DATA MANAGEMENT IN GROUP
PURCHASING SYSTEM

Zongfeng Zou, Tao Yu
CIMS&Robot Center, Shanghai UniversityShanghai, China, Email:zfzou,tyu@mail.shu.edu.cn

Abstract: Introduces a method to solve group purchasing and Price Comparison System
framework. It stresses on data loading and data management including data
model, database, algorithm and buffer Data Structure. The framework offers a
efficient method for loading large and complex scientific databases.

Key words: Group purchasing, Price Comparison System, Data management

Modern group-companies are often made of many subsidiary companies.
Stocking centralization can economize much fund for its large-scale
purchasing action. Subordinate companies hope to choose the best provider
according to reliable data in most possible area. Advanced data in variety
units is massive amounts of data that must be post-processed and organized
to support provider evaluation actions. Increasing data volumes from all of
the companies challenge to state-of-the-art database system and data-loading
techniques. Price Comparison System consists of an algorithm for data
loading, data structure to support data integrity, and counterpoising system.
The system will do great benefit to group economy.

1. INTRODUCTION

With the development of technologies, purchase action research has
taken place great changes. Advanced data collection technologies can collect
many data. They have been built to contain the data and to be used as
valuable resources for economy analyses and other purpose. The
characteristics are reflected in several demands that must be addressed when
loading such data. Firstly, data loading speed must keep up with data

Please use the following format when citing this chapter:

Zou, Zongfeng, Yu, Tao, 2006, in International Federation for Information Processing
(IFIP), Volume 207, Knowledge Enterprise: Intelligent Strategies In Product Design,
Manufacturing, and Management, eds. K. Wang, Kovacs G., Wozny M., Fang M.,
(Boston: Springer), pp. 379-385.

380 Zongfeng Zou, Tao Yu

acquirement speed. Secondly, it must be possible to put to different database
tables from one source file. Thirdly, it often have to perform complex data
transformations and computations during the loading process. At last,
automatic error recovery is required during the lengthy data-loading process.

The Price Comparison System is a collaborative system among the
Shanghai Electric Group Co. Price Comparison is a multi-time, multi-item
category purchase recorder at the Shanghai Electric Group Co. located in all
area of Shanghai city. The purchase recorder consists of 18 kinds of
information and can give evaluation of providers. In contrast to traditional
purchases, all of the indent must be recorded in the system and examined
and approved by experts of group purchase department. System allows users
to statistically analyze the price and trend contributes to the data of the
whole group.

2. DATA LOADING REQUIREMENT AND METHOD

The large data-collection rates and volumes noted in the previous part
give the necessity for a fast data repository loading process that is capable of
keeping up over time with the speed of data get. Much need contribute to the
difficulty of achieving this goal. Collected raw data and computed catalog
data are usually archived in a mass storage system that is separated from the
database server. The catalog data that should be transferred from the mass
storage system to load the database repository typically saturates the
available network bandwidth, introducing the network as the first bottleneck
to fast data loading.

Purchase action data encompasses information of many different types,
from different information level specifications to the purchase details of
goods. This variety of information is interleaved in the catalog data set that
is generated when the raw data is processed. During the data-loading process
the complex catalog data must be listed, the correct destination tables must
be identified, and the data must be loaded into multiple target tables in the
repository. Loading data into multiple tables is further complicated by the
presence of multiple relationships among tables. Relationships that must be
maintained by obey the primary and outer key constraints during the loading
process.

Additional operations are also performed during the data loading process.
These operations include transformations to convert data types and change
precision, validation to filter out errors, and calculation of values such as the
Hierarchical Triangular Mesh ID (HTMID). All such intensive operations
place an additional burden on the loading process. Finally, because data

Data Management in Group Purchasing System 381

loading is typically a lengthy process, a mechanism of automatic recovery
from errors is a basic requirement.

To solve the problems in building the repository, we designed framework,
called Price Comparison System, which is made up of (1) a logical network
to join the different data position of all of the companies. (2)an efficient
algorithm to perform bulk data loading, (3)an effective data structure to
maintain table relationships and allow proper error handling, (4)active
database and system tuning to achieve the best data-loading performance.
Using this framework we can bulk load data, insert data into multiple
database tables at the same time without locking and constraints, and recover
the loading process from errors. The Price Comparison System framework
has improved the ability of data loading.

