanism by joining the verifier in the
ring. However, it might not be practical in the real life since the verifier
might not have any public key setup. In Desmedt, 2003, Desmedt raised the
problem of generalizing the designated verifier signature concept to a multi
designated verifier scheme. This question was answered affirmatively in
Laguillaumie and Vergnaud, 2004, where a construction of multi designated
verifiers signature scheme was proposed.

2. PRELIMINARIES

2.1 Basic concepts on Bilinear Pairings

Let G,, G, be cyclic additive groups generated by F, P, , respectively,
whose order are a prime ¢. Let G,, be a cyclic multiplicative group with the
same order g. We assume there is an isomorphism ¥ :G, — G, such
that ¥(P)=P . Let é:G xG, > G, be a bilinear mapping with the
following properties:

1. Bilinearity: é(aP,bQ)=¢é(P,Q)"forall Pe G,,Q€ G,,a,be Z, .

2. Non-degeneracy: There exists Pe G,,Q € G, such thate(P,Q) #1.

3. Computability: There exists an efficient algorithm to compute

e(P,Q)forallPe G Q€ G,.

For simplicity, hereafter, we set G, =G, and F, = P,. We note that our
scheme can be easily modified for a general case, when G, # G, .

Bilinear pairing instance generator is defined as a probabilistic
polynomial time algorithm ZG that takes as input a security parameter £ and
returns a uniformly random tuple param = (p,G,,G,,,é,P) of bilinear
parameters, including a prime number p of size /, a cyclic additive group G,
of order ¢, a multiplicative group G,, of order ¢, a bilinear map
€: G, XG, > G,, and a generator P of G,. For a group G of prime order,
we denote the set G = G \ {O} where O is the identity element of the group.

428 Willy Susilo and Yi Mu

2.2 Complexity Assumptions
Definition 1. Computational Diffie-Hellman (CDH) Problem.

Given two randomly chosenaP,bPe G,, for unknowna,be Z , compute
Z=abP.
Definition 2. Computational Diffie-Hellman (CDH) Assumption.

If1G is a CDH parameter generator, the advantage Adv;;(A) that an
algorithm A has in solving the CDH problem is defined to be the probability
that the algorithm A outputs Z = abP on inputs, where (G,,G,,,€) is the
output of LG for sufficiently large security parameter (, P is a random
generator of G, and a,b are random elements of Z .. The CDH assumption is
that Adv ;;(A) is negligible for all efficient algorithms A.

2.3 Signature of Knowledge

The first signature based on proof of knowledge (SPK) was proposed in
Camenisch, 1998 ; Camenisch, 1997. We will use the following definition
of SPK from Camenisch, 1998.

Let g be a large prime and p=2g+1 be also a prime. Let G be a finite
cyclic group of prime order p. Let g be a generator of Z; such that
computing discrete logarithms of any group elements (apart from the identity
element) with respect to one of the generators is infeasible. Let
H :{0,1}" — {0,1}" denote a strong collision-resistant hash function.
Definition 3. 4 pair(c,s)e {0,1}'xZ , satisfying c=H (g||y||g¥|Im) is a
signature based on proof of knowledge of discrete logarithm of a group
element y to the base g of the message me {0,1} and is denoted by
SPK{o:y=g%}(m).

A SPK{x:y=g”}(m) can only be computed if the value (secret key)
a =log,(y) is known. This is also known as a non-interactive proof of the
knowledge < .

Definition 4. A4 pair (c,s) satisfying c=H(h|glz|p||h’z°||g’y |lm) is a
signature of equality of the discrete logarithm problem of the group element
z with respect to the base h and the discrete logarithm of the group element y
with respect to the base g for the message m. It is denoted by
SPKEQ{ct: y=g" nz=h"}(m).

This signature of equality can be seen as two parallel signatures of
knowledge SPK{c:y=g“}(m) and SPK{cx:z=h"}(m) , where the
exponent for the commitment, challenge and response are the same. It is
straightforward to see that this signature of equaiity can be extended to show

Tripartite Concurrent Signatures 429

the equality of n parallel signatures of knowledge SPK using the same
technique. This technique can be applied to elliptic curve domain. For
completeness, we illustrate the technique as follows.

