PARALLEL SEQUENCE ALIGNMENT
ALGORITHM FOR CLUSTERING SYSTEM

Yang Chen, Songnian Yu, Ming Leng
School of Computer Engineering and Science, Shanghai University, Shanghai, PRC. Emai:
chenyang2000@163.com

Abstract: Sequence alignment is one of the most important fundamental operations in
bioinformatics. It has been successfully applied to predict the function,
structure and evolution of biological sequences. In this paper, the sequence
alignment algorithms based on dynamic programming are analyzed and
compared. We present a parallel algorithm for pairwise alignment and
implement it on a clustering system with MPI. The experimental results
demonstrate the effectiveness in performance promotion. We encapsulate the
algorithm into a grid service for practical use.

Key words: Bioinformatics; sequence alignment; parallel algorithm; clustering system;
MPI

1. INTRODUCTION

With the genome project being carried out, new biological molecular
information has emerged in large numbers, in which some valuable
knowledge does exists. However, it is really hard for us to discover them. To
fulfill such a demanding task, a new cross-disciplinary subject called
bioinformatics has been rapidly developed.

In bioinformatics, the similarity comparison among biological sequences
called sequence alignment is a fundamental method of information
processing, which plays a significant role in revealing the function, structure
and evolution of biological sequences. Sequence alignment finds out the
maximal matched bases or residues by means of some specific mathematical
model or algorithm whose outcome to some extent tells the relationship

Please use the following format when citing this chapter:

Chen, Yang, Yu, Songnian, Leng, Ming, 2006, in International Federation for
Information Processing (IFIP), Volume 207, Knowledge Enterprise: Intelligent Strategies
In Product Design, Manufacturing, and Management, eds. K. Wang, Kovacs G., Wozny
M., Fang M., (Boston: Springer), pp. 311-321.

312 Yang Chen, Songnian Yu, Ming Leng

among sequences and their biological characteristics. Therefore, the design
of a reasonable and efficient algorithm for sequence alignment has become a
very important research issue in this field.

For the alignment of sequence pairs whose lengths are #, there are totally

different cases to be considered. That seems a computational problem with
exponential complexity.

Needleman and Wunsch [10] presented the first pairwise sequence
alignment algorithm based on dynamic programming (DP), on which Gotoh
[9] made some further modifications. An algorithm with linear space
complexity was proposed by Hirschberg [6], which was later improved by
Mayers and Miller [7]. Still based on DP technique, Smith and Waterman
[11] presented an algorithm for local alignments.

2. BIOLOGICAL SEQUENCE ALIGNMENT
ALGORITHM

The data of sequence are partitioned into DNA sequences and protein
sequences. Each DNA sequence consists of four types of base A, T, C and G
and each protein sequence is made up of 20 types of amino acid, hence any
sequence can be represented as a string over specific alphabet. The similarity
of sequences is described in quantitative values or qualitative description.
The degree of similarity and the edit distance are used to quantify the
similarity of sequences. The dof plot indicates in an intuitive and clear way
the area where conspicuous similarity exists between two sequences, and
then helps to locate the possible alignment.

2.1 Sequence alignment

Given a score function, the sequence alignment computes the optimal
alignment among two or more sequences, ending up with the alignment of
maximal similarity among sequences via matching the corresponding
symbols or inserting gaps for insertion or deletion within sequences. Score
function is a key parameter involved in sequence alignment algorithms,
which is used to evaluate the edit operations applied to sequences (shown in
Fig. 1).

(98]
—
w

Parallel Sequence Alignment Algorithm for Clustering System

pla,a)=1
p(a,by=0 (a=b)
pla—)=p(=b)=-1

Figure 1. Evaluate edit operation with score function

Several algorithms are presented for sequence alignment. Most of them
are based on dynamic programming, upon which various improvements are
made. According to the number of sequences to be aligned, the algorithms
are classified into pairwise alignment algorithms and multiple alignment
algorithms. In this work, we mainly focus on the former ones.

There are two main criteria for the performance evaluation of sequence
alignment algorithm. One is the running speed of algorithm; the other is the
result sensitivity for optimal alignment. We care more about the execution
time of algorithm which reflects the running speed.

2.2 Pairwise sequence alignment algorithm

The typical algorithm for global alignment is the Needleman-Wunsch
algorithm, which is designed for sequence pairs with a high degree of
similarity on the global level. The degree of similarity for sequence pairs is
computed using an iterative method (shown in Fig. 2) and stored in the score
matrix from which the optimal alignment is found through the backtracking
procedure based on dynamic programming.

di—l.j-—l + ;D(Si ",j)
d, ; =max d, s+ 0s:7)
1‘11'.1'4 +p(l)

Figure 2. Compute degree of similarity iteratively

The basic algorithm for local alignment is the Smith-Waterman algorithm.
Different from the global one, the local alignment algorithm is applied to
sequence pairs that are distantly related with some similarity in local areas
rather than on the whole. With regard to this, some slight modifications are
made so as to seek the subsequence pairs with maximum similarity.

