AN EFFECTIVE ALGORITHM OF SHORTEST
PATH PLANNING IN A STATIC ENVIRONMENT

Lingyu Sun', Xuemei Liu%, Ming Leng’

! Department of Computer Science, Jinggangshan College, Ji'an, China. Email:Imsly@263.net
2School of Mechanical & Electronic Engineering, Shandong Agricultural University, China
3School of Computer Engineering and Science,Shanghai University, Shanghai, China

Abstract: Path Planning is generating a collision-free path in an environment with
obstacles and optimizing it with respect to some criterion. Because of its
importance in robotics, the problem has attracted a considerable amount of
research interest. In this paper, we present an effective algorithm of shortest
path planning for planar mobile robot whose time complexity is O(4xn), n is
the geometric complexity of the static planar environment. The success of our
algorithm relies on exploiting both a tabu restriction and the greedy strategy of
the Dijkstra algorithm. Our experimental evaluations on four different test
cases show that our algorithm produces the shortest path very quickly.

Key words: path planning, greedy algorithm, Dijkstra algorithm

1. INTRODUCTION

During the last century, automation has become an extremely fast
growing phenomenon impacting almost all facets of everyday life. Recently,
robots have become a major part of this trend. Therefore, autonomously
navigating robots have become increasing important [1]. The path planning
problem is one of important problems in intelligent control of an
autonomous mobile robot. It uses a prior information about a given
environment and knowledge about robot motion capabilities to provide a
path to be executed between two points in the robot workspace. The path
planning problem is then an optimization problem where we want to find the
best path under a set of constraints. Classical approaches to solve the path

Please use the following format when citing this chapter:

Sun, Lingyu, Liu, Xuemei, Leng, Ming, 2006, in International Federation for Information
Processing (IFIP), Volume 207, Knowledge Enterprise: Intelligent Strategies In Product
Design, Manufacturing, and Management, eds. K. Wang, Kovacs G., Wozny M., Fang
M., (Boston: Springer), pp. 257-262.

258 Lingyu Sun, Xuemei Liu, Ming Leng

planning problems include Dijkstra algorithm [2], A* search algorithm [3]
and dynamic programming technique [4, 5].

The Dijkstra algorithm is an optimization algorithm that is mainly used
for determining the shortest path. The Dijkstra algorithm is an uninformed
search algorithm for finding shortest paths that relies purely on local path
cost and provides a shortest path from a start node to a goal node in a graph.
The A* search algorithm was developed by Hart et al. [6]. The algorithm
uses a heuristic function A(n) to estimate the cost of the lowest cost path
from a start node to a goal node plus the path cost g(n), and therefore the
search cost f{n)=g(n)+h(n). Using £, g, and A values, the 4* search algorithm
will be directed towards the goal and will find it in the shortest possible
route. The dynamic programming technique resorts to evaluating the
recurrence in a bottom-up manner, saving intermediate results that are used
later on to compute the desired solution. This technique applies to many
combinatorial optimization problems to derive efficient algorithms and is
also used to improve the time complexity of the brute-force methods [7].

In this paper, we present a Modified Dijkstra (MD) algorithm that is an
0(4xn)-time algorithm of shortest path planning for planar mobile robot in a
static environment. Our work is motivated by the greedy strategy of the
Dijkstra algorithm which consists of an iterative procedure that tries to find a
local optimal solution. Furthermore, we integrate our algorithm with tabu
search [8]. We test our algorithm on four test cases and our experiments
show that our algorithm produces the shortest path very quickly.

The rest of the paper is organized as follows. Section 2 provides the
problem formulation, describes the notation that is used throughout the paper.
Section 3 presents an effective algorithm of shortest path planning. The
proposed algorithm complexity is analyzed in section 4. Section 5
experimentally evaluates the algorithm.