Definition 5. 4 pair (c,s) satisfying c=H(P||Q||sP+cQ||m) is a signature
based on proof of knowledge of elliptic curve discrete logarithm of a group
element Q to the base P of the message me {0,1}" and is denoted by
ECSPK{x:Q = aP}(m).

We note that ECSPK {cx: Q = aP}(m) can only be computed iff the value
of a, where O=aP, is known. It can be computed as follows. Firstly, select a
random z€ Z; and compute c=H(P||Q||zP|m), and then, compute
s =z —ca(mod q) . Using the same technique, the following definition can
be derived.

Definition 6. 4 pair (c,s) satisfying c=H(U]|P||S]| Q||sU+cS||sP+cQ||m) is a
signature of equality of the elliptic curve discrete logarithm problem of the
group element S with respect to the base U and the discrete logarithm of the
group element Q with respect to the base P for the message m. It is denoted

by ECSPKEQ : {a: Q= aP A S = aU}(m).

3. FORMAL DEFINITIONS

3.1 Tripartite Concurrent Signature Algorithms

In this section, we provide a formal definition of a tripartite concurrent
signature scheme. In our system, the three participants are polynomially
bounded in the security parameter £.

Definition 7. 4 tripartite concurrent signature scheme is a digital signature
scheme that consists of the following algorithms.
e SETUP: 4 probabilistic algorithm that on input a security parameter
£, outputs descriptions of the set of participants U, the message space
M, the signature space M, the keystone space K, the keystone fix
space F and a function KGEN : KC — F .The algorithm also outputs
the public parameters param, together with all public keys of the
participants {P} , where each participant retaining their private
keys;.
e ASIGN: A4 probabilistic algorithm that on inputs
(m, [, PP, R>s;), where f € Fome M. P,,P, and T, are the
participants’ public keys and s, is the associated secret key for
public keyP,, outputs an ambiguous signature o € S on m.

430 Willy Susilo and Yi Mu

e AVERIFY: 4 deterministic algorithm that on inputs
(m,f,a,Pl.,Pj,Pk), where f€F,me M. P,P, and T, are the
participants’ public keys and o € S, outputs accept or reject.

e RELEASE: 4 deterministic algorithm that accepts [€ F and a set
of valid signatures {0,,0 ,,0,} for message{m,,m ,m;} and outputs
the correct k € K used in the f = KGEN(k) function, together
with some necessary information, info, to confirm the published
signatures.

e PROOF-VERIFY: A deterministic algorithm that accepts a
keystonek € IC, a keystone fix f € F, some required information
produced by the RELEASE algorithm, info. This algorithm verifies
the correctness of the keystone together with info. If they are correct,
then output accept. Otherwise, output reject.

e VERIFY: 4 deterministic algorithm that accepts (f ,/:T,U) and some
necessary information produced by the RELEASE algorithm, info,
and executes PROOF-VERIFY (%, f,info) and AVERIFY
(m, f,0,,P,P,,R) algorithm, foru € (i, j,k), to produce accept
or reject, respectively.

o DENY: A4 probabilistic algorithm that accepts (m, f,0,,0,,
'PI.,'Pj,Pk,si)where me M, fe F, s, is the associated secret key for
P and 0,,0, €S are signatures on m, and tests whether both

signatures are valid, i.e. pass AVERIFY test, and confirm that one of

them is a forgery. If forgery happens, then output accept. Otherwise,
output reject.

3.2 Tripartite Concurrent Signature Protocol

We will describe a tripartite concurrent signature protocol among three
parties, Alice, Bob and Charlie (or 4, B and C, respectively). One of the
three parties needs to create a keystone and send the first ambiguous
signature to the other two parties. We call this party the initial signer. Then,
another party will respond to this initial signature by creating another
ambiguous signature with the same keystone fix. We call the second party as
a first matching signer. Finally, the third party will respond to the first two
signatures by creating his own ambiguous signature. We call this party a
second matching party. Without losing generality, we assume A to be the
initial singer, B the first matching signer and C the second matching signer.
From here on, we will use subscripts 4, B and C to describe initial signer 4,

Tripartite Concurrent Signatures 431

first matching signer B and second matching signer C. The signature works
as follows.