The complexity of algorithms mentioned above is determined by the
scale of score matrix; in other words, it is closely related to the product of
sequence lengths. The time complexity of computing score matrix is O(»?)

314 Yang Chen, Songnian Yu, Ming Leng

and that of the backtracking procedure is O(n), where n is the length of
sequence. Therefore, the overall time complexity comes to O(n?).

23 Visualized implementation of algorithms

For the convenience of comparison among various sequence alignment
algorithms, we implement and join them into a same graphical user interface.
The program is designed based on MFC programming technology, running
on Windows platform as shown in Fig. 3.

Figure 3. Visualized implementation of sequence alignment algorithms

Here, different cases of pairwise sequence alignment are integrated and
the environmental parameters such as alignment mode, score function, gap
penalty, etc. can be configured and adjusted freely. Meanwhile, the
visualized results including score, dot-plot and optimal alignment can be
instantly observed from the window.

3. PARALLEL SEQUENCE ALIGNMENT
ALGORITHM

3.1 Feasibility analysis

As previously stated, the time consumption of sequential algorithm
mainly lies in the computation of score matrix. The recursive formula of

Parallel Sequence Alignment Algorithm for Clustering System 315

score matrix indicates that the computation of d(i, j) can be started only if
d(i-1, j-1), d(i-1, j) and d(i, j-1) obtain their values, which is shown in Fig. 4.

d d,

-1 1,5

d;;j-a _— dixi

Figure 4. Data dependency in computing elements of score matrix

As a result, the computation of score matrix can be conducted
successively in order of anti-diagonals. Therefore, the elements in same anti-
diagonal marked by the symbol - can be computed simultaneously (Fig. 5).

C
EN

el RN
YW
N W
Nl L
V@

Figure 5. Compute score matrix in a parallel manner

3.2 Model for problem solving

Driven by the data dependency in computing score matrix, we parallelize
the pairwise alignment algorithm to improve its performance for multi-
processor systems. The major models for parallel solving are listed below.

Pipeline model: As a basic unit, each row of the score matrix is
computed sequentially by a processor, which blocks itself till the required
elements in the row above are computed. This forms a continuous pipeline

(Fig. 6).

Sequence 2

» Proc1

» Proc2
e D (310K
—

Sequence 1

Figure 6. Pipeline model for parallel solving

316 Yang Chen, Songnian Yu, Ming Leng

Anti-diagonal model: All processors compute simultaneously along an
anti-diagonal of score matrix, from the left-top corner to the right-bottom
corner. Each idle processor selects an element that is not computed from
current anti-diagonal. When all elements in current anti-diagonal are
processed, the computation moves on to next anti-diagonal (Fig. 7).

Sequence 2

Sequence 1

Figure 7. Anti-diagonal model for parallel solving

33 Design and implementation

In accord with the pipeline model above, we design a synchronous
medium-grained parallel algorithm for distributed memory systems, by using
single program multiple data (SPMD) technology.

The algorithm is based on the wave-front method. The score matrix is
partitioned into several bands by row and several blocks by column. All the
bands are distributed to multiple processors via a balanced allocation. A
typical example is shown in Fig. 8. In line with the order of anti-diagonals,
each processor computes the block in its own band concurrently. Due to the
data dependencies, the communication between processors is required to
transfer data on the boundary of bands. The height of bands and the width of
blocks can affect the performance of the parallel algorithm.

Block

Band

Figure 8. A 8*8 partition for 4 processors

Parallel Sequence Alignment Algorithm for Clustering System 317

By applying this algorithm, the time complexity is reduced to O(n) when
n processors are used. Specifically, if the sequence pairs to be aligned are
closely related, only parts of DP matrix are worth computing. In this case,
while the sequential algorithm has O(cn) time complexity, the parallel
counterpart can compute in O(n) time with O(c) processors, where ¢ is a
constant factor of restriction.

The algorithm is implemented on a clustering system with message
passing interface (MPI) and it works properly on Linux platform. The
outputs of algorithm for different length-specific inputs are verified, which
to a certain extent guarantees the correctness of algorithm.

4. EXPERIMENTAL RESULTS

To evaluate the performance of the parallel algorithm, we design a
experimental scheme to measure the execution time of algorithm under
various lengths of sequences and various numbers of processors which are
related to the complexity of algorithm.

