
Download Patterns and Releases in Open Source

Software Projects: a Perfect Symbiosis?

Bruno Rossi, Barbara Russo, and Giancarlo Succi

CASE – Center for Applied Software Engineering

Free University of Bolzano-Bozen

Piazza Domenicani 3, 39100 Bolzano, Italy

{brrossi, brusso, gsucci}@unibz.it

http://www.case.unibz.it

Abstract. Software usage by end-users is one of the factors used to evaluate the

success of software projects. In the context of open source software, there is no

single and non-controversial measure of usage, though. Still, one of the most

used and readily available measure is data about projects downloads.

Nevertheless, download counts and averages do not convey as much

information as the patterns in the original downloads time series. In this

research, we propose a method to increase the expressiveness of mere download

rates by considering download patterns against software releases. We apply

experimentally our method to the most downloaded projects of SourceForge's

history crawled through the FLOSSMole repository. Findings show that

projects with similar usage can have indeed different levels of sensitivity to

releases, revealing different behaviors of users. Future research will develop

further the pattern recognition approach to automatically categorize open source

projects according to their download patterns.

Keywords: Open source software projects, software releases, repository

mining.

1 Introduction

Determining the success of software projects is very often non-trivial. There are many

aspects to consider, and even the definition of success can depend from multiple point

of views. Nevertheless, discerning the success of software projects is useful as

researchers can evaluate approaches, methods, and processes that performed well -

given a certain context. Furthermore, the availability of large data about open source

software projects made such research more appealing. At the same time such task can

be more difficult, as we miss some important in-context information that can be

gathered only as insider of a development team. Reconstructing such information can

be problematic when mining online repositories without strict contact with the

original development team.

The definition of success is also not unique. One of the views of software projects'

success is directly dependent on the users. Specifically, as reported in [2], in

Information System (IS) research the success of a software system has been studied as

directly dependent on system and information quality [4]. According to this view,

system quality impacts directly on software usage, and thus on users satisfaction.

Deriving the success of a project is thus a question of considering a) the impact of the

system quality on the users’ usage level and b) the acceptance rate of the user. Once

this has been determined, then it is relatively straightforward to associate successful

projects to their development practices, development process characteristics, or even

product features. Leaving aside software quality, the determination of criteria to

measure the usage of software and relative users' satisfaction are relevant research

problems.

If we focus on usage, and on commercial software, there is at least one single

indicator that can be reliably used as an indication of usage: the number of copies sold

on the market. It is difficult that applications bought do not translate in real usage of

the application. For open source software, the situation is more fuzzy, as there are no

unique indicators of usage. Different proposals have been made, like using the

number of downloads [3], adopting software agents to monitor the software usage [2],

tracking the inclusion in software distributions [2], using downloads time-series to

detect the evolving users’ community [10], or even use web search engines results to

derive the popularity of projects [11].

Conversely, determining users’ satisfaction is probably easier for open source

software than for proprietary software. The large number of data available allows

mining of repositories to audit mailing lists, forums, bug tracking reports, and so on.

Also in this case, there is no single universal indicator of users' satisfaction and

different proposals have been made: considering user ratings, opinions on mailing

lists, or surveys [2] – among others.

In this work, we focus on software usage and specifically on download rates.

Software usage needs to take into account different measures, but we believe that

download rates have not been exploited to their full potential. Especially for open

source software, downloads have been identified useful as a proxy of software usage.

Recently, the interest is more on the patterns that have been detected rather than the

mere download indexes (as for example [6] and [10] justify).

Our hypothesis is that it is not true that in all open source software projects

download rates are in relation with software releases. More precisely, we believe that

there are projects in which download rates are in relation with the application type

(e.g. file sharing applications, where users want to have the latest application

available, security fixes included) and others where users do not really care about the

release date (e.g. applications installed and kept for longer time, like graphical

utilities). From these hypotheses, it derives automatically that different patterns and -

even more - download numbers can represent very different situations that are

difficult to generalize. So, before reconstructing patterns to see whether projects were

successful or not, we will need to know how much projects are sensitive to software

releases. We have two research questions for this paper.

 RQ1. Are download patterns connected to releases in open source software

projects?

 RQ2. If such relation exists, is the relation consistent in the same category of

projects?