A, B and C run SETUP algorithm to determine the public parameters of
the scheme. We assume that participants i’s secret and public keys are
indicated by P and s, , respectively, fori € (4, B,C) . Hence, 4’s public key
is P, and her secret key is s ,and so forth.

1. A picks random keystone & € K and computes f=KGEN (lé) A
takes her own public key P,, together with the other parties” public
key, P, F. and picks a messagem, € M to sign. 4 then computes
her ambiguous signatures as o, = ASIGN(m ,, f,P,.P,,P-,s,)
and sends this to B and C.

2. Upon receiving A’s ambiguous signatureo,, B and C verifies the
signature by testing whether AVERIFY (m, f,0,,P,, P, F.) =
accept holds with equality. If not, B and C abort. Otherwise, B
picks a message m, € M to sign and computes his ambiguous
signature o, = ASIGN(my, f,P;,P,,P-,s;) using the same
keystone fix / € F and sends this to 4 and C.

3. Upon receiving B’s ambiguous signatureo,, 4 and C verifies the
signature by testing whether AVERIFY (m,, f,0,,5,,P,,F.) =
accept holds with equality. If not, 4 and C abort. Otherwise, C
picks a message m. € M to sign and computes his ambiguous
signature o, = ASIGN(m,, f,P.,P,,P;,5.) using the same
keystone fix / € F and sends this to 4 and B.

4. Upon receiving C’s ambiguous signature o, 4 and B verifies the
signature by testing whether AVERIFY (m,., f,0.,F-,P,,P;) =
accept holds with equality. If not, 4 and B abort. Otherwise, 4
executes VERIFY algorithm to release the keystone k (together with
several other confirmation messages, info, whenever necessary) to
B and C, and all signatures are binding concurrently.

Any third party can be convinced with the authenticity of the signatures by
executing VERIFY algorithm.

33 Security Requirements

As the original model of concurrent signatures in Chen et al., 2004, we
require a tripartite concurrent signature to satisfy correctness, unforgeability,
ambiguity and fairness. Intuitively, these notions are described as follows.

432 Willy Susilo and Yi Mu

e (Correctness: If a signature ¢ has been generated correctly by
invoking ASIGN algorithm on a messagem € M, then AVERIFY
algorithm will return accept with an overwhelming probability,
given a signature 6 on m. Moreover, after the keystone k € IC is
released, then the output of VERIFY algorithm will be accept with
an overwhelming probability.

e Unjorgeability: There are two different cases that we need to consider.
Case 1) When an adversary A does not have any knowledge of the
respective secret key s;, then no valid signature that will pass the
AVERIFY algorithm can be produced. Otherwise, one of the
underlying hard problems can be solved by using this adversary’s
capability. Case 2) Any party cannot frame the other party that he/she
has indeed signed message. We require that although both signatures
are ambiguous, any party who would like to frame (or cheat) the
others will not be able to produce a valid keystone with an
overwhelming probability.

e Ambiguity: We require that given the two ambiguous signatures, any
adversary will not be able to distinguish who was the actual signer of
the signatures before the keystone is released.

e Fairness: We require that any valid ambiguous signatures generated
using the same keystone will all become binding affer the keystone is
released. Hence, a matching signer cannot be left in a position where
a keystone binds his signature to him whilst the initial signer’s
signature is not binding to her. Additionally, we also require that only
the party who generates a keystone can use to create a binding
signature. We do not require that the matching signers will definitely
receive the necessary keystone.

Definition 8 A4 tripartite concurrent signature scheme is secure if it is
existentially unforgeable under a chosen message attack, ambiguous and

Jfair.

4. A CONCRETE TRIPARTITE CONCURRENT SIGNATURE
SCHEME

A tripartite concurrent signature scheme is defined by the following
algorithms. Our scheme is developed using the technique proposed in

Tripartite Concurrent Signatures 433

Laguillaumie and Vergnaud, 2004. In the following, we denote the
participants by U, ,ie {4,B,C} for convenience and clarify of the presentation.

