
Preparing FLOSS for Future Network

Paradigms:
A Survey on Linux Network Management

Alfredo Matos, John Thomson, Paulo Trezentos

Caixa Mágica Software
Edificio Espanha - Rua Soeiro Pereira Gomes

Lote 1 - 8 F, 1600-196 Lisboa
{alfredo.matos,john.thomson,paulo.trezentos}|@caixamagica.pt

Abstract. Operating system tools must fulfil the requirements gen-
erated by the advances in networking paradigms. To understand the
current state of the Free, Libre and Open Source Software (FLOSS)
ecosystem, we present a survey on the main tools used to manage and
interact with the network, and how they are organized in Linux-based
operating systems. Based on the survey results, we present a reference
Linux network stack that can serve as the basis for future heterogeneous
network environments, contributing towards a standardized approach
in Linux. Using this stack, and focusing on dynamic and spontaneous
network interactions, we present an evolution path for network related
technologies, contributing to Linux as a network research operating sys-
tem and to FLOSS as a whole.

1 Introduction

Free, Libre and Open Source Software (FLOSS) is often characterized
by a distributed and even fractured development model. This can lead
to different applications with similar purposes, where the consequence is
often effort duplication. While this can simultaneously be characterized
as an advantage or handicap of the FLOSS world, these characteristics
are also observable in the networking aspects of Linux. The Linux Kernel
is very rich in terms of networking functionality, with a modern stack
that makes it a reliable network Operating System (OS). However, most
network management1 operations are usually executed in user-space, by
distribution specific tools, which can vary across distributions.
This dichotomy is further exemplified by the networking paradigms:
on one hand, they require supporting multiple heterogeneous networks
as specified by Next Generation Networks (NGN), relating to differ-
ent concurrent technologies on the device, such as WiFi, 3G, WiMax

1 When we consider management, we are in fact referring to bringing up devices,
selection of network attachment points, performing dynamic configurations and
the associated integration that cannot be configured statically or hard coded into
applications.



2 Alfredo Matos, John Thomson, Paulo Trezentos

or even Bluetooth; while on the other hand, dynamic and spontaneous
configuration require supporting peer-to-peer interactions that operate
without infrastructure support such as Zeroconf [41] technologies and
even Ad-Hoc or Mesh Networks. Therefore, as we move towards NGN
environments, where wireless connectivity is the norm rather than the
exception, powered by WiFi or 3G connections, it becomes increasingly
necessary to handle all the different connectivity scenarios and tech-
nologies, without compromising the user experience. This creates added
complexity for the OS and network stack that must allow a seamless
user experience with competing requirements.
To handle these concurrent vectors, we need a consistent FLOSS net-
work stack that aligns the different tools and approaches, to match the
needs of the evolving network environments. To achieve this, we present
a survey that looks at the current Linux network model and existing
technologies. Based on the survey of both FLOSS tools and Linux dis-
tributions, we open the door to an aligned network view by proposing
a reference network stack that promotes standardized approaches. This
reference stack, which takes into account both heterogeneous networks
and spontaneous dynamic environments, can contribute to the evolu-
tion of FLOSS, and especially Linux, by helping to prepare for new
and forthcoming NGN network scenarios that are being promoted in
different venues, such as the ULOOP [38] IST Project.
By promoting a common vision based on current research scenarios, it
is possible to promote Linux as a leading research platform, and simul-
taneously contribute to less effort-duplication and avoiding fractures in
the development model, thus contributing to FLOSS as a whole, as is
discussed in Sect. 5. This can be achieved using the reference stack pre-
sented in Sect. 4 as a starting point. The remainder of the paper is
organized as follows: Section 2 highlights the importance and structure
of the survey, while the tools are presented in Sect. 3 and the choices of
network strategy for Linux-based distributions are presented in Sect. 4.
We conclude the paper in Sect. 6 focusing on future work.

2 Tools for Evolving Paradigms

The first step towards tackling the complexity of FLOSS user-centric
network management tools is conducting a survey that reflects the cur-
rent state of Linux network management. We focus on two different
aspects: heterogeneous network support and dynamic configurations.
From the Linux operating system perspective, it is important to see how
the different technologies are handled, like WiFi, 3G or WiMax. But,
heterogeneous networking goes beyond the support of multiple technolo-
gies, and implies a seamless experience, where the different technologies
are integrated from the user’s perspective. It is becoming increasingly
important that these technologies work together, and managing how
network selection is performed. Therefore, before implementing com-
plex network solutions [20], it is necessary to determine the current
state of the art, especially in FLOSS.



