
Voting for bugs in Firefox:
A voice for Mom and Dad?

Jean-Michel Dalle1 and Matthijs den Besten2

1 Université Pierre et Marie Curie, Paris jean-michel.dalle@upmc.fr
2 Ecole Polytechnique, Paris matthijs.den-besten@polytechnique.edu

Abstract. In this paper, we present preliminary evidence suggesting
that the voting mechanism implemented by the open-source Firefox
community is a means to provide a supplementary voice to main-
stream users. This evidence is drawn from a sample of bug-reports and
from information on voters both found within the bug-tracking sys-
tem (Bugzilla) for Firefox. Although voting is known to be a relatively
common feature within the governance structure of many open-source
communities, our paper suggests that it also plays a role as a bridge
between the mainstream users in the periphery of the community and
developers at the core: voters who do not participate in other activities
within the community, the more peripheral, tend to vote for the more
user-oriented Firefox module; moreover, bugs declared and first patched
by members of the periphery and bug rather solved in “I” mode tend
to receive more votes; meanwhile, more votes are associated with an in-
creased involvement of core members of the community in the provision
of patches, quite possibly as a consequence of the increased efforts and
attention that the highly voted bugs attract from the core.

1 Introduction

Firefox is an open source project that explicitly tries to cater to the needs of
a mainstream audience. Judging by its market share, as estimated for instance
by the firm StatCounter (http://gs.statcounter.com), Firefox is succeeding.
What might explain this success? To a large extent it is due to the leadership
of people like Blake Ross, Dave Hyatt and Asa Dotzler and to their apparently
correct judgement in deciding which features and bugs deserve the highest pri-
ority for development. In addition, however, we expect that the success is due
to explicit mechanisms that have been put in place in order to make sure that
the needs of mainstream users are assessed and addressed correctly. Voting for
bugs in the Bugzilla bug tracking system is one such mechanism.

Voting for bugs is of course not unique to Firefox. It is a feature of the
Bugzilla bug tracking system that has been activated by many of the projects
who use it. Moreover, it is generally assumed that some sort of voting is a
standard element of the open source software development model (see, e.g.,
[11]). Yet, apart from the governance of Apache [10] and Debian [12], there



2 Jean-Michel Dalle and Matthijs den Besten

are to our knowledge surprisingly few explicit analyses or even descriptions of
voting procedures in free/libre open source software communities.

In her analysis of the emergence of voting procedures in Debian, O’Mahony
focuses on the greater efficiency and transparency that is provided by voting
compared to consensus based collective decision making usually dominant in
small groups and presents the introduction of voting as a reaction to the in-
creases in scale and scope of the Debian enterprise. Voting can however be
useful even in small groups: see for example the seminal paper on collective
problem identification and planning by Delbecq and Van De Ven [4], who pro-
pose a model of an effective group process in which the first phase of problem
exploration is concluded with a vote. This, they note, serves to make the re-
sults of the exploration explicit and create pressure for change on the people
who will be responsible for resolving the problem. Here voting is not just about
representation, it is also about “getting heard”.

In this context it might be useful to ponder the framework that Hirschman
[5] developed on the means by which patrons can influence their organizations.
Patrons have basically two options: either they leave the organization and buy
or produce with a competitor (“exit”), or they express their concerns more ex-
plicitly through channels that might be provided by the organization (“voice”).
In open source software development, the primary mechanism for “exit” is fork-
ing [9] and the primary mechanism for “voice” is to “show code” by proposing
patches [1]. For mainstream users such as “mom and dad”, however, neither
forking nor patching is a realistic option, as they typically do not have the
skills to do either. Since Firefox precisely wants to be a product for mom and
dad [6], other options have to be found: “exit” can be implemented by switch-
ing to other browsers like Internet Explorer, Safari, Opera, and Chrome. For
“voice”, voting might be an appropriate answer.

In what follows, we present circumstantial evidence to support our conclu-
sion that voting for bugs in Firefox is a means to provide a voice to main-
stream users. This evidence is drawn from a sample of bug-reports maintained
by Mozilla’s Bugzilla and from explicit information on voters found at the same
site. We present results regarding voters and bugs in sections 4 and 5, respec-
tively. We present some more background information on our research in section
2 and describe our sampling strategy in section 3.

