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Abstract. Software usage by end-users is one of the factors used to evaluate the 

success of software projects. In the context of open source software, there is no 

single and non-controversial measure of usage, though. Still, one of the most 

used and readily available measure is data about projects downloads. 

Nevertheless, download counts and averages do not convey as much 

information as the patterns in the original downloads time series. In this 

research, we propose a method to increase the expressiveness of mere download 

rates by considering download patterns against software releases. We apply 

experimentally our method to the most downloaded projects of SourceForge's 

history crawled through the FLOSSMole repository. Findings show that 

projects with similar usage can have indeed different levels of sensitivity to 

releases, revealing different behaviors of users. Future research will develop 

further the pattern recognition approach to automatically categorize open source 

projects according to their download patterns.  

Keywords: Open source software projects, software releases, repository 

mining. 

1   Introduction 

Determining the success of software projects is very often non-trivial. There are many 

aspects to consider, and even the definition of success can depend from multiple point 

of views. Nevertheless, discerning the success of software projects is useful as 

researchers can evaluate approaches, methods, and processes that performed well - 

given a certain context. Furthermore, the availability of large data about open source 

software projects made such research more appealing. At the same time such task can 

be more difficult, as we miss some important in-context information that can be 

gathered only as insider of a development team. Reconstructing such information can 

be problematic when mining online repositories without strict contact with the 

original development team. 

The definition of success is also not unique. One of the views of software projects' 

success is directly dependent on the users. Specifically, as reported in [2], in 

Information System (IS) research the success of a software system has been studied as 



directly dependent on system and information quality [4]. According to this view, 

system quality impacts directly on software usage, and thus on users satisfaction. 

Deriving the success of a project is thus a question of considering a) the impact of the 

system quality on the users’ usage level and b)  the acceptance rate of the user. Once 

this has been determined, then it is relatively straightforward to associate successful 

projects to their development practices, development process characteristics, or even 

product features. Leaving aside software quality, the determination of criteria to 

measure the usage of software and relative users' satisfaction are relevant research 

problems. 

If we focus on usage, and on commercial software, there is at least one single 

indicator that can be reliably used as an indication of usage: the number of copies sold 

on the market. It is difficult that applications bought do not translate in real usage of 

the application. For open source software, the situation is more fuzzy, as there are no 

unique indicators of usage. Different proposals have been made, like using the 

number of downloads [3], adopting software agents to monitor the software usage [2], 

tracking the inclusion in software distributions [2], using downloads time-series to 

detect the evolving users’ community [10], or even use web search engines results to 

derive the popularity of projects [11].  

Conversely, determining users’ satisfaction is probably easier for open source 

software than for proprietary software. The large number of data available allows 

mining of repositories to audit mailing lists, forums, bug tracking reports, and so on. 

Also in this case, there is no single universal indicator of users' satisfaction and 

different proposals have been made: considering user ratings, opinions on mailing 

lists, or surveys [2] – among others. 

In this work, we focus on software usage and specifically on download rates. 

Software usage needs to take into account different measures, but we believe that 

download rates have not been exploited to their full potential. Especially for open 

source software, downloads have been identified useful as a proxy of software usage. 

Recently, the interest is more on the patterns that have been detected rather than the 

mere download indexes (as for example [6] and [10] justify). 

Our hypothesis is that it is not true that in all open source software projects 

download rates are in relation with software releases. More precisely, we believe that 

there are projects in which download rates are in relation with the application type 

(e.g. file sharing applications, where users want to have the latest application 

available, security fixes included) and others where users do not really care about the 

release date (e.g. applications installed and kept for longer time, like graphical 

utilities). From these hypotheses, it derives automatically that different patterns and - 

even more - download numbers can represent very different situations that are 

difficult to generalize. So, before reconstructing patterns to see whether projects were 

successful or not, we will need to know how much projects are sensitive to software 

releases. We have two research questions for this paper. 

 RQ1. Are download patterns connected to releases in open source software 

projects? 

 RQ2. If such relation exists, is the relation consistent in the same category of 

projects? 

The paper is structured as follows. Section 2 presents background on deriving open 

source software usage and specifically on studies on the evaluation of usage by means 



of download rates. Section 3 discusses further the research questions by means of a 

problem statement. Section 4 presents a method for analyzing downloads time series. 

Section 5 proposes an experimental evaluation of the method by means of the highest 

ranked projects in SourceForge's history. The section includes experimental design, 

data collection, data filtering, evaluation of the method, findings and limitations. 