Linux Network Management Survey 3

As a complementary aspect to network selection, we also focus on spon-
taneous and dynamic configurations. It is important to analyse how dy-
namic configurations occur, along with the benefits that they provide,
especially considering wireless environments and user-centric technolo-
gies [34], regardless of whether infrastructure support exists. In this
domain, we highlight two complementary approaches: IPv6 and Zero-
conf.
IPv6 has built-in mechanisms that allow automatic address configura-
tion and peer discovery on the local link. Stateless Address Auto Con-
figuration (SLAAC) [35] allows a node to generate an address for local
communication in the fe80::/10 range through an EUI64 expansion of
its MAC address. Peer discovery can be performed using special IPv6
multicast groups (e.g. all-nodes).
In IPv4, peer discovery can be achieved through Zeroconf [41], which is a
protocol suite that aims to provide a fully functional IPv4 stack without
the need for special configuration servers. It focuses on network address
configuration and local name resolution, without resorting to DHCP or
DNS servers. Address configuration is done through IPv4 Link-Local
Addresses [9], which is a mechanism that enables the configuration of
local addresses in a special address range (169.254.0.0/16), similar to
IPv6 local link addresses. For local name resolution, Zeroconf defines the
usage of Multicast DNS (mDNS) [11]. mDNS requires that each host
stores its own DNS records (A,MX,SRV) locally, answering queries sent
to a specific Multicast address. Whoever knows the answer, i.e holds the
record, should respond to queries (resolve the address). This establishes
a simple protocol for DNS supported communication without a central
server. Using mDNS it is possible to provide service discovery on the
local link through DNS Service Discover (DNS-SD) [10], also part of
Zeroconf. Using DNS-SD, a node can join the proper mDNS multicast
group and query for well known DNS records (SRV, TXT and PTR)
that have service instances names, according to a dns-sd.org list [19].
In the lower layers, Ad-Hoc (802.11 Independent Basic Service Set
mode, IBSS) and Mesh networking (802.11s) can provide access without
centralized infrastructure, but have limited support for dynamic con-
figurations, which usually depends on higher layer technologies. WiFi
Direct [39] is a WiFi Alliance proposed certification that extends the
Ad-Hoc support in 802.11 with better security and simultaneous WiFi
network connections. It provides the means for establishing dynamic
connections between 802.11-enabled peers and also, according to pre-
liminary findings, supports peer discovery on the link layer.
By focusing on heterogeneous networking and dynamic configuration
technologies it is possible to evaluate the FLOSS tools, and how they
are integrated in the different distributions, which is presented over the
next sections.



4 Alfredo Matos, John Thomson, Paulo Trezentos

3 Linux Tools

The main objective of this survey is to catalogue and analyse the most
important network tools in Linux-based operating systems. To provide
a thorough survey that covers the different FLOSS tools and techno-
logical aspects, we must look at the configuration and management
tools currently available in Linux distributions. We focus on those that
gather information from user input (through configuration interfaces)
and translate it into the necessary commands and operations that are
understandable by the lower level daemons and applications that inter-
act with the network, and with the Linux Kernel.

Network Stack

Stack

Management

Network Configuration

Fig. 1. Three-part network management stack.

Therefore we follow a top-down approach, as conceptually reflected in
Fig. 1, focusing on the tools and processes existing at each level. We
start with the connection managers in current FLOSS systems, which
define how a user configures and interacts with the Network Configura-
tion. We then explore the tools required to translate the configuration
towards the system, providing Stack Management. Finally we focus on
the Network Stack, defining how tools interact with the network, mostly
within the Linux Kernel.

3.1 Network Manager

In recent years, Network Manager [29] (NM), a GPLv2 project by Red
Hat and Novell, has emerged as the primary network configuration ap-
plication for the Linux desktop. Its main purpose is to provide a hassle
free networking experience, without compromising usability. This means
that the focus is on reducing the amount of manual configuration ex-
posed to the end-user, aiming at connectivity that “just-works”.
By integrating network configuration and management, it creates a cen-
tral control point across the entire desktop that is tightly integrated
with the operating system and applications. Its modular design, shown
in Fig. 2, includes several supported technologies, managing both wired
and wireless connections. NM is split into two components: a system



Linux Network Management Survey 5

daemon that controls the networking infrastructure and a management
application (usually graphical, e.g. network-manager-applet [30]) that
handles user interactions. In fact, the daemon is controlled through a
D-Bus [14] interface, a FreeDesktop [17] standard, allowing a flexible
integration with different clients. NM architecture supports both IPv4
and IPv6, along with several access technologies, such as WiFi, WiMax,
GSM/CDMA, Mesh and even Bluetooth, as shown by its architecture.
This is achieved through different sub-systems that communicate with
the main daemon through various interfaces, such as D-Bus, Netlink
Sockets, Unix sockets or system call wrappers. The WiFi interactions are
handled through the Supplicant Manager, a D-Bus interface module for
WPA Supplicant (Sect. 3.3), complemented by the Linux Wireless Ex-
tensions (WEXT, 3.4). 3G support is provided by Modem Manager [28],
which supports most modern 3G devices.

