THE APPLICATION OF LEAST SQUARE IN PRECISION CYLINDRICAL GRINDING

Dawei Fu, Li Su, Yang Wang
School of Mechanical Engineering, Hebei University of Technology, China; Email: ffdwv@163.com.

Abstract: In this paper, PMAC (Programmable Multi-Axis Controller) is used as machine tool CNC system to control linear motor’s micro-movement and to achieve online measurement of part circularity error. The part circularity is calculated through least square method by measured circularity error. The part circularity error can be decreased by PID control of PMAC, so precision cylindrical grinding can be achieved.

Key words: PMAC (Programmable Multi-Axis Controller); PID control; precision grinding, LSM (Least Square Method).

1. INTRODUCTION

As high-speed and super high-speed grinding can greatly improve grinding efficiency and machine-part manufacturing quality, it is a kind of technology of powerful vitality and vast range of prospects. It is devoted much attention by the advanced industry countries of the world. In this paper, a LSM is proposed to fulfill high-speed precision grinding of cylindrical parts based on PMAC system. The linear motor’s micro-movement and electric spindle of machine tool are controlled by open controller PMAC. Also, a set of numerical control system of grinder is integrated. A good experimental result is gotten in this grinder to grind cylindrical parts.

This project is supported by Doctor foundation of Hebei education bureau under grant B2003205.

Please use the following format when citing this chapter:
2. SYSTEM INTEGRATION OF CNC GRINDER

As shown in Fig.1, this machine tool adopts two-axis PMAC to control linear motor and servo motor. At the same time electric spindle is cooled by circulatory water.

![Fig.1 The principle of high-speed precision cylindrical grinding](image)

3. THE MATHEMATICAL METHOD OF LEAST SQUARES CIRCLE OF CIRCULARITY ERROR

![Figure2. The mathematical method of least squares circle of circle of circularity error.](image)

As shown in fig.2, took the rotary center O_1 of the measured section as the center of a circle and divided the measured circle into m equal angles, radii $r_i(i=1,2,...,m)$ from the point O_1 can be obtained. The points of
intersection between these m radii \(r_i \) and the measured circle are \(P_i \). At the pole coordinate of \(O_1 \) as the origin, let the center of least squares circle as \(O \), the radius an \(R \), the offset of least squares circle and rotary center as \(e \). The radial offset from each discrete sampling point \(P_i \) to least squares circle as \(\epsilon_i \) (i=1,2 \(\quad \text{m} \)), the angle of line \(O_1 P_i \) from each equal sampling point \(P_i \) to rotary center \(O_1 \) and the axis of pole coordinate as \(\theta_i \) (i=1,2 \(\quad \text{m} \)). The point of the intersection between line \(OP_i \) and the least squares circle is \(D \). The radial error \(\Delta r_i \) from the center \(O_1 \) is collected by the sensor. From the Fig.2, it is obtained \(OD=R, \quad O_1 O=e, \quad P_i D= \epsilon_i, \quad O_1 P_i=r_i, \quad \angle P_i O_1 P = \theta_i, \quad \angle OO_1 \rho = \alpha, \quad a = \cos \alpha, \quad b = \sin \alpha \)

Also:

\[
\begin{align*}
r_i &= e \cos(\theta_i - \alpha) + \left[(R + \epsilon_i)^2 - e^2 \sin^2(\theta_i - \alpha) \right]^{1/2} \\
&= e \cos \theta_i \cos \alpha + e \sin \theta_i \sin \alpha + \left[(R + \epsilon_i)^2 - e^2 \sin^2(\theta_i - \alpha) \right]^{1/2}
\end{align*}
\]

(1)

Make the non-linear function \(\left[(R + \epsilon_i)^2 - e^2 \sin^2(\theta_i - \alpha) \right]^{1/2} \) linear.

Let \(f(e) = \left[(R + \epsilon_i)^2 - e^2 \sin^2(\theta_i - \alpha) \right]^{1/2} \)

By means of Maclaurin formula: \(f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(0) x^n \)

\[
f(e) = R + \epsilon_i - \frac{e^2}{2(R + \epsilon_i)} \sin^2(\theta_i - \alpha) - \frac{e^4}{8(R + \epsilon_i)^3} \sin^4(\theta_i - \alpha)
\]

(2)

If \(e << R, \) and \(\sin^2(\theta_i - \alpha) << 1 \)

Therefore \(f(e) \approx R + \epsilon_i \) where the maximum error caused is \(\frac{e^2}{2(R + \epsilon_i)} \).

