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Abstract: First, a multi-objective immune genetic algorithm integrating immune
algorithm and genetic algorithm for flexible job shop scheduling is designed.
Second, Markov chain is used to analyze quantitatively its convergence. Third,
a simulation experiment of the flexible job shop scheduling is carried out.
Running results show that the proposed algorithm can converge to the Pareto
frontier quickly and distribute evenly along the Pareto frontier.
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1. INTRODUCTION

Flexible job shop multi-objective scheduling problem (FJSP) is typical
NP hard, which is not easy to solve with a polynomial algorithm. Therefore,
evolutionary algorithms, such as genetic algorithm (GA) and immune
algorithm (IA), are the efficient procedures. Many literatures presented
different multi-objective optimization methods. But the theoretical analysis
of the algorithm itself is sparse. Those focusing on the subject mostly
concentrate on GA with binary encoding ™, while research on GA with
decimal encoding is little. Rudolph’s research 234 who is the most
contributing scientist, mainly focused on the effect of the elitist strategy on
the convergence. The convergence of the hybrid GA taking into more factors,
such as the immune technology, has not been discussed in the publicly
published literatures. Therefore, a multi-objective immune genetic algorithm
(MOIGA) for FJSP is presented and its performance is analyzed.
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2.  AMULTI-OBJECTIVE IMMUNE GENETIC
ALGORITHM FOR SCHEDULING

Let < P(t), <> be the non-dominated set of the set P(t), P(t) the set of the
population, Q(t) the Pareto set of P(t), and S; the sharing degree of the i"
chromosome when processed by the niche technology. The procedure of
MOIGA is as follows.

P(0) is randomly generated;

Q(0) is the set for Pareto set of P(0);

t=1;

repeat

if t>=T then end repeat;
FX)= XIS
get bacterin from P(t-1);
P(t) = generate(P(t-1));
crossover(P(t));
mutation(P(t));
vaccination(P(t));
If 3ae Q(t—l) and 3Ixe P(t) and f(x) < f(a) then
Q(t) «—x, P(t) «a;
else if <P(r),<>c Q(¢t-1) then
0(1)=0(r-1);
t=t+1;
end.

3. ANALYSIS OF THE CONVERGENCE

Now let us describe the proposed MOIGA in terms of Markov Chain. Let
£ be the finite state space and X (X € ) the individual. All populations
cover the whole state space G, in which a population represents a state. In
the operation-based encoding, encoding character set A is composed of the
job numbers. The number of the element C in the set A equals the total
number N of the jobs, i.e. C = N . Let the length of each chromosome be L,

then L = N xmax{n,}. If the population size P is given and finite, then the

dimension of 2 and G is finite and| G |=| £2|” . The evolutionary procedure

of GA is repeating, i.e. the population transfers from one state to another
state after the selection, crossover, mutation and vaccination operation.
According to [6], we know the process is a homogeneous Markov Chain
with a finite state space.

1)  The crossover operation
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MOIGA adopts linear order crossover operation. Let the transition
matrix determined by crossover operation be C =(c,)g.q » and ¢, the
probability from the state i to j after the crossover operation. Because one

1G]
state is transferred to another state at all events, there exists ch./ =1.
j=1
According to [6], we know the matrix C is random.
2) The mutation operation

The mutation of MOIGA adopts exchanging operation method. Let the

transition  matrix  determined by the mutation operation

be T =(Z,),gqe @nd ¢, the probability from the state i to j after the

mutation operation. Let the hamming distance between the state i and j
be H,, k=1, 2..., P. For example, in a FJSP problem with 3 jobs and 2
operations for each, its two states, i.e. the state i and j, are as follows:
s={(123321),(213123),(321123)}
s={(213321),(212133),(321321)}
Then the hamming distance between them is H, = H, =...= H, =2.
Each gene of a chromosome has the equal mutation probability p,,
(0< p,, <1). Therefore

- Hl L-H 1 : 2P NPxmx{n }-2P
3 :1_[(__19”, ) (-p)" =(—) pia-p)™" S0
- \C—1 N-1 "

According to [6], the matrix T is positive and random.
3) The vaccination operation
The vaccination of MOIGA is another mutation operation. Let the

transition matrix determined by the vaccination operation be T = (£, )¢
and ¢, the probability from the state i to j after the mutation operation. Each

chromosome has the equal vaccination probability p, ( 0<p, <1 ).