2 Background

This paper is number four in a succession of papers that we have presented at
OSS conferences. In the first paper, presented in Limerick in 2007 [2], we ana-
lyzed bug reports from Mozilla and found that there are some bugs that take
exceedingly long to resolve and that part of the reason for the existence of these
“superbugs”, as we named them, could be related to the insufficient provision of
contextual elements such as screenshots in the bug threads. The second paper,
presented in Milan in 2008 [3], analyzed bug reports that are associated with



Voting for bugs in Firefox 3

the Firefox branch and exploited the existence of the so-called “CanConfirm”
privilege — the privilege to declare bugs as “new” given that the initial sta-
tus of bugs is “unconfirmed” by default — to distinguish between core and
peripheral participants within bug resolution processes and inquired whether
various variables could influence the speed at which new and unconfirmed
bugs were patched. In the third and latest paper, presented in Skövde in 2009
[8], we used text mining techniques to arrive at a further characterization of
participants within the core and the periphery of the Firefox community, stress-
ing notably the fact that members of the core tend to use to pronoun “We”
disproportionately while members of the periphery, conversely, seem to prefer
to use “I”.

By focusing on voters this paper tries to exploring an additional layer of the
onion model of the Firefox community. To echo the language we used in our
2008 paper, while the likes of Blake Ross and Dave Hyatt clearly belong to the
inner core, the periphery is probably mostly populated by “alpha-geek” users
— that is, exactly by those people who Ross and Hyatt professed to ignore in
Firefox development [6]. “Mom and dad” are not there. If at all, they are more
likely to be among the outer periphery of people who are simply voting and
contributing very little otherwise.

This line of inquiry obviously owes a lot to the pioneering work by Mockus et
al. [10] and also to subsequent work by Ripoche [13], who established bug reports
as an object of study. Together with others, e.g. [14], we continue to exploit
this extremely rich source of information. Conceptually we have been inspired
by the analysis of MacCormack at al. [7], who argue that it was necessary to
make the existing code that was left by Netscape more modular before Mozilla
could attract patches from the periphery. We wonder here whether votes could
constitute another element which could help to explain how Firefox could turn
the unwieldy open source project that Mozilla had become into the sleek browser
for the mainstream market that we have now.

3 Sampling Method

For our analysis we constructed two types of data-sets. The first type relates
to bugs, which may or may not have attracted votes, and concerns the history
of the bug resolution process as it is recorded by Bugzilla as well information
about the bugs that can be found in the logs of the cvs code repository. The
second type concerns information that is stored in Bugzilla about the activities
of the people who have voted for one or more bug. For each type we have
obtained several sets and sub-sets of data based on three criteria: first of all, we
are interested in bugs for which we can assume that they have had an impact
on the Firefox code-base in the sense that they are mentioned in the commit-
comments and the cvs repository; secondly, we are interested in bugs that have
received votes; and finally, we are interested in bugs that Bugzilla associates
with the Firefox project. Similarly, we are interested in people who voted for



4 Jean-Michel Dalle and Matthijs den Besten

bugs which eventually found their way into the cvs; we are also interested in
the other bugs they voted for; and we are interested in the people who voted
with them on Firefox bugs. Figure 1 is a Venn diagram which illustrates this
admittedly somewhat complex constellation of sets. Our main interest is in the
intersection of bugs from cvs that have been voted on and are also officially
associated with Firefox as well as in the people who have voted for this particular
set of bugs. Other than that we also have some interest in the other subsets
formed by the intersection of the three criteria in order to be able to compare
and contrast with what we find in our main set.

Fig. 1. Sampling of bugs: 37408 appear in the code base (cvs); among them 3787
have attracted at least one vote (Votes ∩ cvs) and 418 among these are associated
with the Firefox project (Firefox ∩ Votes ∩ cvs).