SETUP: On input security parameter ¢, the algorithm selects a
uniformly random tuple param = (p,G,,G,,,é,P) of bilinear
parameters, including a prime number g of size £, a cyclic additive
group G, of order g, a multiplicative group G,, of order g, a
bilinear map é:G, XG, = G,, and a generator P of G, . The
algorithm also selects a secret key s €& Z; and computes the
associated public key P, =sP, for a random generator P€ G, .
The algorithm also publishes two cryptographic hash function
H,:{0,1}' > G, and H,:{0,1}' - Z; . Each wuser Ue U,
i€ {4,B,C}, selects his/her secret key s; and publishes his/her
public key P =s,P . At the end of the algorithm, the parameter
param =(p,G,,G,,,é,P) is published, together with the public
key P, and public key of the participants P,,P,, 7. . The algorithm
also sets M= F =K =Z . The KGEN(:) function is defined to be
Hi(").
ASIGN: The algorithm accepts (m, f,P,P,F,,s;) as input,
where P = s, P, for s; isU, ’s secret key, Pj and P, are public keys
published by U, and U, , me M and feF, and performs the
following.

- Select arandomr e Z;.

- Compute M=Hy(ml||f)

- Compute Q, = s,.'l(M—r(Pj +7F,))andQ, =rP

- Output o =(0,,0,) as the signature on m.
AVERIFY: The algorithm accepts (m, f,0,P,,P,F,) , foro=
(0,,0,) , meM, feF, and verifies whether &(Q,,F)
&(0,, P, +F)=eé(Hy(m|| f),P)holds. If it does not hold, then
output reject. Otherwise, output accept. .
RELEASE: This algorithm accepts a keystone k € K together with
a valid set of signatures {(m,,(Q;',05)), (ms(0F,0)),
(me,(QF ,05))} and performs the following. Hereafter, we abuse
the notation 0, = (Q],(0;) to indicate a signature that is produced
byU,. Since 0,0, € G,, where G, is an additive group, then this
notation is clear from its context.

We note that each (m,,(Q;, 0;)) will pass the AVERIFY algorithm.

434

Willy Susilo and Yi Mu

- Computes O, = 5,0Jand Q, = s5,0% , where Q¥ denotes 0, that
was generated by # using ASIGN algorithm (and therefore, it
implies that AVERIFY(m,, f,0,,7,P,F,)= accept holds
with equality, for o, = (Q;,0,)).

- Produces the following signatures of knowledge.

I'=ECSPKEQ{c: O, = a0; A Q, =aQ]}(€) ,

- Outputs (f,/é,Qij,Qik’F) , where ke K and Hl(f):/€ holds.
Notice that fis only known by the initial signer, and hence, this
algorithm can only be performed correctly by the initial signer.

PROOF-VERIFY: In the following description, the initial signer is

denoted by U, . This algorithm accepts and verifies whether

I'=ECSPKEQ{: O, = aQi AQ, = aQ]}(€) holds. If it does

not hold, then output reject. Then, it verifies whether the following

equations i

&0/, P)eQ;, P)e(Qy), F)=é(M,P)
&(0), ROy, PYE(05, P)=é(M, P)

hold with equality. If it does not hold, then output reject. Finally,

verify whether f=KGEN (lé) holds. If not, output reject.

Otherwise, output accept.

VERIFY: The algorithm accepts (m, f,k, P.P.F, 0,5 Q> 1) , for

0=(0,,0,),me M, f e F,ke K, and performs the following

verification steps.)

- test whether H (f)=k: holds. If not, then output reject.

- execute PROOF-VERIFY. If not hold, then output reject.

- execute AVERIFY with parameter (m, £, 0,,F,, P,, B,) for
the three message-signature pairs, ue {i, j, k}. The output of
VERIFY is the output of AVERIFY algorithm.

DENY: This algorithm accepts (m, f,0,,0,,F,P,F,,s;), where

me M, fe F, are signatures on m, u = {1, 2}, s;isl,’s secret key

associated with the public key 7 (which implies P =s,P) and

P, F, are the public keys of U, U, , respectively. The algorithm

performs the following.

- Test whether AVERIFY accept (m, f,0,,P,P,F), foru=
{1, 2}. If it does not hold, then terminate the algorithm and
output reject.

- Computed, =5,0, — M +Pfor M =H,(m| f).