D-Bus

PPPD

Network Manager

Applet / GUI
network-manager-applet

Supported

Devices

BluezBIND

DNSMasq

dhclient
OpenVPN

dhcpcd

Internal

Plugins

External

Dependencies

Supported

Interfaces

PPTP

VPNC

WPA

Supplicant

Modem

Manager

Wireless

Events

M
o
d
e
m

netlink Unix Sockets exec()

S
u
p
p
li
c
a
n
t

V
P
N

D
H

C
P

D
N

S

B
lu

e
z

P
P
P

D-Bus

WiFi

WiMax

GSM

CDMA

Ethernet

OLPC Mesh

Bluetooth

Modem

External

Dependencies

Fig. 2. Network Manager internal architecture.

Concerning network selection in Network Manager, it has a static pref-
erence list based on device types, enabling first Ethernet, WiFi, GSM,
CDMA, Bluetooth, Mesh and finally WiMax. The connections, how-
ever, are timestamped and network manager will always prefer the last
known active connection, when two connections of the same type ex-
ist (e.g. two wireless networks). For the actual selection of an Access
Point (AP) within an Extended Service Set Identifier (ESSID), network
manager relies on wpa supplicant.



6 Alfredo Matos, John Thomson, Paulo Trezentos

3.2 Connman

Connection Manager (ConnMan) [13] is a small and lightweight daemon
designed for managing network connections on Linux embedded devices.
It has a plug-in based design in order to build with as few components
as possible, thus supporting customized configurations. Its main tar-
get is the inclusion in the MeeGo project [27], where it is the default
network connection manager, unlike NM, which is general purpose for
every Linux-based OS. It supports most technologies through plug-ins,
namely, Ethernet, Bluetooth, WiFi, UMTS and even WiMax. It also
supports network protocols through plug-ins, such as DNS, DHCP an
VPN connections. The WiFi subsystem is composed of the main dae-
mon and the WiFi plug-in, which connects to wpa supplicant through
a D-Bus interface (the preferred interface type). 3G support is achieved
through oFono [31].
For managing connection preferences it uses a connection list, with
both dynamic and static preferences. Previously used networks have
a favourite status that takes precedence over new connection points.
However, all things being equal it prefers Ethernet, Bluetooth, GSM,
UMTS, WiMax and WiFi. These two combined mechanisms can be seen
as a semi-static list that guides network selection.

3.3 wpa supplicant and hostapd

wpa supplicant [25] is a GPLv2 licensed WPA supplicant that supports
WPA/WPA2. It is available on most Linux-based platforms and dis-
tributions, either directly or indirectly through NM. It implements the
client component (the supplicant) of WPA, negotiating the encryption
keys towards the WPA Authenticator (the server counterpart in WPA),
supporting the 802.11i standard and also EAP/802.1X. It also supports
several wireless extensions, such as 802.11r, Fast Base Station Transition
(smoother roaming process between access points), 802.11w (manage-
ment frame security) and even WiFi Protected Setup (WPS), a WiFI
Alliance certification that simplifies WiFi setup.
wpa supplicant interacts with NM (and similar clients) through a D-
Bus interface, which is becoming the default interface. It also features
a control (Unix) socket, which is still used by several clients (e.g. An-
droid). In Linux, wpa supplicant supports all drivers that use the recent
mac80211 [23] stack (Sect. 3.4, drivers which support WEXT (v19+)
and several older drivers/chipsets.
Besides the security functions, it can also control roaming between Base-
stations with the same BSSID, given the requirements for wpa supplicant
to perform scanning and associating procedures. When active, roaming
decisions follow a specific priority list: WPA/WPA2 support, privacy ca-
pability support (a beacon bit that mandates encryption), transmission
rate (if signal level is similar) and finally signal level.
While wpa supplicant implements the supplicant in WPA, hostapd [24]
(which shares the same author and codebase, featuring similar function-
ality) implements the authenticator, as well as being the most common
software for running an 802.11 AP in Linux.