Therefore
»

P H, H;
W= H(—CP—LJ A=p)™ = H(Npi 1) (1= p,)" ™ 5 0

i=1 i=l
According to [6], the matrix T is positive and random. Therefore,
Z=TH is strictly positive.
4) The selection operation
Before selection, MOIGA adopts the elitist strategy, i.e. the Pareto
optimization solutions will enter into the next generation directly. Recall the

probability transition matrix of this operation as E = (e, ), and the K"

chromosome as 77, . Put the Pareto set of the current population in the front
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of the next generation population and recall them as 7,, 7, ,..., 7, . Therefore,

the state space size extends to | £2| times, i.e. |G |=| £2|"*". If there is at
least a chromosome in the set P(z+1) which can dominate one (or some) in
the set (), then replace it (or them). Therefore, the transition probability
from the state i to j is:

1 if dae Q(t)and Ixe P(t+1) and f(x) ~ f(a)

e, =41 if <P(t+1),<>c0(1)

U
0 else
Order the states with the same Pareto set as the original status and order
other states according to the order of the Pareto set. Therefore, the matrix E
is under-triangle matrix, the element in the matrix E is zero or one, there is
only a one in each row, and E;; is an identity matrix.

E

E2| EZZ
E=

T P R
According to [6], we know that the matrix E is a random matrix.
After pre-selection, roulette selection is used to select the outstanding
chromosomes to the next generation from the set P(¢) . Recall the transition

matrix of the selection operation as.§ = (s, ). and s, is the probability

from the state i toj. In the roulette selection, there exists

VACE
Sy = (X//

Accordmg to [6], we know that §'=(s,)e iS @ column allowable

random matrix and that CZS > 0 .After the elitist strategy, the state space
extends to | £2" times, the transition matrices of the crossover, the mutation

and the selection change into the matrices C*, T* and S, individually.
c V4 S
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Therefore, the transition probability matrix is as follows according to
the evolutionary process of MOIGA and the Chapman-Kolmogorov equation.

P =C*'Z'ES"*
[C VA E, )

| c z Ey En s
L C Z)| Egri Bary " Epapar s
[CZE, S l

CZE,S CZE,S

CZE,.,S CZE,.jS . CZE,S

CZE S CZE . S CZE . .
lef 2 el
Let
r 7 r b
CZE,,S CZE,,S

R= CZE,.,S w

CZE,.ZS- .- CZE,S- CZE,S

CZE, SJ CZE . S CZE .

|z lef 2 efjar
Because the product of CZS is positive, and Ej; is an identity matrix, it
can be concluded that P=CTE S is positive with the state space size

PO
of|Q| x|Q|". Then P’ [ ] )

RW

Hereinto, there is at least a nonzero in each row of the matrix R.

According to [6], those states without the inclusion of optimal chromosome
have zero probability in the limited distribution of Markov Chain; while the
limited distribution sum of those states with the optimal chromosome equals
to 1. Thus it can be seen that MOIGA can converge to the true Pareto
optimal set with the probability 1.

4. AN EXPERIMENT

To prove the performance of the proposed MOIGA, a practical
scheduling problem in an aeronautic company with two objectives to be
optimized, i.e. production time and production cost. The encoding method is
operation-based way. The experiment result is as follows: the two objectives
converge to the stable distribution with the evolutionary process (Fig 1). In



The Performance Analysis of a Multi-objective Immune Genetic 919
Algorithm for Flexible Job Shop Scheduling

figure 1, the Pareto frontier is shown with red asterisks and the convergence
and diversity are assured perfectly.

Figure I The printed Pareto frontier plot

5. CONCLUSION

The paper analyzed a multi-objective immune genetic algorithm and
proofed that it can converge to the Pareto optimization set with the
probability one. The running result of a practical problem shows the
effectiveness and efficiency of the proposed algorithm.
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