Accordingly: \(r_i = R + a \cos \theta_i + b \sin a \theta_i + \epsilon_i \) i=1,2 \(\quad \text{m} \) (3)
The structural matrix of data is:

\[\theta = \begin{bmatrix} 1 & 1 & \ldots & 1 \\ \cos \theta_1 & \cos \theta_2 & \ldots & \cos \theta_m \\ \sin \theta_1 & \sin \theta_2 & \ldots & \sin \theta_m \end{bmatrix}^T \]

Coefficient matrix of normal equations is:

\[
A = \theta^T \theta = \theta^T \begin{bmatrix}
M & \sum_i \cos \theta_i & \sum_i \sin \theta_i \\
\sum_i \cos^2 \theta_i & \sum_i \cos \theta_i \sin \theta_i & \sum_i \sin^2 \theta_i
\end{bmatrix}
\]

As m is even number

Therefore \(A = \text{diag}[m, m/2, m/2] \)

\(A^{-1} = \text{diag}[\sqrt{m/2}, \sqrt{m/2}, \sqrt{m/2}] \)

Let \(D = [r_1, r_2, \ldots, r_m]^T \)

So constant matrix of normal equations is:

\[
B = \theta^T D = [\sum_i r_i \cos \theta_i \sum_i r_i \sin \theta_i]^T
\]

Let \(P = [R, a, b]^T \)

So \(P = A^{-1}B = [\frac{1}{m} \sum_i r_i, \frac{2}{m} \sum_i r_i \cos \theta_i, \frac{2}{m} \sum_i r_i \sin \theta_i]^T \)
That is: \(R = \frac{\sum r_i}{m} = r_0 + \Delta R \), where \(\Delta R = \frac{1}{m} \sum \Delta r_i \)

\[a = \frac{2}{m} \sum r_i \cos \theta_i = \frac{2}{m} \sum \Delta r_i \cos \theta_i \]

similarly: \(b = \frac{2}{m} \sum \Delta r_i \sin \theta_i \)

So \(\varepsilon_i = r_i - R - a \cos \theta_i - b \sin \theta_i \quad i=1,2, \ldots, m \)

Or \(\varepsilon_i = \Delta r_i - \Delta R - a \cos \theta_i - b \sin \theta_i \)

So the circularity error of workpiece is:

\[f_o = \max\{\varepsilon_i\} - \min\{\varepsilon_i\} \]

\[= \max\{\Delta r_i - a \cos \theta_i - b \sin \theta_i\} - \min\{\Delta r_i - a \cos \theta_i - b \sin \theta_i\} \]

\[i=1,2, \ldots, m \]

4. **THE PID CONTROL PRINCIPLE OF PMAC**

This numerical control grinder adopts two-axis PMAC with which we can control Z-phase servomotor and X-phase linear motor’s feed movement. The sensor collects workpiece circularity error signals by A/D channel on the PMAC. We can attain the error on a certain intersection of workpiece. Comparing this error with tolerance of workpiece, we can figure out deviation and decide the linear motor’s feed in accordance with this deviation. Finally we can attain precise machining accuracy of workpiece by many times circle count (as shown in Fig.3). Different speeds of rotation of electric-spindle are achieved by D/A channel on PMAC. The travel limits
switch and the cooling water for electric-spindle are controlled by I/O channel on the PMAC.

![PID Servo Loop](image)

Fig.3 P.I.D Servo Loop

5. CONCLUSIONS

This paper adopts PMAC to accomplish the precision machining for grinding. The feature of PMAC is that it can control two different types of motors to accomplish coordinate motion of two axis, and it can realize some special functions such as precise linear and circle interpolator, “S-Curve” acceleration and deceleration. Thus it can fulfill high precision grinding for cylindrical, elliptical, taper contours and other kinds of irregular machine ones.

6. REFERENCES