Linux Network Management Survey 7

3.4 Wireless Communication Linux Kernel

The Linux Kernel supports all of the previous tools through device
drivers and protocol implementations. The focus on wireless technolo-
gies dictates that we look at the Linux Kernel Wireless subsystem [2],
composed of several building blocks. Currently, the most important
component of this wireless stack is the mac80211 [23] framework. It
provides a SoftMAC driver approach, i.e. most 802.11 protocol imple-
mentation (frame management) is done in software (inside the Kernel)
rather than on every driver or card individually. While there are sev-
eral advantages to this approach, the most important is that drivers
share a common 802.11 implementation, only implementing device-
specific callbacks, resulting in much simpler drivers. The main fea-
tures of mac80211 include support for 802.11a/b/g/n, 802.11d, 802.11s
(Mesh) and 802.11r. Interestingly, roaming is outsourced to user-land
applications, like wpa supplicant.

cfg80211

mac80211

nl80211
Wireless Extensions

Legacy Drivers

Fig. 3. Linux mac80211-based Wireless stack.

As shown in Fig. 3, based on [6], mac80211 is composed of three subsys-
tems: the mac80211 main block implements the 802.11 protocol, while
cfg80211 implements 802.11 configuration and nl80211 implements the
user-land communication through netlink sockets. However, as high-
lighted in Fig. 3, the mac80211 system also supports Wireless Exten-
sions (WEXT) [36], a legacy configuration interface that either interacts
with cfg80211 or directly with the mac80211 core. As mentioned, WEXT
is a legacy wireless configuration interface (only maintained, not being
developed) running over IOCTL (Input/Ouput Control) calls. IOCTL
have been steadily removed in favour of other transport mechanisms,
such as netlink, for user-space/kernel-space communication. However,
it is still used in different places (e.g. Android).
Recently, the Linux Kernel picked up initial WiFi Direct (or WiFi P2P)
support (also supported in wpa supplicant). A key issue that has sur-
faced in the process of proposing the P2P extensions is the need for
a standardized API between connection managers and wpa supplicant,
which in turn interacts with mac80211 through nl80211.

3.5 Avahi

As discussed in Sect. 2, one of the most important protocols in the con-
text of local networking configuration is the Zeroconf suite. In Linux,
Zeroconf is implemented by Avahi [42], which is a daemon that pro-
vides service discovery on the network through mDNS/DNS-SD and



8 Alfredo Matos, John Thomson, Paulo Trezentos

IPv4 address auto configuration through IPv4LL. IPv4 address config-
uration is done on demand, in most cases requested by NM, through a
D-Bus interface. It is integrated into most Linux distributions, including
embedded efforts such as OpenWRT, as presented in the next section.

4 Linux Network Stack

To understand how the tools are organized inside Linux, we must eval-
uate different Linux-based platforms. By examining the major distri-
butions, it is possible to establish how most tools are organized in the
Linux network stack and to determine the major trends concerning net-
work management. The identified trends can provide insight into the
best available tools, given that distributions spend a considerable inte-
gration effort and expertise towards building the appropriate network
management stack and also consequently brings us closer to the goal of
defining a reference Linux architecture.

4.1 Linux Distributions

Looking at the Linux distribution spectrum immediately suggests that
there are several approaches towards network management. Distribu-
tions use different management tools, either scripts or applications, re-
sulting in a uneven landscape. Here, we evaluate a select set of distribu-
tions, based on perceived importance [1]: we focus on those with most
derivatives, from where tools are reused in each derivative distribution.
We also focus on those with most user adoption, which helps determine
the main ways in which users interact with Linux-based systems.

Fedora Fedora [16] is a user oriented distribution, a development ef-
fort sponsored by Red Hat [3]. We analysed the latest release - Fedora
14. It uses a custom tool for the most static and standard network con-
figurations, system-network-config, which is part of the control panel
options and provides scripts and (python) tools for static system con-
figurations. However, NM (v0.8.1) is also included, superseding most of
the functionality provided by system-network-config. As expected, NM
is accompanied by the required wpa supplicant for wireless management
and security. Also, avahi is used and takes over all the Zeroconf aspects.

CentOS For a Red Hat Enterprise Linux (RHEL) [18] based distri-
bution, which is a popular yet paid-for Linux distribution, we analysed
CentOS [8]. CentOS is a free RHEL-based distribution, presenting an
internal organization similar to Fedora, except that NM is disabled by
default even though it is installed. However, NM is recommended for
laptop usage [7]. In both cases, wpa supplicant is used and avahi is
running, controlling Zeroconf protocols.