Tripartite Concurrent Signatures 435

- Perform the following verification
((0,, P, + B)&(S,, P)=&(P, P))
for both signatures 0,, 0, .
- If the result of the above verification for either o, or 0, is true,
return accept with &, as the proof. Otherwise, return reject.

Correctness.
The correctness of the AVERIFY algorithm is justified as follows.

4.1

e(Hy(M || f), P)=&(Q,,P)e(Q,, P, +)
= &(s; (M —r(P,+R)), R)é(rP, P, +)
= &M —r(P,+F),P)e(r(P,+F,),P)
= &M —r(P,+F)+r(P,+F),P)
= ée(M,P)
e(Hy(M || f),P) ' o

Il

Security Analysis

Lemma 1. If a participant A has signed a message m to generate o,
both B and C will be convinced with the authenticity of the signature,
but no other third party will.

Proof. When a signature o , = (Q,,0,) is generated, firstly either B
and C needs to execute the AVERIFY algorithm. If the signature
passes this test, then B and C will believe that his signature was
indeed generated by A4, because they have not colluded to generate
this signature. We note that no other third party can be convinced with
the authenticity of this signature, since if B and C collude, they can
collaboratively compute Ql/ =rP, Qz’ =(s;+s.)"(M—rP,), for
a randomr € Z; , which is valid and indistinguishable signature from
any third party’s point of view. Hence, the signature cannot be used to
convince any other third party other than B and C. o
Theorem 1. The DENY algorithm is correct and sound. This
algorithm is used to protect a participant against a collusion of two
malicious participants.

The proof of this theorem is shown in terms of the following lemmas.
Lemma 2. Any two participants can collude and frame another
participant that he has signed a message.

Proof. To show the correctness of the DENY algorithm, we need to
show a successful attack that is launched by a conspiracy of two
participants to frame the other participant. Without losing generality,

436

Willy Susilo and Yi Mu

we assume B will conspire with C to frame 4, i.e. to accuse that 4 had
signed a message that he has not signed. The attack is as follows.

- Band C collaboratively perform the following.
e Select arandom 7 € Z; .
e Compute Qll =P
Q," = (s +5¢) (M —FP,) for M = Hy(m||/)
- Output (Ql/, Qzl) as a signature on m.

One can verify that the signature (QII,QZI) will pass the AVERIFY
algorithm, due to the following

&(Hy(m |), P)=8(Q,, PNEQ, , P, +)
= &(PP, P)é((s5 +5c) (M —7P), P, +F.)
= ¢é(FP,P,)e(M —7P,,P)
= é(rP,, P)e(M —FP,,P)
=e(FP,+ M —7#P,P)
=e(M,P)
=e(H,(m| f),P)

Lemma 3. Any collusion attack can be prevented by performing the
DENY algorithm.

Proof. As illustrated in Lemma 2, a valid signature (QII,QZI) can be
generated by a collusion of two participants. The signature will be in
one of the following forms.

o (7P,(s +Sc)_l(M_f’PA))-

o (=FP,(sz+ SC)_'(M—i— FP,))-
We denote the above signatures as 0,and o,. We can easily verify
that both signatures will pass the AVERIFY algorithm. Now, we shall

demonstrate that 4 can provide a proof that a forgery has happened,

by performing the DENY algorithm. Basically, the algorithm will
compute following.

- Compute 6, = sAQl' -M+P
- We note that the value of , will be one of the following.
6=FP,—M+Por 6=P—7FP,—M
depending on the forged signature above.

When the conspiracy happens, one of the following tests will return
true.

Tripartite Concurrent Signatures 437

(&(Q,, Py + Fe)é(6,, P))=eé(P, P)
for o, andvaz. This is due to
e(P,P)=(&(0,, Py +)é(6,,P))
= (é((sy +) (M —FP,), P, + F.)e(FP, — M + P, P))
=(e(M —7P,,P)e(FP,— M + P, P))
= (&(P,P))
e(P,P)=(&(Q,, P + T)é(6,, P))
= (&((s5+) (M +7P,), P, + T.)é(P — #P, — M, P))
=(e(M +7P,,P)é(P—#P,— M, P))
= (&(P,P))
We note that if the signature is not forged (i.e. generated by 4), then
the above verification will not return true. Hence, the DENY
algorithm will return true iff forgery has happened due to collusion
of two participants. m|

Theorem 2. (Ambiguity) Before the keystone is released using the
RELEASE algorithm, both signature are ambiguous.

