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Abstract: Going with the inventive knowledge applied broadly in different science fields,
special Computer Aided Invention(CAI) software product customized for
different science fields should be developed with low cost and short time. In
order to minimize the number of unexpected adaptations and features within
application engineering projects, variability is analyzed not only for current
requirements but also for future requirements. Based on analyzing CAI
software domain, the development trend of CAI family products is predicted,
and the variability of this domain is modeled with extended UML in this paper.
The feature-based object-oriented domain analysis approach is adopted to
model the variability of CAI family products.
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1. INTRODUCTION

TRIZ, the theory of solving inventive problem, is proved to be useful in
invention in practice. Many CAI products have been completed and applied
in industries. Going with the inventive theory developed thoroughly and
generalized broadly and the requirements of market changefully, the power
of related products should be enhanced rapidly. The characteristics of CAI
family tools are:

1. Evolving

The CAI family tools are evolving and becoming powerful with new

modules gradually being added to the previous version. For example,
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CALI tool 3.0 version is developed by integrated TMMS module and 76

standard solutions module into 2.0 version.
2. Integrative

In inventive design domain, it is trend that CAI tool will be a synthetical

tooll with many different inventive theories, such as QFD, TRIZ and AD

etc.
3. Flexibility and Customizability

The CAI tool has been applied in different domains. So, the special CAI

tool for special domain must be developed with flexibility and

customizability.
4. Extensibility

The knowledge of enterprises is playing a more and more important role

in activities of enterprises culture and inventive design. It is the

customer’s requirements to mix the databases of the CAI tool with the
knowledge of inner enterprises to form the repository with own
intellectual property rights.

So, efficient method to model and manage the variability of family
products for reuse turns out to be necessary, both from single product
process and economic viewpoint. Lots of researches on exploiting an
efficient method to model the commonality and variability have been
undertaken.

2. SOFTWARE PRODUCT LINE

2.1 Commonality and Variability

A product family consists of a group of related software sharing some
common features.

2.1.1 Commonality

Commonalities of a product family are characteristics that all the family
products own. They serve to characterize the domain. The determination of
whether a characteristic is a commonality or variability is often a strategic
decision rather than an inherent property of the product family.

2.1.2 Variability
The common definition of variability is given as: Software variability is

the ability of a software system or artifact to be changed, customized or
configured for use in a particular context.
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Variability in software systems can be identified as the functional and
non-functional variability. Functional variability means that the system can
provide different functionalities in different contexts.

2.2 Software product line

The approach of software product line aims in decreasing the costs and
lifecycle required to produce a customer specific product. It includes two
processes: Application engineering and Domain engineering. In domain
engineering the communality and the variability of the product family are
defined and developed as core asserts for reusability. The variability in such
a domain (or several domains) is explicitly modeled and separated from the
common parts. During application engineering a customer specific
application will be defined and ideally developed by selecting and
configuring core assets resulted form the domain engineering. Domain
engineering core assets are evolved based on the feedback from the
application engineering.

3. MODELING VARIABILITY WITH UML FOR CAI
FAMILY PRODUCTS

An effective representation of the variability not only identifies and
models alternatives among the products in a product line, but also defines
what characteristics are associated with what products, as well as what
dependencies and interrelationships exist among variability.

The representative approaches are classified into three catalogues:
feature-oriented method2, object-oriented method3 and integrative method4.
In the paper, the feature-based object-oriented method, a typical integrative
method, is applied to modeling the variability for CAI product family, and
variability is described at feature model, object model and subsystem model
with extended UML.

3.1 Modeling feature with extension UML

Feature means the attribute and character belong to the systems. Feature
model captures the end user’s understanding of the general capabilities of
applications in a domain. It represents the common and the variable features
of concept instances and the interdependencies between the variable features.

Features in feature model are classified into following categories:

1. Mandatory feature: means features must be selected, it represents the
core attributes and characters of the domain.
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2. Optional feature: means that there are 1 to n feature to be selected. In this
case, some of them may not belong to several family products.

3. Alternative feature: at least one feature should be selected. In this case,
the different products will take different methods at the same attributes
and characters.

4. External feature: a feature realized by the underlying platform, not by
the system itself. It is useful for describing relations to external (e.g.
platform) requirements.

5. Extension feature: features that will be extended in future.
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Figure 1. Feature model for CAI family products with UML

The features are organized in a tree with the modeled concept as the root
constructed from composition or generalization relationships. The
relationships between features include: (the relationships are modeled with
their UML notation — filled diamond and generalization-arrow)

1. composition or generalization relationships: expressed as <<include>> or

omitted .

2. dependency relationship: expressed as << requires>>.
3. exclusive and non-exclusive alternatives: expressed as << xor>> and
<<or >>,

The feature model of CAI product family is shown as figure 1 above. It
supplies some modules to be selected according to the customer’
requirements, some have been finished, such as effect tool, contradiction tool,
evolution tool, and some will be developed or finished in future, such as
TMMS tool and 76 standard solution tool. So, the relationship of these
features is expressed as <<or>>. Take the contradiction tool as the example,
contradiction tool must have the following features: TRIZ general
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contradiction, contradiction principles and examples, and these features are
the result of querying the TRIZ contradiction database. If the being
developed product is applied in special domain, such as physics, etc, the
“contradiction translator “feature must be selected, which the special domain
contradictions will be translated into TRIZ general contradictions. Of course,
the feature of special contradiction databases depends on the selection of the
special application domain, so the relationships between “contradiction
special domain” and “special databases“expressed as <<requires>>.

3.2 Object model

Object model represents the domain structure in terms of objects and
their relationships. There are three steps to model objects: identify object
from feature model and their relationships; handle the variability through
analyzing the relationships between objects, such as aggregation,
generalization and association, and assigning the variant to object model.

3.2.1 Identifying the object from feature model

The guideline presented by K. Lee” is:

1. Modeling capability features as service-state hiding objects or user role
objects.

2. Modeling operating environment features as interface objects.

3. Modeling domain technology features as objects that encapsulate
requirement decisions.

4. Modeling implementation technique features as objects that encapsulate
communication methods, design decisions and implementation methods.
The relationships between objects fall into generalization and aggregation

relationships in object-oriented programming. The aggregation and

generalization relationships can be respectively derived from the same types
of relationships in the feature model and interactions between the identified
objects.

3.2.2 Handling the variability in object model

To describe the variability in object model, the notion of variation points
is applied into the object model. The extension for variation points consists
of two parts: explicitly marking the location of a variation and the
distinguishing the different ways of binding this variation.

Variant points exist in the objects which identified from extended
features, optional features, alternative features and extension features, also
including the feature relationships signed as {xor} {or}. The variation
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point determines when (binding time) and how many variants (multiplicity)
can be bound (i.e. selected for the desired product). In addition, constraints
for the variants can be modeled.

4. CONCLUSION

The approach of feature-based object oriented domain analysis has been
applied to the CAI domain. With this method, the feature model and object
model explicitly distinguish the commonality and variability. A new special
application developed based on the CAI software product line will be
completed quickly through tailoring or binding the core asserts.
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