Linux Network Management Survey 9

Debian/Ubuntu Debian [15] is one of the major available distri-
butions, generating many derivatives. For static configurations it uses
ifupdown, a tool that implements scripts and configuration files to eas-
ily manage network interfaces. The remaining setup is similar to Fe-
dora, where the main tool is NM (v0.6.6 in Debian Lenny and v0.8.1 in
Squeeze), complemented by wpa supplicant for wireless support. This
setup is seen both in Debian and Ubuntu [37] (Maverick 10.10), and in
all versions, avahi runs by default, handling Zeroconf functionality.

OpenSUSE OpenSUSE [32] and earlier SUSE systems, have histori-
cally relied on YAST for all system configurations. YAST handles most
network configurations, using scripts to manage the different interfaces.
In the initial interface configuration it is possible to activate NM, con-
sequently becoming similar to the previous approaches, relying on NM
and wpa supplicant for most of the wireless interactions, and on avahi
for Zeroconf.

Linux Kernel Stack

Drakx Net

Drakroam

Scripts
Mandi

WPA Supplicant

D-Bus System Exec

wpa_cli iwlist

WEXT

Fig. 4. Madriva and Caixa Mágica Network Management stack.

Mandriva and Caixa Mágica Mandriva [26] is the Linux distribu-
tion upon which Caixa Mágica [22] is built. We reviewed Caixa Mágica
15, as well as Mandriva 10.1 and 10.2, which share the same base. Man-
driva, and consequently Caixa Mágica, do not follow the same pat-
tern as other distributions using mostly custom tools, as seen in Fig. 4
where the Mandriva specific tools are highlighted via dashed stroke.
The main networking configuration tool is Drakx-net, which is part of
the Drak configuration toolset, a custom Mandriva system configura-
tion tool. Drakx-net provides a configuration manager for networking
settings, covering network interfaces and VPN.
Looking at the roaming/wireless subsystem, it is handled by Drakroam.
This Mandriva developed tool is an application composed of scripts that
interact with the OS, a graphical configuration interface, and an applet
that provides a shortcut for network configuration with special empha-
sis on wireless. Drakroam uses mandi, a custom built D-Bus daemon



10 Alfredo Matos, John Thomson, Paulo Trezentos

that provides support for network configurations. It features a plug-in
system, where the wireless part is an interface to the wpa supplicant
control interface. As a fall-back, Drakroam can support wpa cli, a com-
mand line interface application provided by wpa supplicant, and alter-
natively it falls back to iwlist (using WEXT). Beyond this, Caixa Mgica
and Mandriva deploy Zeroconf mechanisms through the avahi daemon.

Other Distributions and Platforms While we mostly explored
desktop-like distributions, it is worth considering other platforms, espe-
cially embedded devices. We analyse Android [5], which targets mobile
devices, and OpenWRT, which targets embedded routers.
Android, aimed at mobile phones and embedded devices, has an ap-
proach to network management that is different from the previously
discussed distributions. As shown in Fig. 5, it uses Connectivity Man-
ager [12], a Java connection manager, for controlling network interfaces
and providing an API for applications interacting with the Android net-
work management infrastructure. Similarly, WiFi is controlled through
WiFi Manager [40], which has limited capabilities constrained by the
Java exposed interface.

Linux Kernel Stack

Connectivity Manager

WiFi Manager

WPA Supplicant

Java Middleware

Wireless Extensions

Fig. 5. Android network management stack.

WiFi functionality is supported by a modified version of wpa supplicant
that supports additional control commands specific to Android mo-
bile devices. The middleware interactions with wpa supplicant are done
through the socket interface, given that there is no D-Bus support.
However, because Android devices do not support the mac80211 stack,
wpa supplicant is limited to WEXT. Furthermore, the Android ap-
proach does not support Ad-Hoc networks [4], and lacks a fully compli-
ant Zeroconf tool (only a Java library for mDNS [21] exists).
OpenWRT [33] uses slimmed down versions of the applications used
by most distributions. Given that the main purpose of the distribution
is acting as an router and AP, it supports hostapd (Sect. 3.3, assum-
ing the role of AP and WPA Authenticator with WPA/WPA2/802.11i
capabilities. It supports several deployments, depending mostly on the
hardware drivers to determine functionality, using the mac80211 stack
as well as legacy drivers. Zeroconf can also be supported, by installing



Linux Network Management Survey 11

the provided packages for the avahi daemon, which can run on Open-
WRT.
The static nature of the target deployment, implies that most network
configurations are achieved statically through (BASH) scripts, using a
flat database, the Unified Configuration Interface (UCI) module within
OpenWRT, for storage.