2. PROBLEM FORMULATION

Our goal is to implement a shortest path planning system that uses the
MD algorithm for planar mobile robot in a static environment. First, we use
the traditional grid point representation to present a planar workspace for
analysis. We consider the workspace for the planar robot that is subdivided
into cells on a two-dimensional grid. A grid node which is located at a cell’s
centre-point is allocated to each cell as shown in Fig. 1(a). This method of
space mapping generates a set of discrete nodes that cover the entire
construction workspace domain, as shown in Fig. 1(b). Let MaxRow denote
the total row of the two-dimensional grid. Let MaxCol be denoted as the total
column of the two-dimensional grid. Naturally, the geometric complexity of

An Effective Algorithm of Shortest Path Planning in a Static 259
Environment

the planar environment, denoted by », is equal to MaxCol*MaxRow. Some
dark areas indicate the presence of some obstacles that labeled as Oy(x,y)
where x and y are the coordinates of the obstacle j. The robot is considered
as a punctual object and its position is given by R(x, y). Next, a trajectory of
the robot is composed of a set of the adjacent grid nodes which excludes the
grid node occupied by some obstacles. The path cost evaluation function F(p)
is the number of the adjacent grid nodes residing between the start and the
goal nodes where p is the entire path.

[
1
IRRNH|
|
]
[
I
[
)]
I
!
RERERNRARERARARRNANANE ERRRRRENEN)
INNNRRNRNNERNRNRREERNRARERRENRANRNNNN

T T T T

(a) (b)

Figure 1. (a) Grid point representation, (b) A sample of a discretized site layout

3. AN EFFECTIVE ALGORITHM OF SHORTEST
PATH PLANNING

The Dijkstra algorithm can find optimal solutions to problems by
systematically generating path nodes and testing them against a goal.
Because the time complexity of the Dijkstra algorithm is 0(n?), it becomes
inefficient when it applies to large-scale problems. The reason of high time
complexity is that it is designed to find the shortest path on graphs in which
each edge has a nonnegative length.

However, as we see in Fig. 1, each edge that straddles two adjacent grid
nodes has the unit length. Our MD algorithm is motivated by the greedy
strategy behind the Dijkstra algorithm which has been proved that it does
indeed find the shortest path. In the greedy strategy, the Dijkstra algorithm
tries to find a node whose distance from the start node is the length of a
shortest path in each step of expanding leaf node. Because the cost of
expanding leaf node is unit length in Fig. 1, MD algorithm just adopts the
breadth-first strategy to traverse the two-dimensional grid that needn’t

260 Lingyu Sun, Xuemei Liu, Ming Leng

inspects every edge in each step. The time complexity of MD algorithms is
small since only adjacent grid node is inspected exactly once by the
algorithm. In the choice of adjacent grid node, the MD algorithm adopts
simple tabu search strategy without aspiration criterion whose tabu
restriction forbids expanding grid nodes which are designated as tabu status
or traversed status. The pseudocode of the MD algorithm is given in Table. 1.
The function neighbors(v) is used to iterate neighbors of grid node v in the
two-dimensional grid.

Table 1. The pseudocode of the MD algorithm

INPUT: 1.MaxRow; 2. MaxCol,
3.the list of obstacles O(x,y);
4.a start node s; 5.a goal node g;
OUTPUT: 1.the shortest path p;

1 set non-traversed status in the MaxRow*MaxCol matrix for all grid nodes;
2 set tabu status in the matrix for grid nodes of O(x,y);

3. initial empty queue and insert s into queue;

4 while (the queue is non-empty) do {

5 v=pop(queue);

6 for (each u€neighbors(v)) do {

7 if (/s status==non-traversed status) then

8 if (u==g) then{

9 break;

10 } else {

11 insert vinto queue;