Section 6 is about conclusions and future works in prospective research. 

2   Background 

Different techniques have been proposed to derive software usage. If we specifically 

focus on download rates, this indicator has been found to have several advantages, 

like the fact that it is relatively easy to gather this kind of information from online 

repositories. Nevertheless, various disadvantages are also reported, like the issue that 

a single download may not really translate in software usage [2]. What is very often 

suggested is to use this measure with care [3]. 

There has been a move in recent years from considering mere download rates (we 

can report as an example [6]) towards analyzing time-series and emerging patterns. In 

this sense, there is a consensus now among all researchers that download averages, or 

totals, do not convey enough information to be used as independent or dependent 

variable in success prediction models. Time series of downloads convey a larger set 

of information. The problem is that in the open source scenario, with large datasets 

available, some kind of data compression or summarization is needed so that 

knowledge about single projects can be synthetically represented, summarized, and 

then visualized. We can report specific studies that are related to the current research 

(Table 1). 

Table 1.  Related Studies. 

Paper Study Results 

[6] Identification of classes of successful and 

unsuccessful projects according to download 

patterns 

Six patterns of download rates 

identified. Justification of 

emergence of such patterns 

 

[7] Identification of successful open source 

projects by means of downloads numbers 

Categorization of 122,065 

projects in super, successful, 

and struggling. No evidence of 

Zipf’s Law for the number of 

downloads for projects on 

SourceForge 

 

[10] Proposing a method to measure size of open 

source projects and use base based on 

downloads time series 

Different types of users found 

according to adaptation of 

downloads to releases 

 

All these studies have in common the analysis of download rates. Research 

questions are different, as well as the experimental setting. In [6] and [7] the focus is 



on deriving successful projects, in [10] the focus is on deriving the use base from 

download patterns. 

3   Problem Statement 

To present the problem statement, we give a practical example by means of two well 

known software. Namely, we consider the most downloaded project of SourceForge's 

history - eMule1 - and the TCL2 application. This selection is not random, as those 

applications were selected in the categorization made in [6], so the interested reader 

can find the motivation more compelling. As can be seen, the two time series of 

downloads for the two projects are quite different (Fig. 1 and 2 ). 

 

Fig. 1. eMule project downloads. 

What we see from the figures is that there are some short-time cyclic patterns in 

the download rates (maybe weekly) in both cases, but in the eMule case there are 

evident longer term cyclic patterns. What we ask ourselves is whether the latter type 

of patterns are related to software releases. 

A simple approach would be to simply plot release dates on the same time series 

and evaluate manually the situation case by case. Instead, what we want to derive is 

an approach that allows to detect automatically - and without  visual inspection  - 

whether a time series is dependent on release dates. In the specific, if there are strong 

increases in download rates in coincidence with a software releases. Such method 

must also remove less important cyclic patterns in download rates. Considering the 

example in Fig. 2, we do not want to consider relevant low cyclic patterns that repeat 

weekly. 

                                                           
1 http://www.emule-project.net 
2 http://www.tcl.tk 



 

Fig. 2. TCL project downloads. 

Thus, we present a proposed automated method that can be used applied to time 

series to evaluate the sensitivity to software releases. We apply it to downloads time 

series, but it can be potentially applied also to other types of time series (like the 

number of commits in time, for example). In the following, we use mostly the TCL 

project to explain the method. 

4   Method 

To eliminate non-relevant cyclic patterns, we use a technique called Piecewise 

Aggregate Approximation (PAA) that approximates a time series by means of 

segments. This approach has been used, for example, when handling large amounts of 

data to reduce the complexity of similarity search space [1]. In our case, segmentation 

helps not only in reducing the data points to be considered for analysis, but also in 

reducing short term cyclic patterns in the time series. 

In the specific, in this research, we used a specialized form of PAA that uses a 

wavelet transform of the time series to decompose the segments of the time series [1, 

8]. The wavelet used is the simplest form of wavelet: the Haar wavelet [8]. In Figure 

3 we propose an example of PAA applied to a synthetic data set. The original time 

series is approximated by means of a wavelet that maintains similar patterns as the 

original. As can be seen directly from figures, the data loss is inversely proportional 

to the number of segments used for PAA. Conversely, more segments mean also 

keeping more short time periodic patterns. 

 



 

Fig. 3. Example of PAA by using Haar wavelets. 