In practice we followed a procedure similar to snowball sampling in order to
obtain our sets and subsets of bugs and voters. We started with the bugs that
we found in the logs of our copy of the Mozilla’s cvs archive concerning the
code for Firefox up until version 2.0. Only a small subset of these bugs, some
10%, has ever attracted a vote. Associated with those bugs is a list of all people
who have cast a vote (people can also retract there vote later; in that case they
fall through our net). Our next step was to retrieve all those lists and compile
a list of cvs voters constituted by union of all sets of voters contained in these
lists — we found 11826 of them. The list of voters that is attached to the bug-
reports in Bugzilla also contains, for each voter, a link to a voter-page that lists
all the bugs the voter in question has voted for split according to the project
with which Bugzilla associates the bug. As far as we can tell, this “project”
field is a new data element in the bug-reports that was not yet displayed in the
original bug-reports that constitute the cvs-set of bugs. That is why we do not
have such project-data for most of the bugs. Nevertheless via the voter-pages
we can determine the project for those bugs for which at least one vote was
cast. Contrary to what one might assume just a fraction of the bugs that we
associate with code in the Firefox-branch of the Mozilla cvs are associated with
Firefox by Bugzilla as well. Partly, this may be due to misattribution from our



Voting for bugs in Firefox 5

part, but mostly this seems to be a reflection of the fact that Firefox shares
code with other applications and the fact that it is based on code that was
developed earlier for other projects. In addition to the project affiliation of cvs
bugs the voter-pages also give the project affiliation for bugs that did not make
it into that set — that is, bugs that did get votes but where not mentions in
the commit-comments we looked at. The union of all these bugs constitutes the
voter-set of bugs. We did not retrieve the complete Firefox-set of bugs, but we
do not which part of the voter-set overlaps with it and that another part of the
cvs-set should do as well. Finally, our set of Firefox-voters is by looking at the
voter-lists of all bugs in the voter-set that are associated with Firefox through
Bugzilla and taking the union of the sets of voters listed in those lists. Table 1
gives a short summary of the manner in which we obtained our sets described
above.

Table 1. Summary indication of source of the main sets of bugs and voters.

Bugs Voters

CVS Bugs associated with Firefox code
before version 2.0.

Union of lists of voters on bugs in
set defined in previous column.

Votes All bugs that received one or more
votes by voters on the cvs bugs.

As above, ceteris paribus.

Firefox All the bugs associated with Fire-
fox in the listing of bugs per voter.

” ”

Another and, for now, final detail about the data preparation concerns the
way we link voter-identities with other activities by the same people in the
bug resolution process. For this we rely on the fact that up until recently the
voters as well as participants to the bug forum discussions, bug-reporters, bug-
assignees, etcetera, were identified by their email address. Hence we could assign
various bug-activities to the voters by matching these email addresses. This
method works fine for the bugs that we focus on for this study. However, studies
concerned with the most recent bugs would not be able to apply this method
as Bugzilla has moved to enhanced identity management and does no longer
provide the full email address for voters.

4 Characterizing Voters

A first dimension along which voters can be distinguished from non-voters,
reported in Table 2, is with respect to both groups’ status in the community.

Table 2 is a contingency table comparing community status and voting ac-
tivity of participants in the bug resolution process for the intersection of 418
bugs with the following properties: they appear in the cvs; they have attracted
votes; and they are associated with Firefox. As participants, we consider people



6 Jean-Michel Dalle and Matthijs den Besten

Table 2. Number of voters by status for participants in the resolution of bugs which
have received at least one vote, are mentioned in the cvs, and are associated with the
Firefox project (n = 2968; χ2 = 366, df = 3, p-value = 5.243e−79).

Status
Unconfirmed New Both Other Total

Vote 184 25 64 1408 1681
No Vote 286 139 182 680 1287

who have either contributed at least one comment to at least one discussion
thread or who have cast at least one vote for these bugs. Among the 418 bugs
of interest, this definition yields a total of 2968 participants, 1681 of whom
have cast a vote and 1755 of whom have written at least one message, which
implies that 1213 participants have voted but never written a message. A first
conclusion that can be drawn from these numbers, then, is that most voters do
not engage in other activities. If we go one step further and check participation
on a bug-by-bug basis, this finding becomes even more pronounced: typically,
voters who are active in the bugs in the set tend to engage in this activity on
bugs for which they did not vote.