12 set traversed status in the matrix for «;
13 record v as the source of ¢,

14 Yend if

15 lend if

16 }end for

17 }end while
18 if (u==g) then{

19 trace the source information to obtain the shortest path p
20 }end if
21}

4. COMPLEXITY ANALYSIS OF MD ALGORITHM

The complexity of the algorithm is computed as follows. Step 2 costs
0(n) time. The while loop (Step 4-17) of MD is required to iterate n-/ times
in the worst case and the for loop (Step 6-16) of MD is required to iterate
four times at most because the planar mobile robot moves in 4-neighbour
mode. As result, the total time complexity of the algorithm isO(4xn). In the
whole process, the MD algorithm uses a queue with the first-in first-out
scheme and a two-dimensional matrix to store the status of all grid nodes

An Effective Algorithm of Shortest Path Planning in a Static 261
Environment

whose size is n. In the worst case, the MD algorithm successively inserts
[n72] grid nodes into the queue. Therefore, the total space complexity of the
algorithm is O(n+3/2).

S. EXPERIMENTAL RESULTS

|

m*ﬂml@é‘

3SR IIIERREETEE]

T

I EEESERREPIRRISIER IS IRAVRARINERSNRESIAITIARTIRES

Figure 2. The result of our experimental evaluations on four different grids

The shortest path planning system is designed based on MFC
programming technology. We use the four different grids in our experiments
whose dimensional is 30 or 50 cells. The four evaluations are run on an
1800MHz AMD Athlon2200 with 128M memory. As expected, our
experimental evaluations show that our algorithm produces the shortest path,
as shown in Fig. 2, and its cost time is no more than 0.001 second.

262 Lingyu Sun, Xuemei Liu, Ming Leng
6. CONCLUSIONS

In this paper, we have proposed an effective algorithm of shortest path
planning whose time complexity is O(4xn) and space complexity is
0(n+3/2) . The success of our algorithm relies on exploiting both a tabu
restriction and the greedy strategy of the Dijkstra algorithm. Although it has
the ability to find the shortest path very quickly, there are several ways in
which this algorithm can be enhanced. This brings up two questions about
possible improvement. The first question is how to find the shortest path
with multi-constraints. Our algorithm just uses to produce the shortest path
in static environment for planar mobile robot. Therefore, the second question
is how to produce a new shortest path in response to environmental changes.

7. ACKNOWLEDGMENTS

This work was supported by the Foundation of Ji'an Municipal
Commission of Science and Technology, grant No. 2005-28-7.

8. REFERENCES

1. Sugihara, K., Smith, J.: Genetic Algorithms for Adaptive Motion Planning of an
autonomous Mobile Robot. Proceedings of the IEEE International Symposium on
Computational Intelligence in Robotics and Automation, Monterey, CA(1997) 138-146

2. Dijkstra, E.: A note on two problems in connection with graphs. Numerical Mathematic,
Vol. 1 (1959) 71-269

3. Russell, S., Norvig, P.. Artificial intelligence: a modern approach. Prentice-Hall
Publications, New Jersey (1995) 230-247

4. Sedighi, K.H., Ashenayi, K.., Manikas, T.W., Wainwright, R.L., Tai, H.M.: Autonomous
Local Path Planning for a Mobile Robot Using a Genetic Algorithm. /EEE International
Conference on Systems, Man and Cybernetics (2004) 1338-1345

5. Xuemei Liu, Jin Yuan, Kesheng Wang. “A Problem-specific Genetic Algorithm for Path
Planning of Mobile Robot in Greenhouse”. Proceeding of PROLAMAT 2006. (In press)

6. Hart, P, Nilsson N., Raphael B.: Correction to ‘A formal basis for the heuristic
determination of minimum cost paths’. SIGART Newslett, Vol. 37 (1972) 9-28

7. Alsuwaiyel, M.H.. Algorithms Design Techniques and Analysis. World Scientific
Publications, Singapore (1999) 203-205

8. Glover, F., Manuel, L.: Tabu search: Modern heuristic Techniques for Combinatorial
Problems. Blackwell Scientific Publications, Oxford (1993) 70-150