The whole theory of wavelets is far beyond scope for this paper, but an interesting 

overview can be found in [8]. Alternative and more sophisticate techniques for PAA 

can be found in [1].  To show the results of the technique, we applied it to the eMule 

and TCL projects (Fig. 4 and 5). After the application of the method, we have thus 

eliminated unwanted cyclic patterns from the time series, and got a simpler 

representation. We will then use this representation to detect the intersection of areas 

with releases automatically. 

 

Fig. 4. eMule project wavelet transform. 

 

 



 

Fig. 5. TCL project wavelet transform. 

In detail, the whole approach is the following: 

a. Represent projects as time series of downloads; 

b. Filter out projects that have too many missing values; 

c. Perform linear interpolation of missing values. This is needed as the original 

data set might have missing data points from the data collection process. 

Linear interpolation helps in reducing the impact of such data points; 

d. Perform PAA on each time series; 

e. Discriminate in the wavelets the areas of different levels of activities as 

determined by PAA; 

f. Plot release information into the time series; 

g. Evaluate releases in the different intervals identified, summarizing the result 

with two metrics; 

 

 So, once the transform has been applied, we need a way to summarize the patterns 

of the original time series. For this, we divide the wavelet into different intervals 

according to the level of burstiness, identifying bursty intervals and more constant  

intervals. The reason is that we want to codify our time series in such a way that it is 

more easy to automatically derive intersections with release dates. This is similar to 

what has been proposed in [9] to analyze development iterations. After such 

identification, we introduce the dates of releases and we evaluate the intersection of 

release dates with different areas. 

To divide areas of wavelets, we consider periods where activity is frenetic (A) and 

others where periods of activity are more constant (B). For this, we will introduce the 

following notation for the remaining of the paper: we define twi as the i
th

 point in the 

wavelet time series, Ik,ε as an interval in the time series, where twk is the starting point 



and a positive integer ε is the length of the interval Ik,ε. To detect automatically areas, 

we use the following discriminating rule: 

𝑔𝑖𝑣𝑒𝑛 𝜀 > 0 

𝐼𝑘 ,𝜀 =   𝑡𝑤𝑘𝜀+𝑘 , 𝑡𝑤 𝑘+1 𝜀+𝑘    

𝐼𝑘 ,𝜀  𝐴 𝑖𝑓𝑓 ∃𝑖 ∈ 𝑡𝑤𝑖  | 𝑡𝑤𝑖 ∈  𝐼𝑘 ,𝜀  ⋀ (𝑡𝑤𝑖 ≥  𝜇 𝑡𝑤 +  𝜎 𝑡𝑤   ⋁ (𝑡𝑤𝑖 ≤ (𝜇 𝑡𝑤 −  𝜎  𝑡𝑤 ) 

𝐼𝑘 ,𝜀  𝐵 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒 

 

We use this rule to classify between A, and B periods. For convenience, we also 

define JA as each connected set of intervals Ik,ε of type A. The same represents JB for B 

periods. Fig. 6 shows the results of area mapping for the TCL project. 

 

 

Fig. 6. TCL project with areas identified (spaces between areas are just to ease the 

interpretation of figure). 

 

We next evaluate the relation between different area types and releases. We map 

thus how many releases happen for each project in specific areas. More releases in 

areas of type A mean that the project is more subject to a relation between releases 

and  download rates. The simple approach that we used in current research is to use 

the intersection of releases and areas. If we apply this to TCL project, we can see that 

the project is scarcely sensitive to release dates (Fig. 7). 



 

Fig. 7. TCL project with areas and release dates. 

To automate the process, and to allow for automatic use of the approach without 

examining the figures, we defined two metrics. One metric is about the sensitivity to 

releases, the other about the coverage of different areas. This information is needed as 

we can have the same level of sensitivity to releases but different level of burstiness 

of the time series. Without visual inspection, we will miss this relevant information.  

First we define the set of all releases of a project as: 

R = {r1,r2,…,rn} .  

 

Then we define the first metric - that we call s - as the sensitivity to releases: 

 

𝑠 =
  R ∈JA  

 R
 . (1) 

 

This metric is a weighted ratio of how many releases happen in one period of 

larger activity in the downloads time series. An index of 1.0 means that all the 

releases of a software project happen when the downloads time series are active the 

most. Conversely, a metric of 0.0 shows no reaction to releases: users' download of 

software is completely separated from release dates. 