4.2 Reference Architecture

After analysing all the different tools and distributions, an obvious pat-
tern emerges, as shown in Table 1. The Linux network stack, especially
considering the wireless subset, is centered mostly around Network Man-
ager, both for the graphical interface, as well as the system daemon.
While there are some notable alternatives in the form of ConnMan, and
some distribution specific efforts, there is a convergence within Linux
towards the widespread use of Network Manager on the desktop and lap-
top platforms. The only noteworthy exception is Android, which uses
a custom connectivity manager. Network Manager is tightly integrated
in the Linux operating system, providing not only means to configure
network settings, but also means for applications to determine whether
an active network connection exists, as highlighted in the top-most part
of Fig. 6, which shows the reference Linux network architecture. How-
ever, as we follow down the proposed consolidated network stack, we
observe a much clearer convergence across all platforms: WPA Suppli-
cant. The WPA Supplicant daemon has become an expected presence
on all Linux based operating systems, such as desktop, laptop and even
handheld devices, also making an appearance on Android phones.

Distribution
Network

Management

Wireless

Management

Wireless

Stack

Zeroconf

Support

Fedora
system-network-config
and Network Manager

wpa supplicant
mac80211
WEXT

avahi

CentOS system-network-config1 wpa supplicant
mac80211
WEXT

avahi

Debian
Ubuntu

Network Manager wpa supplicant
mac80211
WEXT

avahi

OpenSUSE
YAST and Network

Manager2
wpa supplicant

mac80211
WEXT

avahi

Mandriva
Caixa Mágica

Drakx-net and
Drakroam3 wpa supplicant

mac80211
WEXT

avahi

Android
Connectivity Mgr. and

WiFI Mgr.
wpa supplicant WEXT -

OpenWRT UCI/Scripts wpa supplicant
mac80211
WEXT

avahi4

Table 1. Tools summary per distribution.



12 Alfredo Matos, John Thomson, Paulo Trezentos

WPA supplicant started out by handling the security aspects of WiFi
network connections, but also covers roaming between access points.
It integrates with all the network connection managers, such as NM,
ConnMan, and even Android’s Connectivity Manager.
When stepping into the actual network protocol implementations, we
venture into the Linux Kernel, as depicted by the bottom-most part of
Fig. 6. The main presented focus is on WiFi, which is handled through
the new mac80211 wireless subsystem. This provides support for most
modern wireless cards, but also supports the legacy WEXT interfaces,
kept for legacy support (of both user land tools and Kernel drivers).

Linux Kernel Stack

Applications

WPA Supplicant

Network Manager Interface

D-Bus

D-Bus

netlink

cfg80211

mac80211

nl80211

ioctls

Wireless Extensions

Legacy Drivers

Network Manager

Fig. 6. Linux Network Management Reference Architecture.

Beyond the presented blocks, every distribution and system comple-
ments the network stack tools with auxiliary scripts that handle the
static aspects of network configurations. While this where most differ-
ences exist, it does not represent a major divergence given that most
scripts tend to be distribution specific. We also omit from the illustra-
tion the Zeroconf tools but those which are shown in Table 1, given
that the only real alternative in Linux is avahi, which already enjoys
widespread deployment. When coupled with adequate Link Layer tools,
it can provide a interesting effort in the self-managed network environ-
ments.

1 Network Manager is recommended but not installed.
2 Network Manager is installed by default but is optional.
3 Requires more helper applications such as mandi, wpa cli and iwlist.
4 Not installed by default, but available for the platform.