In order to gauge the status of participants we rely on the CanConfirm
privilege mentioned earlier. In particular, we check for each participant whether
he or she has ever declared bugs contained in the set of 37408 bugs that appeared
in the cvs logs. For those participants who did declare bugs we look at the
initial status of those bugs. If all the bugs that a participant declared start
with status new the participant is considered to belong to the core; if all the
bugs start with status unconfirmed the participant belongs to the periphery;
if some bugs start with unconfirmed and others with new the participant is
considered to be a freshly joined or a freshly expelled member of core; finally if
the participant has not declared any bug, he or she is classified as member of
the outer-periphery, here denoted as “Other”.

Given all this, the main conclusion from table 2 is that the people who
cast a vote are mostly, yet not exclusively, outsiders. Interestingly, this finding
also holds for the status of the people who voted for any one of the bugs that
appeared in the cvs logs. Of the 11850 voters among these 3787 bugs 10269
have never declared a bug while only 283 participants have had all the bugs
they declared accepted as new right-away. Furthermore, when we consider the
top 1000 most active voters, 688 among them can still be classified as outsiders
while only 36 belong to the core.

Figure 2 gives some indications about the voting activities of the people who
have cast a vote for at least one of the 418 bugs in the latter sample. It shows
the distribution of the number of bugs to which people have cast their vote as
split according to projects and status. Actual outsiders, with status Other, tend
to declare “pure” Firefox bugs while contributors with another status disperse
their votes much more.



Voting for bugs in Firefox 7

bu
gs

10^0.0

10^0.5

10^1.0

10^1.5

10^2.0

10^2.5

10^3.0

B N O U

●
● ●

●

●

●
●

●

Core

B N O U

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●●

●●●
●

●

●

●

●●
●●

●

●
●●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●●
●
●

●

●

●

●

●●●

●

●●

●

Firefox

B N O U

● ●

MailNews.Core

●

● ●

SeaMonkey

● ● ●

Toolkit

10^0.0

10^0.5

10^1.0

10^1.5

10^2.0

10^2.5

10^3.0

● ● ●

other

Fig. 2. Distribution of number of bug declared by status per project. B = both; N =
new; O = other; U = unconfirmed.

id

to
ta

l

0

500

1000

1500

0e+00 1e+05 2e+05 3e+05 4e+05

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●

● ● ● ●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

● ●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●● ●●●●●●●●● ● ●

● ● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●● ●● ●● ●●●● ● ● ● ●●●●●●●●● ●●

●● ● ●● ● ●●●●●●● ●●●●●●● ●● ●●●● ●●●●● ●● ●●●●●●●●● ● ●● ●●●● ●●● ●●●● ●●●●●● ●●● ● ●●

● ●●●● ● ● ●● ●● ●●● ●●● ● ●● ●● ● ● ●
● ●● ●● ● ● ● ● ● ● ● ● ● ●● ● ●

●●● ●● ●● ●● ● ● ● ●● ●●●●● ●●●●●●● ●●● ●●● ●● ●● ●●●●
● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Core
Firefox
MailNews Core
SeaMonkey
Toolkit
other

●

●

●

●

●

●

id

to
ta

l

0

1000

2000

3000

4000

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

●●● ●● ●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ● ●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●
●●●●●●●
●●●●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●
●●●●●●●
●●●●●●
●●●
●●●●●●
●●●●●●●●●●●
●
●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●
●●●

●●●●●●
●●●●●
●●●●●●●

●

Fig. 3. Cumulative sum of bugs per project against bug-id; in the plot on the left
specifically for Firefox (see text).