The paper is structured as follows. Section 2 presents background on deriving open

source software usage and specifically on studies on the evaluation of usage by means

of download rates. Section 3 discusses further the research questions by means of a

problem statement. Section 4 presents a method for analyzing downloads time series.

Section 5 proposes an experimental evaluation of the method by means of the highest

ranked projects in SourceForge's history. The section includes experimental design,

data collection, data filtering, evaluation of the method, findings and limitations.

Section 6 is about conclusions and future works in prospective research.

2 Background

Different techniques have been proposed to derive software usage. If we specifically

focus on download rates, this indicator has been found to have several advantages,

like the fact that it is relatively easy to gather this kind of information from online

repositories. Nevertheless, various disadvantages are also reported, like the issue that

a single download may not really translate in software usage [2]. What is very often

suggested is to use this measure with care [3].

There has been a move in recent years from considering mere download rates (we

can report as an example [6]) towards analyzing time-series and emerging patterns. In

this sense, there is a consensus now among all researchers that download averages, or

totals, do not convey enough information to be used as independent or dependent

variable in success prediction models. Time series of downloads convey a larger set

of information. The problem is that in the open source scenario, with large datasets

available, some kind of data compression or summarization is needed so that

knowledge about single projects can be synthetically represented, summarized, and

then visualized. We can report specific studies that are related to the current research

(Table 1).

Table 1. Related Studies.

Paper Study Results

[6] Identification of classes of successful and

unsuccessful projects according to download

patterns

Six patterns of download rates

identified. Justification of

emergence of such patterns

[7] Identification of successful open source

projects by means of downloads numbers

Categorization of 122,065

projects in super, successful,

and struggling. No evidence of

Zipf’s Law for the number of

downloads for projects on

SourceForge

[10] Proposing a method to measure size of open

source projects and use base based on

downloads time series

Different types of users found

according to adaptation of

downloads to releases

All these studies have in common the analysis of download rates. Research

questions are different, as well as the experimental setting. In [6] and [7] the focus is

on deriving successful projects, in [10] the focus is on deriving the use base from

download patterns.

3 Problem Statement

To present the problem statement, we give a practical example by means of two well

known software. Namely, we consider the most downloaded project of SourceForge's

history - eMule1 - and the TCL2 application. This selection is not random, as those

applications were selected in the categorization made in [6], so the interested reader

can find the motivation more compelling. As can be seen, the two time series of

downloads for the two projects are quite different (Fig. 1 and 2).

Fig. 1. eMule project downloads.

What we see from the figures is that there are some short-time cyclic patterns in

the download rates (maybe weekly) in both cases, but in the eMule case there are

evident longer term cyclic patterns. What we ask ourselves is whether the latter type

of patterns are related to software releases.

A simple approach would be to simply plot release dates on the same time series

and evaluate manually the situation case by case. Instead, what we want to derive is

an approach that allows to detect automatically - and without visual inspection -

whether a time series is dependent on release dates. In the specific, if there are strong

increases in download rates in coincidence with a software releases. Such method

must also remove less important cyclic patterns in download rates. Considering the

example in Fig. 2, we do not want to consider relevant low cyclic patterns that repeat

weekly.

1 http://www.emule-project.net
2 http://www.tcl.tk

Fig. 2. TCL project downloads.

Thus, we present a proposed automated method that can be used applied to time

series to evaluate the sensitivity to software releases. We apply it to downloads time

series, but it can be potentially applied also to other types of time series (like the

number of commits in time, for example). In the following, we use mostly the TCL

project to explain the method.

4 Method

To eliminate non-relevant cyclic patterns, we use a technique called Piecewise

Aggregate Approximation (PAA) that approximates a time series by means of

segments. This approach has been used, for example, when handling large amounts of

data to reduce the complexity of similarity search space [1]. In our case, segmentation

helps not only in reducing the data points to be considered for analysis, but also in

reducing short term cyclic patterns in the time series.

In the specific, in this research, we used a specialized form of PAA that uses a

wavelet transform of the time series to decompose the segments of the time series [1,

8]. The wavelet used is the simplest form of wavelet: the Haar wavelet [8]. In Figure

3 we propose an example of PAA applied to a synthetic data set. The original time

series is approximated by means of a wavelet that maintains similar patterns as the

original. As can be seen directly from figures, the data loss is inversely proportional

to the number of segments used for PAA. Conversely, more segments mean also

keeping more short time periodic patterns.