Linux Network Management Survey 13

5 Overview and Future Directions

By looking at the previous sections, which are mostly summarized by
Table 1, obvious trends appeared, which led to the reference architecture
presented in Fig. 6. Using this information allows us to shift the focus
to the key aspects presented in Sect. 2, concerning heterogeneous net-
working and autonomous configurations as an evolution path for current
network paradigms.
From the gathered results, it is possible to deduce that Linux-based
systems can cope with the heterogeneous networking requirements that
involve multiple technologies and dynamic environments. From a Linux
perspective, most wireless technologies are already supported, with ad-
equate tools to handle different aspects of networking (e.g. NM and
wpa supplicant).
However, there is an important gap concerning the control over net-
work selection. As observed in the discussed tools, most network selec-
tion mechanisms imply static technology-based preference lists, simple
pattern repetition (connect to last successfully used network) and sim-
ple network information (e.g. signal strength). When available networks
and technologies become abundant, most of which might even be new
to the user, these selection and configuration mechanisms become in-
sufficient and must be improved. Therefore, it is important to increase
the flexibility of existing control structure for network attachment. This
can be achieved using two complementary approaches: 1) provide a flex-
ible interactive API, exposed by the modules that directly control the
network selection (e.g. wpa supplicant or NM); and 2) introduce a com-
ponent that collects the options coming from the different technologies,
and provides consistent and reliable network selection decisions, which
could be a part of NM, or even an on-demand external dependency that
depends on the deployment scenario.
Concerning the autonomous configuration mechanisms and technologies
that can work without infrastructure support, we observed that Linux
already has a strong Zeroconf support, along with IPv6 and even WiFi
Direct. This places FLOSS as a front-runner when considering these
types of technologies. Avahi is already distributed with most Linux-
based systems, and the Linux Kernel already support most modern
technologies. Therefore, we can conclude that most tools are in place,
leaving FLOSS in a good position to increase the integration of these
technologies in the OS. What is missing now is the widespread adop-
tion of these techniques along with extensions that enable us to inte-
grate them in different applications. This is where FLOSS has the upper
hand: through open interfaces and a collaborative model, it is possible
to develop and integrate adoptable interfaces. This provides applica-
tions with a potential agility to quickly take advantage of the discussed
autonomous configuration mechanisms, in different scenarios.
Following the open source model, this allows for an uncomplicated API
for information sharing across different applications. The consequence
is that, instead of being bound by standards, FLOSS can use them
as a launchpad towards innovative efforts, taking advantage of local



14 Alfredo Matos, John Thomson, Paulo Trezentos

loop technologies and promoting research through extensions/tools that
benefit the end user.
Lastly, it is worth mentioning that as convergence on the network man-
agement architecture occurs, the disadvantages of FLOSS development
model get diluted, which is what we have observed and potentially con-
tributed to. Right now, most fragmentation occurs only in the static
configuration scripts, which are a matter of preference, style and legacy
for each distribution.

6 Conclusions

Throughout the presented survey, we attempted to explore FLOSS tech-
nologies in the light of current and future technologies, by undertaking
the effort of investigating the current state of the art Linux tools and
distributions. The result was the proposed reference network architec-
ture, that defines the baseline for the Linux network stack, highlights
the strengths and gaps of current approaches.
Using this reference stack it is possible to outline different approaches
that enable FLOSS to tackle the new networking environments, and
also understand what can be can expected from the current Linux net-
working landscape. More importantly, by relating the current state with
emerging technologies we have uncovered an opportunity for proposing
future developments, contributing to the usefulness of open source op-
erating systems in light of new technologies.
The two most important conclusions revolved around the need to im-
prove Linux network selection mechanisms, in order to tackle dynamic
and mobile heterogeneous environments, and also identified that it is
necessary to place a strong emphasis on providing new and innovative
services that use autonomous technologies, which are already available
in Linux.
Nevertheless, the main contribution of a reference architecture and fu-
ture evolution path, is that it enables the reduction of divergence and
repeated work in FLOSS. This can increase the traction of existing tech-
nologies, highlighting the potential advantages of the FLOSS model in
light of future research and development activities.

Acknowledgements

The work described in this paper was done in the scope of IST FP7
ULOOP STREP Project. ULOOP receives funding from the European
Community’s Seventh Framework Programme, under contract agree-
ment n◦257418. The views expressed in this publication are those of
the authors and do not necessarily reflect the project or the European
Commission’s view on the subject.



Linux Network Management Survey 15

References

1. Distrowatch. http://distrowatch.com/. Last checked: June, 2011.
2. Official linux wireless wiki. http://wireless.kernel.org/. Last

checked: April, 2011.
3. Red hat. http://www.redhat.com/. Last checked: April, 2011.
4. Wifi: support ad hoc networking - support ticket. http://code.

google.com/p/android/issues/detail?id=82. Last checked:
April, 2011.

5. Android. Android mobile plaftorm. http://www.android.com/.
Last checked: April, 2011.

6. Johannes Martin Berg. Wifi control plane overview.
http://wireless.kernel.org/en/developers/Documentation/

mac80211?action=%AttachFile&do=get&target=mac80211.pdf.
Last checked: April, 2011.

7. CentOS. Centos network manager configuration. http://wiki.

centos.org/HowTos/Laptops/NetworkManager. Last checked:
April, 2011.

8. CentOS. Rhel based linux operating system. http://www.centos.
org/. Last checked: April, 2011.

9. S. Cheshire, B. Aboba, and E. Guttman. Dynamic Configuration of
IPv4 Link-Local Addresses. RFC 3927 (Proposed Standard), May
2005.