We then define the second metric as the amount of burstiness of different time 

series. We refer to this metric as b. 

 

b =
  JA  

 ( JA    ∪  JB  )
 . (2) 

 



An hypothetic index towards 1.0 means a time series of downloads completely 

bursty. An index towards 0.0, inversely represents a time series of downloads where 

rates are almost constant. Thus in the example of TCL, we have a download rate that 

is not very sensitive to releases (s=0.10) and with a trend of downloads not so bursty 

(b=0.31). This result is consistent with what reported in [6] where the application is 

reported as  an application with regular downloads not related to releases. As can be 

seen, these two metrics give us more information than the mere average download 

rates. 

5   Experimental Results 

We provide an experimental evaluation of the method by applying it to several 

projects out of the FLOSSMole repository [5] and with data about releases gathered 

through SourceForge. The strategy of selection of the sample of projects was to select 

the most downloaded projects from the whole SourceForge's history (Table 2). This 

choice had the aim of limiting missing data points in the time series on one side, and 

providing a first evaluation that can then be replicated on less downloaded projects. In 

this way, this first evaluation has the aim to gather findings from a well-known set of 

applications where downloads totals are quite consistent. 

For each project, we gathered the time series of downloads, limiting the analysis to 

1.000 data points. For the selection of the parameters, based on the sensitivity analysis 

reported in the next section, we selected the length of each interval Ik,ε  with ε=30. 

After collecting the data, we applied the whole approach to the dataset of each 

project. 

 

Table 2.  Most downloaded projects in Sourceforge's history. 

Rank Project Name Type Total 

Downloads 

% Zeros 

TS 1000 

1 eMule  P2P Client 510,493,881 0,00% 
2 Azureus / Vuze P2P Client 455,284,828 0,30% 
3 Ares Galaxy P2P Client 209,066,979 0,40% 
4 7-Zip Compression Software 76,806,020 12,30% 
5 FileZilla Client FTP 71,295,059 34,40% 
6 GTK+ and GIMP 

installers for Windows 

Graphical tool 64,212,148 24,30% 

7 Audacity Audio Editor 64,051,083 4,40% 
8 DC++ P2P Client 56,488,262 4,30% 
9 PortableApps.com: 

Portable Software/USB 

Utility 55,713,765 18,90% 

10 BitTorrent File Sharing 52,031,664 81,08% 
11 Shareaza P2P Client 49,799,296 0,20% 
12 VirtualDub Video Editing 47,835,670 10,20% 
13 CDex Digital Audio Ripper 39,738,454 6,30% 



14 Pidgin Instant Messaging 32,309,818 24,10% 
15 aMSN Instant Messaging 31,175,716 6,30% 
16 WinSCP File Transfer Client 29,681,313 6,10% 

 

5.1   Filtering 

A first problem we had with the data set was how to handle zero counts in the time 

series. For this set of largely downloaded projects, our interpretation is that a zero in 

the download totals for one day means a missing point in the data collection process. 

The evolution of the download counts for such projects also justifies this view, with 

zeros interleaved to medium-high level download counts. Since our method supposes 

the application of interpolation, we wanted in any case to avoid its excessive 

application. For this reason, we filtered out from the sample the projects that had 

more than 10% zeros in the time series. Additionally, two projects were excluded 

from the sample. The DC++ and the CDex projects were removed as we didn't have 

enough information about release dates. 

5.2   Interpolation 

For projects that were included in the sample, we interpolated linearly the missing 

points from previous and subsequent values in the time series. In this way, even with 

an approximation, we limited the impact of missing values from the data collection 

phase that could lead to an erroneous generation of different areas in the time series. 

In this experiment, we used a simple linear interpolation.  

5.3   Sensitivity Analysis 

There is one subjective choice when applying PAA: the selection of the number of 

segments to use. In our research, we considered monthly segments (segments of 

length 30) and we believe this is as an appropriate number of segments according to 

our knowledge of the dataset, as we wanted to avoid weekly cyclic patterns. To 

support this decision, we performed a sensitivity analysis (Fig. 8), by calculating the 

Euclidean distance between the original time series and the wavelet. The analysis 

shows how PAA fits the original time-series according to different number of 

segments. With our selection of the parameters, we do not compress excessively the 

original representation of the dataset. 

If we consider a higher number of segments, the fitting will improve going from 

monthly, to weekly segments, for example. By doing this, we will also introduce more 

cyclic patterns into the time series. So there is a trade-off in this sense. Our heuristic 

of selection for the estimation of the segments preferred to use monthly segments to 

reduce effects of weekly patterns in the time series. 