3. THE PRICE COMPARISON SYSTEM
FRAMEWORK

3.1 Data Model and Price Comparison System Mission

The original data created by the company in the past are archived in mass
storage system. A program is arranged on the data to extract catalog data,
which includes a wide range of information. Typically, the catalog data
includes information on the user’s position, the amount they wanted, the
parameters described, the providers presented, the frames generated, and the
feedback written. The catalog information is first written to an ASCII file,
which is saved in the mass storage system and then uploaded to a repository
database. The format of the catalog file varies depending on the extraction
program used. Commonly, different aspects of the catalog information are
interleaved in the file. For example, a row of frame information is followed
by four rows of frame information, and a row of object information is
followed by four rows of finger information. Each row in the catalog data
file usually has a tag or a keyword that can be used to determine the
destination table in the database.

Oracle 10g is the best choice to host the data repository. The repository
database has been designed to store the catalog data and support data
analysis. Each table stores a unique aspect of the purchase information. For
example, metadata related to a purchase action such as company position,
state in use, and created time. Metadata related to the company such as
company id and attribute goes into the table company columns. Detailed
information related to purchase goods goes into the merchandise table.

382 Zongfeng Zou, Tao Yu

3.2 Data Loading Algorithm of Price Comparison
System

Data loading allows multiple operations to be inserted into a single area
and waiting for one database call, minimizing network communication and
disk I/0. It is straightforward to perform bulk loading to a single table. If the
data belonging to a child table is loaded before the corresponding parent
keys, a foreign key constraint is disarranged. To avoid this problem is to first
buffer the data into separate arrays designated for different tables, and then
to follow the parent-child relationship order when performing the bulk
inserts. The table-loading order is illustrated in Figure 1.

~ Catalog Data Set
L Step
Parent Array Child Array Cirandehild Array
i Step 2 / Step 3 ./ Step 4
Parent Table Child Table Grandchild Table
Loading order: Parent, Child, Grasdehild

Figure 1. Data Loading Order with Multiple Tables

Another difficulty in data loading is recoverability in a lengthy data-
loading process. The catalog data set to be loaded sometimes contains errors
such as missing and/or invalid values. The algorithm not only speeds up data
loading by a factor of 7 to 9, but also maintains the relationships of multiple
tables and enables the system to recover from errors during data loading. The
algorithm is introduced in Figure 2.

When any data array reaches array-size (Line 5), the batch row
procedure is called (Line 10) for each array based on the parent-child
relationship. The array for the parent table is processed first, followed by the
child tables. This processing sequence depends entirely on the data model.

Data Management in Group Purchasing System 383

Our approach does not cover circular parent-child relationships, as a good
database design does not have circular dependencies between tables.

Input: o series of inpuat data files
Custpud: popudated &amlmse tables
int wrrav-size * the size of an array %/
int batch-size M the size of a butels typically < array-size */
Procedure data_loading
(1} for cach dafa file {
(2} open the file
{3} for cach row {
(4) parse the row, do validation, transformation and
computation, and buffer it in a designated array based on the
destimntion table;
{S) if {any array.size = grray-size) {
{6) for cach arvay ordered by parent-child relationship {
£7) first_jdx = 07
§8) Tast i = anmy iz
first idx <= lase idx)

irst_idx, last idx)
(L)} & for cach anray +/
12) i 2 if reach array-size *f
(13) ¢ £ for cach row */
(14) } /* for each data file */ N
}’unc;i{o.gn batch_row (areay, destination_table, first_ids,
ast, idx
{18y while (st idx <o last ds) |
{16) prepare SQL. statement;
{17) add to batch;
41 8) i (batchesize reachexd) § 2 time Yo nsert */
{19) insert bateh into the destination table;
{20) i (successial insert) {
{21) firstidx o hatef-size;
{22) § elge { 7% if an error occurred skip that row */
€23) skip_one_row;
(24) rerumn (the pext_index);
(23) }
(26) § else i { first_idx == lagy idx) § /* array done */
(27) insert batch into the destination table;
(28) if (successful insort) {
(29) return (last_idx + 1);
(36 } else §/* i an error ocourred skip that row %/
(31} skip_one row;
(32) return (the,_nextindex):
{33}

(34) .
(35) § A while thers are more rows W process #7

Figure 2. data loading Algorithm

The data loading algorithm has been implemented using the JDBC core
APL In the best case, that is when the data set is error-free, the algorithm
will generate database calls and result in database I/Os. In the worst case, for
example primary key violations on every row caused by repeatedly loading
duplicate rows, data loading will deteriorate to a series of singleton insert
operations which make database calls and perform database 1/Os. This
behavior results from the algorithm breaking up the problematic batch,
skipping the error row, and repacking the batch to continue each time that an
error is encountered.