Proof. As shown in the proof of Lemma 2, a collusion of two
participants can always produce a set of signatures that will pass the
verification AVERIFY algorithm. We will illustrate this attack as
follows. Without losing generality, we assume A4 colludes with C.
Firstly, 4 produces (Q/', Q2)by herself, and then collaboratively with
C, they can produce (Ql ,Q2)and claim that this signature was
indeed signed by B. Finally, C can produce (O ,05). We note that
all the signatures are produced using a legitimate ASIGN algorithm.
From any third party’s point of view, these signatures are
indistinguishable from a set of signatures that are genuinely created
by the three participants. In this scenario, before the keystone is
released using the RELEASE algorithm, B can always invoke DENY
algorithm at any time to deny that he has not signed the message.
Hence, the signatures are ambiguous from any third party’s point of
view. We also note that 4 and C cannot collude and frame that B has
signed a message that he has not signed, as 4 cannot invoke the
RELEASE algorithm correctly since (QIBI,Qf I) are not in the
“correct” form, i.e. (s, ' (M —r(P,+F.)),rP).

Lemma 4. When the output of VERIFY is accept, then any third
party can be sure who has generated the signature.

438

Willy Susilo and Yi Mu

Proof. We note that VERIFY algorithm will test three different
components. The first component is to verify whether the keystone
k is generated correctly, using the KGEN function. The second
verification is to make sure that the published signatures are in the
correct form. This is guaranteed with the following test

&(Q/, P)e(Q;, P)ée(Q;, R)= (M, P)

&0, BIEQ,, P)Q;, P))=&(M, P)
We note that the above tests will be satisfied, iff O, = 5,0/ and
Q,, = 5,05 hold. Finally, the last verification will confirm that the
signatures were indeed generated correctly by each participant, so
that they will pass the verification test. Hence, any third party can be
convinced with the authenticity of the signature.

Theorem 3. (Fairness) Any signature that is generated with the same
keystone will be binding concurrently when the keystone is released.

Proof. Suppose any of the participants tries to cheat by signing more
than one signature. By testing the VERIFY algorithm, all the
signatures will be binding concurrently. This way, the fairness is
guaranteed. Moreover, as illustrated in the proof of Theorem 2, two
colluding participants cannot frame another participant by generating
a forged signature and later on confirm it as if it was signed by the
framed participant. This is due to the inability of the initial signer to
execute the RELEASE algorithm correctly.

Theorem 4. (Unforgeability) The scheme presented in this section is
existentially enforceable under a chosen message attack in the
random oracle model, assuming the hardness of the Computational
Diffie-Hellman problem.

Proof. We use the notion of existential unforgeability against a

chosen message attack from Chen et al., 2004. We consider an EF-

CMA adversary A that outputs an existential forgery (M ,o") with

probability SuccéF_CM A (k) within the time . We denote the number

of queries from the random oracle H by ¢ and from the signing
oracle X by 4= . For simplicity, we show a simulation where

A corrupts one of the receiver B or C (but not both of them) to

produce a forgery for the initial signer 4. The game between the

adversary A and the challenger C is defined as follows.

- SETUP: Cruns SETUP to a given security parameter £ to obtain
descriptions of U, M,S,K,F and KGEN: K — F . In addition,
SETUP also generates the public key of each participant
P — s, P, fori € {4,B,C}. The associated secret valuess,’s

Tripartite Concurrent Signatures 439

are delivered securely to participant{,,i € {4, B,C} . The public
keys {P,,F,,P.} are published together with the system
parameters. Let T = xP and W = xyP be the CDH challenge
and kept secret by C at this stage.

- KGen Queries: A can request that C selects a keystone kek
that it used to generate a keystone fix f € F , by invoking
f =KGEN (k) A can also select his own keystone & € K and
the compute the keystone fix by himself by running the
KGEN (k) function.

- KReveal Queries: A can request the challenger C to reveal the
keystone k that is used to produce a keystone fix f € F in a
previous KGen Query. If f was not asked before, then C outputs
invalid. Otherwise, Creturns k£ € KC .