Fig. 3. Example of PAA by using Haar wavelets.

The whole theory of wavelets is far beyond scope for this paper, but an interesting

overview can be found in [8]. Alternative and more sophisticate techniques for PAA

can be found in [1]. To show the results of the technique, we applied it to the eMule

and TCL projects (Fig. 4 and 5). After the application of the method, we have thus

eliminated unwanted cyclic patterns from the time series, and got a simpler

representation. We will then use this representation to detect the intersection of areas

with releases automatically.

Fig. 4. eMule project wavelet transform.

Fig. 5. TCL project wavelet transform.

In detail, the whole approach is the following:

a. Represent projects as time series of downloads;

b. Filter out projects that have too many missing values;

c. Perform linear interpolation of missing values. This is needed as the original

data set might have missing data points from the data collection process.

Linear interpolation helps in reducing the impact of such data points;

d. Perform PAA on each time series;

e. Discriminate in the wavelets the areas of different levels of activities as

determined by PAA;

f. Plot release information into the time series;

g. Evaluate releases in the different intervals identified, summarizing the result

with two metrics;

 So, once the transform has been applied, we need a way to summarize the patterns

of the original time series. For this, we divide the wavelet into different intervals

according to the level of burstiness, identifying bursty intervals and more constant

intervals. The reason is that we want to codify our time series in such a way that it is

more easy to automatically derive intersections with release dates. This is similar to

what has been proposed in [9] to analyze development iterations. After such

identification, we introduce the dates of releases and we evaluate the intersection of

release dates with different areas.

To divide areas of wavelets, we consider periods where activity is frenetic (A) and

others where periods of activity are more constant (B). For this, we will introduce the

following notation for the remaining of the paper: we define twi as the i
th

 point in the

wavelet time series, Ik,ε as an interval in the time series, where twk is the starting point

and a positive integer ε is the length of the interval Ik,ε. To detect automatically areas,

we use the following discriminating rule:

𝑔𝑖𝑣𝑒𝑛 𝜀 > 0

𝐼𝑘 ,𝜀 = 𝑡𝑤𝑘𝜀+𝑘 , 𝑡𝑤 𝑘+1 𝜀+𝑘

𝐼𝑘 ,𝜀 𝐴 𝑖𝑓𝑓 ∃𝑖 ∈ 𝑡𝑤𝑖 | 𝑡𝑤𝑖 ∈ 𝐼𝑘 ,𝜀 ⋀ (𝑡𝑤𝑖 ≥ 𝜇 𝑡𝑤 + 𝜎 𝑡𝑤 ⋁ (𝑡𝑤𝑖 ≤ (𝜇 𝑡𝑤 − 𝜎 𝑡𝑤)

𝐼𝑘 ,𝜀 𝐵 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

We use this rule to classify between A, and B periods. For convenience, we also

define JA as each connected set of intervals Ik,ε of type A. The same represents JB for B

periods. Fig. 6 shows the results of area mapping for the TCL project.

Fig. 6. TCL project with areas identified (spaces between areas are just to ease the

interpretation of figure).

We next evaluate the relation between different area types and releases. We map

thus how many releases happen for each project in specific areas. More releases in

areas of type A mean that the project is more subject to a relation between releases

and download rates. The simple approach that we used in current research is to use

the intersection of releases and areas. If we apply this to TCL project, we can see that

the project is scarcely sensitive to release dates (Fig. 7).

Fig. 7. TCL project with areas and release dates.

To automate the process, and to allow for automatic use of the approach without

examining the figures, we defined two metrics. One metric is about the sensitivity to

releases, the other about the coverage of different areas. This information is needed as

we can have the same level of sensitivity to releases but different level of burstiness

of the time series. Without visual inspection, we will miss this relevant information.

First we define the set of all releases of a project as:

R = {r1,r2,…,rn} .

Then we define the first metric - that we call s - as the sensitivity to releases:

𝑠 =
 R ∈JA

 R
 . (1)

This metric is a weighted ratio of how many releases happen in one period of

larger activity in the downloads time series. An index of 1.0 means that all the

releases of a software project happen when the downloads time series are active the

most. Conversely, a metric of 0.0 shows no reaction to releases: users' download of

software is completely separated from release dates.