 



 

Fig. 8. TCL Project, distance between the wavelet and the time series according to number of 

segments (the lower value the better the fitting). 

 

5.4   Results 

After filtering and interpolation, we considered out of the initial 16 projects, just 7 

projects (Table 3). The following categories were included: a) P2P Clients, b) Audio 

applications, c) Instant messaging, d) File Transfer Clients. 

Table 3.  Selected Projects. 

Project Name Type Total Downloads 

eMule P2P Client 510,493,881 

Azureus / Vuze P2P Client 455,284,828 

Ares Galaxy P2P Client 209,066,979 

Shareaza P2P Client 49,799,296 

Audacity Audio(Audio Editor) 64,051,083 

aMSN Instant Messaging 31,175,716 

WinSCP File Transfer Client 29,681,313 

 

Then we applied to all projects the PAA technique, the derivation of areas in the 

time series, and the calculation of the metrics for sensitivity to releases and the level 

of burstiness. We report in the following the results. 

For each project, we present the project name, the figure of the wavelet against 

releases, the parameters for sensitivity to releases, and burstiness of the wavelet as 

calculated by our approach (Table 4). The reader can see that in some cases, a high 

level of sensitivity to releases (s parameter) can even be enforced by the fact that there 

are shorter areas of burstiness (b parameter) .  

 



Table 4.  Analysis of the Projects. 

Project Name Original time series, PAA and releases s b 

eMule 

 

0,80 0,39 

Azureus / Vuze 

 

0,06 0,15 

Ares Galaxy 

 

0,48 0,32 

Shareaza 

 

0,66 0,48 

Audacity 

 

0,83 0,33 

aMSN 

 

0,75 0,38 



WinSCP 

 

0,69 0,57 

 

If we look at the results, we can observe the following interesting phenomena. For 

almost all projects, there is a relation among releases and download rates. The only 

project where this doesn't happen is the Azureus/Vuze project. This goes against our 

assumption that a user of a P2P application always wants to get the latest release as 

soon as possible, for example to get security fixes that are particularly important for 

this category of application or improvements like greater download speeds. If this 

doesn't happen for this particular application, it could mean that there specific 

characteristics of the application, or in the modality of distribution of the application 

that can be different. It can also be an indication that users – differently from the other 

cases – received the updates mostly from updates inside their Linux operating system 

distribution and not via software downloads. So this can also be in fact an indication 

that download rates for that application have to be taken with care. 

5.5   Findings 

Popular open source software projects follow different patterns of downloads 

according to the release of a software version. Mostly projects downloads follow the 

dates of releases with typical increases, but this is not always the case. It is thus 

interesting to examine the reasons of projects that do not strictly follow this rule. We 

summarize the findings deriving from the research questions in Table 5. 

 

Table 5.  Summary of the Findings. 

Research Question Finding(s) 

RQ1. Are download patterns connected to 

releases in open source software projects? 

We found that - in the majority of 

the projects analyzed -  releases 

lead to an increase in download 

rates. In some cases, such behavior 

is less evident or even absent (e.g. 

Azureus). The explanation for this 

can be in the characteristics of 

users or the project features, but 

can also be an indication that 

download totals are not completely 

reliable for that specific 

application. 

 



RQ2. If such relation exists, is the relation 

consistent in the same category of projects? 

We found that the behavior is not 

consistent across all categories. 

Even in the limited set of categories 

we used, users respond in different 

ways to software releases even in 

the same category of applications. 

For example, in our sample, it is 

not true that users of  P2P 

applications are more interested 

than other users in getting the latest 

release of the software. 

 

We suspect that for projects where download patterns are not strictly in relation to 

releases there are two distinct explanations:  

a. users really do not care about the latest release of the application. This can 

also happen because the update of the application requires much effort 

compared to the advantages of the update, so the user may decide to 

postpone the update to a later time; 

b. users are interested in updates and are actually updating the software as a 

new version appears. In this case, downloads time series do not capture this 

behavior, maybe because users are getting the updates by means of 

alternative sources (other websites than SourceForge or through the 

mechanism of updates in their own Linux distribution); 

We argue thus that if we are in the a) case, downloads time-series can still be used 

as a somewhat reliable indicator of project's success in combination with other 

measures of usage and users' satisfaction. Conversely, if we are in the b) case, the 

evaluation of download rates must be complemented with additional information 

deriving – as an example – from projects' websites traffic, and/or search engines 

queries, like has been proposed in [11]. 