The biological sequences we use for experiment are retrieved from the
SRS database provided by research centre of bioinformatics, Peking
University. The testing environment is the laboratory of high performance
computing in Shanghai University, which is a PC cluster constituted by 70
nodes (Intel Pentium 4 CPU 2.4 GHz with 256 MB memory) running on
Linux operating system (Red Hat Enterprise Linux WS 3, gcc 3.2.3, MPICH
1.2.5). The experimental results are shown in Table 1 as follows.

Table 1. Comparison in execution time of algorithms

sequence sequential parallel algorithm, np processors
length algorithm np =1 np=2 np=4 np=13§ np=16 np =32
500 0.244804 0.365445 0.247524 0.165411 0.126663 0.570836 1.30005
1000 1.79986 2.71574 1.59836 0.959565 0.654181 1.14644 1.53744
1500 59714 8.83867 4.86467 2.95273 1.8195 1.78117 2.14013
2000 13.9534 20.3237 10.9388 6.30774 3.79232 3.22145 3.47226
2500 26.2785 39.5335 21.014 11.6055 6.9633 5.1999 4.56656
3000 45,5543 67.2282 35.4311 19.5344 11.4641 8.196 6.54519
3500 71.6498 106.583 55.7057 30.1991 17.4998 11.809 8.95839
4000 107.255 158.605 82.4512 44275 25.0185 16.3415 12.1245
4500 152.542 225.746 118.905 62.4093 34.7657 21.5546 15.9286

5000 208.827 310.181 158.51 86.4587 46.905 28.465 20.2812

On one hand, given specific number of processors, the execution time of
sequential algorithm and parallel algorithm with only one processor (np = 1)
rises sharply with the increase of sequence length, which is shown in Fig. 9.
It is highly imperative to take the advantage of parallel processing.

318 Yang Chen, Songnian Yu, Ming Leng

250 given number of processors (np)

——npe
300 np=1

ol npp = 2
250
np=4
200
i np = 8
150
~—¥—np = 16
100

execution time (second)

—@—np=32

50
o s@QUENtTAN

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
length of sequence

Figure 9. Execution time for various lengths of sequence

On the other hand, given specific length of sequence, the execution time
of parallel algorithm tends to fall as the number of parallel processors
increases, which is shown in Fig. 10. Obviously, our algorithm successfully
captures the parallelism of the problem itself and unleashes the power of PC
clustering systems, consequently improving the computational performance
effectively. However, the parallel efficiency is found in a fairly low level
partly because of the high proportion of communication for data
transmission among processors.

given length of sequence (Is)

_
350 —&—Is = 500

_ 300 el |5 = 1000
2 Is = 1500
g 250

8 iy |5 = 2000
g 200} —¥— Is = 2500
T 150 —@— Is = 3000
'g 100 ~—4— |5 = 3500
% —— I = 4000

50 st |5 = 4500
0 Is = 5000

1 2 4 8 16 2 —
number of processors

Figure 10. Execution time for various numbers of processors

Parallel Sequence Alignment Algorithm for Clustering System 319
S. ENCAPSULATION OF GRID SERVICE

Grid is an integrated environment for shared resources and services,
which aims to establish a virtual supercomputer by organizing the
geographically distributed computers all over the world via Internet.

5.1 Grid development environment

We attempt to encapsulate the core algorithm of sequence alignment into
a grid service for the convenient access to end users. In doing so, we use the
Globus Toolkit 3.0 (GT3), a software toolkit for building grid applications
based on OGSI 1.0. Before all, a development environment is set up through
the installation and configuration of JDK, Ant and GT3 Core.

5.2 Programming and deployment

We follow the proxy-stub model, a general programming model for
distributed computing. It comprises two parts: the server end and the client
end, which are weakly-coupled via service description.

The server end describes the service information in a file written in
WSDL that includes service interface, invoking method and its binding low-
level communication protocol. We rewrite the previously implemented
algorithm and deploy it into a Web service container provided by GT3 itself.
The client end generates the stub for service invoking according to the
WSDL file from the server end. It receives the request data submitted by end
users, invokes the core algorithm deployed on the server end via predefined
interface and eventually returns the processed results.

In the respect of a friendly user interface, we embellish the client end
using HTML and JSP technology such that users are allowed to gain
entrance to the grid service of sequence alignment by means of web
browsers and submit their specific tasks through online forms; the results are
organized in the standard format and a concise report with statistical and
analytical information is presented (shown in Fig. 11).