33 Buffer Data Structure
The interleaving of data for multiple target tables, combined with the

presence of multiple relationships among tables, relationships that must be
maintained by obeying with the primary and foreign key constraints during

384 Zongfeng Zou, Tao Yu

the loading process—makes bulk loading especially challenging. To manage
the crossing data and complex table relationships, and to improve quick
recovery when an error is detected during the data-loading process, an
effective data structure, array-set, is necessary.

The number of arrays in the array-set at a given time during data loading
depends on the degree to which the data in the catalog data set is interleaved.
As the input catalog data set is processed, the framework creates a new array
in array-set whenever it reads an input row targeted for a database table for
which no array is currently maintained. When any of the arrays in array-set
are fully moved, data loading finished. At the end of the data loading cycle,
the arrays in array-set are destroyed and their memory released. The
framework resumes reading the input catalog data and creates new arrays as
required to buffer the incoming table rows. In order to load the catalog data
items into different destination tables and keep the proper relationships,
array-set can buffer the data and execute the data loading in the order of
parent-child sequence.

34 Active Database and System Adjusting

In Price Comparison System framework, active database and system
adjusting are set to achieve the best configuration. The performance
adjusting is very important to achieve the fast loading of massive data
volumes required for repository. Since the Price Comparison System is a
multi-year continuous effort, the price repository must serve two purposes at
the same time. First, it must be a warehouse to store increasingly loaded data.
Second, it must act as a query engine to support economic analyzing
research. For example, query performance is necessary to create indices on
database tables. However, indices usually make data loading slower because
every insert requires an update of all index entries.

Allocating a smaller database data cache actually improves the data-
loading performance. Since a database writer needs to scan the entire data
cache when writing new data from data cache to disk, the reduced data cache
size minimizes the work that the database writer has to do each time . This
reduced cache configuration should be adjusted after the intensive data-
loading phase is entirely because a larger data cache often performs better
for user queries.

4. CONCLUSIONS

The Price Comparison System is a project to collect, archive, process,
and distribute trade data for economics collaborations. The repository being

Data Management in Group Purchasing System 385

built at Shanghai Electric Group Co. is to hold catalog data for the complex
provider analyzing. The first significant was to load the catalog data into the
repository database in a in time fashion. Data loading with array buffering is
a good method to accomplish the task. System framework consists of an
efficient algorithm for data loading, an effective data structure to support
data integrity and proper error handling during the loading process and
guidelines for database and system tuning. This framework can help to
decrease much of the loading time.

S. REFERENCES

1. Du Zhihui, Chenyu, Liupeng. Grid Computing. Tsinghua University Publishing Press. Apr
2002.

2. Gabrielle Allen, Thomas Dramlitsch, lan Foster, Nick Karonis, Matei Ripeanu, Ed Seidel,
Brian Toonen, Supporting Efficient Execution in Heterogeneous Distributed Computing
Environments with Cactus and Globus, Supercomputing 2001. [Winning Paper for Gordon
Bell Prize (Special Category)]

3. Donald McMullen, Randall Bramley, et al. The Xport Collaboratory for High-Brilliance
X-ray Crystallography, http://www.cs.indiana.edu/ngi/sc2000/index.html

4. http://www.iumsc.indiana.edu/

5. Y. Dora Cai, Ruth Aydt, Robert J. Brunner. ” Optimized Data Loading for aMulti-
Terabyte Sky Survey Repository”. National Center for Supercomputing Applications
(NCSA),Nov, 2005

6. S. Amer-yahia and S. Cluet. “A Declarative Approach to Optimize Bulk Loading into
Databases”. ACM Transactions on Database Systems, Vol. 29, Issue 2, June 2004,

7. G. Reese. Database Programming with JDBC and Java. O’Reilly. 2nd Edition, Aug. 2000.