We then define the second metric as the amount of burstiness of different time

series. We refer to this metric as b.

b =
 JA

 (JA ∪ JB)
 . (2)

An hypothetic index towards 1.0 means a time series of downloads completely

bursty. An index towards 0.0, inversely represents a time series of downloads where

rates are almost constant. Thus in the example of TCL, we have a download rate that

is not very sensitive to releases (s=0.10) and with a trend of downloads not so bursty

(b=0.31). This result is consistent with what reported in [6] where the application is

reported as an application with regular downloads not related to releases. As can be

seen, these two metrics give us more information than the mere average download

rates.

5 Experimental Results

We provide an experimental evaluation of the method by applying it to several

projects out of the FLOSSMole repository [5] and with data about releases gathered

through SourceForge. The strategy of selection of the sample of projects was to select

the most downloaded projects from the whole SourceForge's history (Table 2). This

choice had the aim of limiting missing data points in the time series on one side, and

providing a first evaluation that can then be replicated on less downloaded projects. In

this way, this first evaluation has the aim to gather findings from a well-known set of

applications where downloads totals are quite consistent.

For each project, we gathered the time series of downloads, limiting the analysis to

1.000 data points. For the selection of the parameters, based on the sensitivity analysis

reported in the next section, we selected the length of each interval Ik,ε with ε=30.

After collecting the data, we applied the whole approach to the dataset of each

project.

Table 2. Most downloaded projects in Sourceforge's history.

Rank Project Name Type Total

Downloads

% Zeros

TS 1000

1 eMule P2P Client 510,493,881 0,00%
2 Azureus / Vuze P2P Client 455,284,828 0,30%
3 Ares Galaxy P2P Client 209,066,979 0,40%
4 7-Zip Compression Software 76,806,020 12,30%
5 FileZilla Client FTP 71,295,059 34,40%
6 GTK+ and GIMP

installers for Windows

Graphical tool 64,212,148 24,30%

7 Audacity Audio Editor 64,051,083 4,40%
8 DC++ P2P Client 56,488,262 4,30%
9 PortableApps.com:

Portable Software/USB

Utility 55,713,765 18,90%

10 BitTorrent File Sharing 52,031,664 81,08%
11 Shareaza P2P Client 49,799,296 0,20%
12 VirtualDub Video Editing 47,835,670 10,20%
13 CDex Digital Audio Ripper 39,738,454 6,30%

14 Pidgin Instant Messaging 32,309,818 24,10%
15 aMSN Instant Messaging 31,175,716 6,30%
16 WinSCP File Transfer Client 29,681,313 6,10%

5.1 Filtering

A first problem we had with the data set was how to handle zero counts in the time

series. For this set of largely downloaded projects, our interpretation is that a zero in

the download totals for one day means a missing point in the data collection process.

The evolution of the download counts for such projects also justifies this view, with

zeros interleaved to medium-high level download counts. Since our method supposes

the application of interpolation, we wanted in any case to avoid its excessive

application. For this reason, we filtered out from the sample the projects that had

more than 10% zeros in the time series. Additionally, two projects were excluded

from the sample. The DC++ and the CDex projects were removed as we didn't have

enough information about release dates.

5.2 Interpolation

For projects that were included in the sample, we interpolated linearly the missing

points from previous and subsequent values in the time series. In this way, even with

an approximation, we limited the impact of missing values from the data collection

phase that could lead to an erroneous generation of different areas in the time series.

In this experiment, we used a simple linear interpolation.

5.3 Sensitivity Analysis

There is one subjective choice when applying PAA: the selection of the number of

segments to use. In our research, we considered monthly segments (segments of

length 30) and we believe this is as an appropriate number of segments according to

our knowledge of the dataset, as we wanted to avoid weekly cyclic patterns. To

support this decision, we performed a sensitivity analysis (Fig. 8), by calculating the

Euclidean distance between the original time series and the wavelet. The analysis

shows how PAA fits the original time-series according to different number of

segments. With our selection of the parameters, we do not compress excessively the

original representation of the dataset.