5.6   Limitations 

The main limitation of the approach is about the definition of the parameters of PAA 

segmentation and areas definition. Although we provided the heuristic of selection 

and sensitivity of the model to the parameters when explaining the approach, it is 

clear that different parameters can lead to slightly different results. Specifically, the 

choice of the length of the interval Ik,ε can give as result areas of different size to be 

used then in the metrics for calculation. Sensitivity analysis has been performed to 

reduce and limit this effect. 

6   Conclusions and Future Works 

We proposed a method to augment the expressiveness of downloads time series of 

open source software projects. We added information about the relation of projects' 



downloads to releases and defined two metrics. The metrics defined can give 

information about the responsiveness of the users to releases. This is a first step in 

research of automatic detection of patterns in downloads time series. Information 

from such patterns can then be used in models to detect projects' success.  

We applied experimentally the method to a subset of projects in the SourceForge 

repository. We showed that codifying the downloads time series as two metrics 

conveys more information than using global metrics like average download rates or 

total download counts. As we have seen experimentally, even if projects have similar 

total download rates and counts, they can follow completely different download 

patterns. As such considering just those numbers can lead to wrong or biased 

conclusions. Furthermore, project downloads can be more or less related to software 

releases showing different behaviors from the point of view of users that can depend – 

and this will need to be validated in future research - on projects characteristics, 

application type or even modality of distribution. 

Future research goes into two directions. One direction is to extend the approach to 

a larger data set, specifically focusing on projects' categories. The second direction is 

to investigate successful projects with an extension of the methodology developed in 

this paper. 

 

Acknowledgments. We thank the creators and maintainers of the FLOSSMole 

repository for granting access and for their constant effort in providing a useful source 

of information about open source projects. 

References 

1. Chakrabarti, K., Keogh, E., Mehrotra, S., Pazzani, M.: Locally adaptive dimensionality 

reduction for indexing large time series databases. ACM Trans. Database Syst. 27, 2, 188-

228 (2002) 

2. Crowston, K., Annabi, H., Howison, J.: Defining Open Source Software Project Success, in 

proceedings of the 24th International Conference on Information Systems (ICIS), pp. 327-

340 (2003)   

3. Crowston, K., Annabi, H., Howison, J., Masango, C.: Towards a portfolio of FLOSS 

project success measures,  the 4th workshop on Open Source Software engineering, 

International Conference on Software Engineering (2004) 

4. Delone, W.H., McLean, E.R.: The DeLone and McLean Model of Information Systems 

Success: A Ten-Year Update, J. Management of Information Systems, vol. 19, pp. 9-30 

(2003) 

5. Howison, J., Conklin, M., Crowston, K.: FLOSSmole: A collaborative repository for 

FLOSS research data and analyses. International Journal of Information Technology and 

Web Engineering, 1(3), 17–26 (2006) 

6. Israeli, A., Feitelson, D. G.: Success of Open Source Projects: Patterns of Downloads and 

Releases with Time. In IEEE International Conference Software Science, Technology, & 

Engineering, pp. 87-94, (2007) 

7. Feitelson, D. G., Heller, G. Z., Schach, S. R.: An Empirically-Based Criterion for 

Determining the Success of an Open-Source Project. Proceedings of Australian Software 

Engineering Conference, pp. 363-368 (2006) 

8. Li, T., Li, Q., Zhu, S., Ogihara, M.: A Survey on Wavelet Applications in Data Mining. 

SIGKDD Explor. Newsl. 4, 2, 49-68 (2002) 



9. Rossi, B., Russo, B., Succi, G.: Analysis of Open Source Software Development Iterations 

by means of Burst Detection Techniques, Proceedings of the 5th International Conference 

on Open Source Systems, pp.83-93, Springer, Boston (2009) 

10. Wiggins, A., Howison J., Crowston, K.: Measuring Potential User Interest and Active User 

Base in FLOSS Projects, in proceedings of the 5th International Conference on Open 

Source Systems, pp.94-104 (2009) 

11. Weiss, D.: Measuring Success of Open Source Projects using Web Search Engines, in 

Scotto M., Giancarlo S. (Eds.): Proceedings of the 1st International Conference on Open 

Source Systems, Genova, Italy, pp.93-99 (2005) 