320 Yang Chen, Songnian Yu, Ming Leng

Pairwise Sequence Alignment Resultg

Sewmnes !"‘x;s’*m} gt D87 43 .. TS
Sequenen ¥ bedisea § Lot 2h0d 1, B3E
Tdmiins @ 459D / OB (50, GUAHUHE }
G % B2 ¢ A5 5 VMY
Ruesys 1 B0QE1 § BEEASTVCECIECCCEAETIEIINNRIFCIACFFAIUAILACIE AN g ag B
(SRS o PREOEED P JRREMIY B P OB E LGt
oIl L goREr - AXABCLfEECLINANECHE LRI INAN T H R RBARULY
Qaryy B wena T CR T B TRAE T IS RAR TN G AR £ uE RN
it [§H§l§§iHHEi

t
H
it BL ¢BCTE € VHYCICICSRANEAGLNLZI "R NNAALA G ----x;us tgrecaste 38
Rarry: 2L ATIGT & (CANLEAL CATCLACARACRLHACHLE AL IALTRERAT L OV v vy g AR
Pri AR TR AR R SR A A P B (RS IS B
% termeetatgat tHANLALORCRAITABFA A AL AT GV g FID
Tty v bagsavigeeynuen R A St St SRR AL LT AT
bt (R N R ERRREE LA T U T R £
B A 11500 ¢ Le LRt Nt OAtARAEREANEAB LI TSRO AARR AR B RE - b AUy T
Syt B Aavte 8 :""l(#"#!zh(s&I("Ct!té*d"¢(‘H"‘“‘tc‘t&&(ﬂ&’sk"sc‘”'tit“-‘-"&W
AN T A T O T O B IAEER AR it [
Bdors 261 1aE L 4 ALK ACAELHLELEICRCASRE nmtu“zan STTTTELITITS: -
%
H
]

Pjeer 30
et §

&®

Query: L cgaty CEEABLRE - AR L NG IGE - BeBL L R L R R SRR T AR ERT T
l%%l.!}?il‘xlislthli L 10 S T T A

Feiesl B sgacg E A gt AT AT AN AT CEARER AN AN AR T ERACHFURKL ARG NS S ny

Quarss KL gmacy v Ao gtages It
i b i

o

SACKAENGR F EADE L gras gt v et 4
FR R O O
- @ ERARERN t:

Stex:

Figure 11. Obtain results of sequence alignment via grid service

6. CONCLUSION

In this work, several algorithms for sequence alignment are analyzed and
a visualized program is implemented for further research. We focus on the
pairwise alignment algorithm based on dynamic programming and have it
parallelized for distributed memory systems based on pipeline model and
wave-front method. The algorithm is implemented on a PC cluster with MPI
and the experimental results indicate a remarkable enhancement of algorithm
performance in comparison with the sequential algorithm. Furthermore, we
encapsulate the algorithm into a grid service for practical use.

We are currently trying to discover more about the potential parallelism
of algorithm especially in the backtracking procedure and also the hardware
characteristics of clustering systems such as its network topology. The future
work will involve transplanting the algorithm into a grid computing
environment, and direct to the research of multiple alignment algorithm. Our
goal is to find an efficient and scalable solution for biological sequence
alignment.

Parallel Sequence Alignment Algorithm for Clustering System 321
7. ACKNOWLEDGMENTS

This work was supported by the Science Foundation of Shanghai
Municipal Commission of Science and Technology, grant No. 00JC14052,
and by "SEC E-Institute: Shanghai High Institutions Grid" project.

8. REFERENCES

1. Andreas D. Baxevanis, B. F. Francis Ouellette. “Bioinformatics: the practical guide for
analysis of genomics and proteomics”. Tsinghua University Press. 2000

2. Borja Sotomayor. “The Globus Toolkit 3 Programmer's Tutorial”. 2004,

3. Cyntbia Gibas, Per Jambeck. “The computer technology in bioinformatics”. China Dianli
Press. 2002

4. C. Xavier, S.S. Iyengar. “Introduction to the parallel algorithm”. China Machine Press.

2004

5. D. S. Hirschberg. “A Linear Space Algorithm for Computing Maximal Common
Subsequences”. Comm. ACM, vol. 18, no. 6, pp. 341-343, 1975

6. E. W. Mayers, W. Miller. “Optimal Alignments in Linear Space”. Computer Applications
in the Biosciences, vol. 4, no. 1, pp. 11-17, 1988

7. Joshy Joseph, Craig Fellenstein. “Grid Computing”. Tsinghua University Press. 2005

8. O. Gotoh. “An Improved Algorithm for Matching Biological Sequences”. J. Molecular
Biology, vol. 162, pp. 705-708, 1982

9. S. B. Needleman, C. D. Wunsch. “A General Method Applicable to the Search for
Similarities in the Amino Acid Sequence of Two Proteins”. J. Molecular Biology, vol. 48,
pp. 443-453, 1970

10. T. F. Smith, M. S. Waterman. “Identification of Common Molecular Subsequences”. J.
Molecular Biology, vol. 147, pp. 195-197, 1981

11. Zhihui Du. “High-performance computing and parallel programming technology: MPI
parallel programming”. Tsinghua University Press. 2001