If we consider a higher number of segments, the fitting will improve going from

monthly, to weekly segments, for example. By doing this, we will also introduce more

cyclic patterns into the time series. So there is a trade-off in this sense. Our heuristic

of selection for the estimation of the segments preferred to use monthly segments to

reduce effects of weekly patterns in the time series.

Fig. 8. TCL Project, distance between the wavelet and the time series according to number of

segments (the lower value the better the fitting).

5.4 Results

After filtering and interpolation, we considered out of the initial 16 projects, just 7

projects (Table 3). The following categories were included: a) P2P Clients, b) Audio

applications, c) Instant messaging, d) File Transfer Clients.

Table 3. Selected Projects.

Project Name Type Total Downloads

eMule P2P Client 510,493,881

Azureus / Vuze P2P Client 455,284,828

Ares Galaxy P2P Client 209,066,979

Shareaza P2P Client 49,799,296

Audacity Audio(Audio Editor) 64,051,083

aMSN Instant Messaging 31,175,716

WinSCP File Transfer Client 29,681,313

Then we applied to all projects the PAA technique, the derivation of areas in the

time series, and the calculation of the metrics for sensitivity to releases and the level

of burstiness. We report in the following the results.

For each project, we present the project name, the figure of the wavelet against

releases, the parameters for sensitivity to releases, and burstiness of the wavelet as

calculated by our approach (Table 4). The reader can see that in some cases, a high

level of sensitivity to releases (s parameter) can even be enforced by the fact that there

are shorter areas of burstiness (b parameter) .

Table 4. Analysis of the Projects.

Project Name Original time series, PAA and releases s b

eMule

0,80 0,39

Azureus / Vuze

0,06 0,15

Ares Galaxy

0,48 0,32

Shareaza

0,66 0,48

Audacity

0,83 0,33

aMSN

0,75 0,38

WinSCP

0,69 0,57

If we look at the results, we can observe the following interesting phenomena. For

almost all projects, there is a relation among releases and download rates. The only

project where this doesn't happen is the Azureus/Vuze project. This goes against our

assumption that a user of a P2P application always wants to get the latest release as

soon as possible, for example to get security fixes that are particularly important for

this category of application or improvements like greater download speeds. If this

doesn't happen for this particular application, it could mean that there specific

characteristics of the application, or in the modality of distribution of the application

that can be different. It can also be an indication that users – differently from the other

cases – received the updates mostly from updates inside their Linux operating system

distribution and not via software downloads. So this can also be in fact an indication

that download rates for that application have to be taken with care.

5.5 Findings

Popular open source software projects follow different patterns of downloads

according to the release of a software version. Mostly projects downloads follow the

dates of releases with typical increases, but this is not always the case. It is thus

interesting to examine the reasons of projects that do not strictly follow this rule. We

summarize the findings deriving from the research questions in Table 5.

Table 5. Summary of the Findings.

Research Question Finding(s)

RQ1. Are download patterns connected to

releases in open source software projects?

We found that - in the majority of

the projects analyzed - releases

lead to an increase in download

rates. In some cases, such behavior

is less evident or even absent (e.g.

Azureus). The explanation for this

can be in the characteristics of

users or the project features, but

can also be an indication that

download totals are not completely

reliable for that specific

application.

RQ2. If such relation exists, is the relation

consistent in the same category of projects?

We found that the behavior is not

consistent across all categories.

Even in the limited set of categories

we used, users respond in different

ways to software releases even in

the same category of applications.

For example, in our sample, it is

not true that users of P2P

applications are more interested

than other users in getting the latest

release of the software.

We suspect that for projects where download patterns are not strictly in relation to

releases there are two distinct explanations:

a. users really do not care about the latest release of the application. This can

also happen because the update of the application requires much effort

compared to the advantages of the update, so the user may decide to

postpone the update to a later time;

b. users are interested in updates and are actually updating the software as a

new version appears. In this case, downloads time series do not capture this

behavior, maybe because users are getting the updates by means of

alternative sources (other websites than SourceForge or through the

mechanism of updates in their own Linux distribution);

We argue thus that if we are in the a) case, downloads time-series can still be used

as a somewhat reliable indicator of project's success in combination with other

measures of usage and users' satisfaction. Conversely, if we are in the b) case, the

evaluation of download rates must be complemented with additional information

deriving – as an example – from projects' websites traffic, and/or search engines

queries, like has been proposed in [11].