10. S. Cheshire and M. Krochmal. DNS based Service Discovery.
Internet-Draft, February 2011.

11. S. Cheshire and M. Krochmal. Multicast DNS. Internet-Draft,
February 2011.

12. Connectivity Manager. Android connectivity manager developer in-
formation. http://developer.android.com/reference/android/

net/ConnectivityManager.%html. Last checked: April, 2011.
13. ConnMan. Network connection management daemon. http://www.

connman.net. Last checked: April, 2011.
14. D-Bus. D-bus system message bus. http://www.freedesktop.org/

wiki/Software/dbus. Last checked: April, 2011.
15. Debian. Linux-based operating system. http://www.debian.org/.

Last checked: April, 2011.
16. Fedora. Linux-based operating system. http://fedoraproject.

org/. Last checked: April, 2011.
17. freedesktop.org. Open source software projects working on interop-

erability for x window system desktops. http://www.freedesktop.
org/. Last checked: April, 2011.

18. Red Hat. Red hat enterprise linux. http://www.redhat.com/rhel.
Last checked: April, 2011.

19. Informal DNS-SD Service types list. Dns srv (rfc 2782) service
types. http://www.dns-sd.org/ServiceTypes.html. Last checked:
April, 2011.

20. Vitor Jesus, Susana Sargento, Daniel Corujo, Nuno Senica, Miguel
Almeida, and Rui Aguiar. Mobility with qos support for multi-
interface terminals: Combined user and network approach. IEEE



16 Alfredo Matos, John Thomson, Paulo Trezentos

Symposium on Computers and Communications (ISCC’07), pages
325–332, July 2007.

21. jmDNS. Java mdns multicast implementation. http://jmdns.

sourceforge.net. Last checked: April, 2011.
22. Caixa Mágica Linux. Mandriva based linux operating system. http:

//www.caixamagica.pt/. Last checked: April, 2011.
23. mac80211. mac80211 development documentation. http://

wireless.kernel.org/en/developers/Documentation/mac80211.
Last checked: April, 2011.

24. Jouni Malinen. hostapd: Ieee 802.11 ap, ieee
802.1x/wpa/wpa2/eap/radius authenticator. http://w1.fi/

wpa_supplicant/. Last checked: April, 2011.
25. Jouni Malinen. Linux wpa/wpa2/ieee 802.1x supplicant. http:

//w1.fi/wpa_supplicant/. Last checked: April, 2011.
26. Mandriva. Linux-based operating system. http://www.mandriva.

com/. Last checked: April, 2011.
27. Meego. Meego mobile platform - linux foundation. http://meego.

com. Last checked: April, 2011.
28. ModemManager. Modem manager for linux. http://cgit.

freedesktop.org/ModemManager/. Last checked: April, 2011.
29. Network Manager. Linux network manager. http://projects.

gnome.org/NetworkManager/. Last checked: April, 2011.
30. nm applet. Network manager gnome applet. http://ftp.gnome.

org/pub/GNOME/sources/network-manager-applet/0.8/. Last
checked: April, 2011.

31. oFono. Open source telefony (gsm/umts). http://ofono.org. Last
checked: April, 2011.

32. OpenSuse. Linux-based operating system. http://www.opensuse.

com/. Last checked: April, 2011.
33. OpenWRT. Openwrt embedded linux. http://openwrt.org. Last

checked: April, 2011.
34. Rute Sofia and Paulo Mendes. User-centricity impact on future

internet architectures. FIA: Future Internet Workshop 2010, June
2010.

35. S. Thomson, T. Narten, and T. Jimei. IPv6 Stateless Address Au-
toconfiguration. RFC 4862 (Proposed Standard), September 2007.

36. Jean Tourrilhes. Linux wireless extensions. http:

//www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.

Wireless.Ext%ensions.html. Last checked: April, 2011.
37. Ubuntu. Debian based linux operating system. http://www.

ubuntu.com/. Last checked: April, 2011.
38. ULoop. User-centric wireless local loop. http://www.uloop.eu.

Last checked: April, 2011.
39. Wi-Fi Alliance. Wi-fi certified wi-fi direct: Personal, portable

wi-fi technology. http://www.wi-fi.org/knowledge_center_

overview.php?docid=4685, 2010.
40. WiFi Manager. Android wifi manager developer informa-

tion. http://developer.android.com/reference/android/net/

wifi/WifiManager.htm%l. Last checked: April, 2011.



Linux Network Management Survey 17

41. Zeroconf. Zero configuration networking (zeroconf) working group.
http://www.zeroconf.org. Last checked: April, 2011.

42. Zeroconf. Zeroconf open source implementation. http://www.

zeroconf.org. Last checked: April, 2011.