- Hash Queries: A can query the random oracle H at any time.
When (m, f) are requested, firstly C checks his H-list. If it exists,
then returns the value from the list. Otherwise, C selects a
random & € Z; at random and computes M = AV . The value (m,
1. h, M) is recorded in the H-list and A/ is returned to .A.

- ASIGN Queries: A can request an ambiguous signature for any
input of the form (m,f,P,,P;,R-) for published values
(P,,P;,F.). Cchecks the H-list for the existence of m. If it does
not exist, then C calls the ASIGN algorithm to sign the message
as usual. However, if m exists, then C selects a,,r,7, € Z; at
random and sets @, =# —a,r, . Finally C sets O, =q,P and
0, =a,P, and stores (m, f,7,1Y). Return(Q,,0,) to A as a
valid signature.

- AVerify and Verify Queries: A cannot request an answer for
these queries since he can compute them for himself using
AVERIFY and VERIFY algorithms.

- Output: Eventually, A outputs a forgery (m*,Q:,Q;) and by
definition of the existential forgery, there is in the H-list a
quadruple (m", f",h",M") such that ® =(h")"'(Q; +10;)
=yP.

We note that the success probability of the attack is defined by

1 Haz+ 1Y
(2 AdVEF CMA %) < SuCCCDH([)

where { is the security parameter. The time to execute the attack is
defined byt <2(t+ gH + 24z + OMT, +4=T,,), where T, denotes
the time complexity to perform a scalar multiplication in G and 7,
denotes the time complexity to perform an exponentiation in G,,

440 Willy Susilo and Yi Mu

Solving two instances of this problem will lead us to a solution to the
CDH problem using the technique in Boneh et al., (2003). Hence, we
complete the proof. |
Theorem 5. Our tripartite concurrent signature scheme is secure in
the random ovacle model, assuming the hardness of the discrete

logarithm problem.

Proof. The proof can be derived from Theorems 1, 2, 3 and 4 and

Lemma 4.]
5. OPEN PROBLEMS

In this paper, we presented a tripartite concurrent signature scheme.
Using a similar idea, we can obtain a multi party concurrent signature, but
we have not defined the notion of fairness in that scenario. Hence, the open
problem left in this area is how to define a formal model for a multi party
concurrent signature scheme, where there are n parties involved (#>3).

REFERENCES

Abe et al., (2002) Abe, Masayuki, Ohkubo, Miyako, and Suzuki,
Koutarou (2002). 1-out-of-n Signatures from a Variety of Keys.
Asiacrypt 2002, LNCS 2501, pages 415-432.

Boneh et al., (2003) Boneh, Don, Gentry, Craig, Lynn, Ben, and
Shacham, Hovav (2003). Aggregate and verifiably encrypted
signatures from bilinear maps. Eurocrypt 2003 LNCS 2656, pages

416-432.

Camenisch, 1997 Camenisch, Jan (1997). Efficient and generalized
group signatures. Eurocrypt’97, LNCS 1233, pages 465-479.
Camenisch, 1998 Camenisch, Jan (1998). Group signature schemes
and payment systems based on the discrete logarithm problem.

PhD thesis, ETH Ziirich.

Chenet al., 2004 Chen, Liqun, Kudla, Caroline, and Paterson,
Kenneth G. (2004). Concurrent signatures. In Eurocrypt 2004,
LNCS 3027, pages 287-305.

Desmedt, 2003 Desmedt, Yvo (2003). Verifier-Designated Signatures.
Rump Session, Crypto 2003.

Tripartite Concurrent Signatures 441

Jakobsson et al., 1996Jakobsson, = Markus, Sako, Kazue, and
Impagliazzo, Russell (1996). Designated Verifier Proofs and Their
Applications. Eurocrypt’96, LNCS 1070, pages 143 — 154.

Laguillaumie and Vergnaud, 2004 Laguillaumie, Fabien and Vergnaud,
Damien (2004). Multi-Designated Verifiers Signatures. Sixth Intl
Conf on Inf and Comm Security (ICICS 2004).

Rivest et al., 2001 Rivest, Ronald L., Shamir, Adi, and Tauman, Yael
(2001). How to Leak a Secret. Asiacrypt 2001, LNCS 2248, pages
552 - 565.