5.6 Limitations

The main limitation of the approach is about the definition of the parameters of PAA

segmentation and areas definition. Although we provided the heuristic of selection

and sensitivity of the model to the parameters when explaining the approach, it is

clear that different parameters can lead to slightly different results. Specifically, the

choice of the length of the interval Ik,ε can give as result areas of different size to be

used then in the metrics for calculation. Sensitivity analysis has been performed to

reduce and limit this effect.

6 Conclusions and Future Works

We proposed a method to augment the expressiveness of downloads time series of

open source software projects. We added information about the relation of projects'

downloads to releases and defined two metrics. The metrics defined can give

information about the responsiveness of the users to releases. This is a first step in

research of automatic detection of patterns in downloads time series. Information

from such patterns can then be used in models to detect projects' success.

We applied experimentally the method to a subset of projects in the SourceForge

repository. We showed that codifying the downloads time series as two metrics

conveys more information than using global metrics like average download rates or

total download counts. As we have seen experimentally, even if projects have similar

total download rates and counts, they can follow completely different download

patterns. As such considering just those numbers can lead to wrong or biased

conclusions. Furthermore, project downloads can be more or less related to software

releases showing different behaviors from the point of view of users that can depend –

and this will need to be validated in future research - on projects characteristics,

application type or even modality of distribution.

Future research goes into two directions. One direction is to extend the approach to

a larger data set, specifically focusing on projects' categories. The second direction is

to investigate successful projects with an extension of the methodology developed in

this paper.

Acknowledgments. We thank the creators and maintainers of the FLOSSMole

repository for granting access and for their constant effort in providing a useful source

of information about open source projects.

References

1. Chakrabarti, K., Keogh, E., Mehrotra, S., Pazzani, M.: Locally adaptive dimensionality

reduction for indexing large time series databases. ACM Trans. Database Syst. 27, 2, 188-

228 (2002)

2. Crowston, K., Annabi, H., Howison, J.: Defining Open Source Software Project Success, in

proceedings of the 24th International Conference on Information Systems (ICIS), pp. 327-

340 (2003)

3. Crowston, K., Annabi, H., Howison, J., Masango, C.: Towards a portfolio of FLOSS

project success measures, the 4th workshop on Open Source Software engineering,

International Conference on Software Engineering (2004)

4. Delone, W.H., McLean, E.R.: The DeLone and McLean Model of Information Systems

Success: A Ten-Year Update, J. Management of Information Systems, vol. 19, pp. 9-30

(2003)

5. Howison, J., Conklin, M., Crowston, K.: FLOSSmole: A collaborative repository for

FLOSS research data and analyses. International Journal of Information Technology and

Web Engineering, 1(3), 17–26 (2006)

6. Israeli, A., Feitelson, D. G.: Success of Open Source Projects: Patterns of Downloads and

Releases with Time. In IEEE International Conference Software Science, Technology, &

Engineering, pp. 87-94, (2007)

7. Feitelson, D. G., Heller, G. Z., Schach, S. R.: An Empirically-Based Criterion for

Determining the Success of an Open-Source Project. Proceedings of Australian Software

Engineering Conference, pp. 363-368 (2006)

8. Li, T., Li, Q., Zhu, S., Ogihara, M.: A Survey on Wavelet Applications in Data Mining.

SIGKDD Explor. Newsl. 4, 2, 49-68 (2002)

9. Rossi, B., Russo, B., Succi, G.: Analysis of Open Source Software Development Iterations

by means of Burst Detection Techniques, Proceedings of the 5th International Conference

on Open Source Systems, pp.83-93, Springer, Boston (2009)

10. Wiggins, A., Howison J., Crowston, K.: Measuring Potential User Interest and Active User

Base in FLOSS Projects, in proceedings of the 5th International Conference on Open

Source Systems, pp.94-104 (2009)

11. Weiss, D.: Measuring Success of Open Source Projects using Web Search Engines, in

Scotto M., Giancarlo S. (Eds.): Proceedings of the 1st International Conference on Open

Source Systems, Genova, Italy, pp.93-99 (2005)