8 Jean-Michel Dalle and Matthijs den Besten

Figure 3 tries to shed some light on the timing of bug activity. Votes do not
come with timestamps in the Bugzilla records, but we know that bug-ids are
assigned sequentially. Figure 3 shows how many bugs had received votes before
a given bug id against the sequence number that is used to identify them and
this gives a rough indication about the distribution of voting over time. On
the left is shown this distribution for bugs with votes and that appear in the
cvs logs: typically, a steady proportion of bugs attract votes; not all projects
are active at the same time; and some, for instance SeaMonkey, are gradually
abandoned while others take off. The right graph focuses on bugs associated
with the Firefox project more in particular. This graph includes the bugs that
were voted on by the people who voted for the 418 Firefox cvs bugs that are
represented in purple in the middle of the graph. The picture that appears is
one of a very loyal electorate. Note that we are looking at all the votes that were
cast by people who voted during the specific time window which is occupied
by the 418 Firefox cvs bugs. Normally, one would expect a certain level of
turnover among these people, implying that number of people who continue
to vote would decrease over time. Nevertheless the ratio between increase in
the number of bugs with votes and the increase in the total number of bugs
looks more or less stable. So either people continue to vote, or abandonment of
the project by some people is compensated by increased voting activity of the
people who remain. In addition, the slope might also have been influenced by a
change in the proportion of bug-ids that are attributed to the Firefox project.

5 Analyzing Bugs

Figure 4 shows the share of each project among the bugs in the cvs-set that
have at attracted at least one vote. With 418 out of 3785 bugs Firefox is far
from the most heavily represented project in this set. The most heavily rep-
resented project is “Core”, which can be explained by the fact that “Core”
concerns the foundation of code that is common to most Mozilla projects. The
SeaMonkey project “is a community effort to develop the SeaMonkey all-in-
one internet application suite” (http://www.seamonkey-project.org/). In a
sense, it pursues a strategy that Firefox explicitly chose not to follow and it is
a little ironic that there are so many SeaMonkey bugs mentioned in commits
related to Firefox code. This may be a reflection of the fact that these siblings
have a lot of code in common. “MailNews Core” is harder to explain as this
project is concerned with code for email clients, which Firefox, in contrast to
SeaMonkey, choose not to include. “Toolkit”, finally, includes cross-platform
components such as “Gecko” the rendering engine for web-pages — which is of
course important to Firefox in particular.

In order to compare the bugs that attract votes with those that don’t,
Table 3 gives the estimations of a generalized linear model, assuming a Poisson
distribution for the variable totalVotes, which is a numeric variable whose value
represents the total number of votes that a bug has attracted. The estimates



Voting for bugs in Firefox 9

Fig. 4. Pie chart showing the share of Mozilla projects among the bugs that received
bugs in our sample.

are based on data from a subset of about ten thousand cases, bugs for which
we don’t have complete information, very old bugs with a low bug-number and
other outliers having been removed. Please refer to [3] for a detailed description
of these variables in so far as they are not explained below.

The number of votes is statistically correlated with NumAttention, which
relates to the number of people who have put themselves on the CC-list asso-
ciated with the bug so that they can follow the progress on the bug resolution,
i.e. with the attention received by a bug.

More generaly, more votes tend to be associated with “problems” in solving
a bug and notably to neglect: patches, which counts the number of different
patches needed to solve a bug; duplicatesBeforeLastResolved, which indicates
repeated declarations of the same bug; Ltpsassign, the log of the time need for the
bug to be assigned to someone; numberOfTimesAssigned, the number of times
a bug has been assigned; or else bugWasReopened, a self-explanatory dummy
variable, are all variables of this kind. Conversely, high values for com com
and com authrate, which are indicative for a high level of activity and a lot of
commitment on a bug, are correlated with a lower number of votes: votes would
be less needed when there is enough commitment on a given bug.

Interestingly then, several variables generally relevant for the patching and
triage of bugs are not or only weakly significant here: numberOfEditsByBugRe-
porter and numberOfEditsByLastAssignee, two variables that reflect the level of
activity of the people who are most directly involved with the resolution of a
bug; severity, which reflects the current community estimate of the severity of
a bug; priority, the assessment by the community of the importance of a bug;
and dependson, the number of other bugs which have been found to depend on
a given bug.

Finally, and closer to our interest in this article, I/We, which represents
the ratio between the number of times that the personal pronouns I and We
appear in the bug thread, is highly significant: bugs patched in “I-mode” tend to



10 Jean-Michel Dalle and Matthijs den Besten

Table 3. Generalized linear model with Poisson distribution for dependent variable
totalVotes based on 10763 observations.

Parameter Est. Std.Er [Wald 95% ] χ2 Pr > χ2

Intercept 0.3231 0.1697 -0.0096 0.6558 3.62 0.057
numberOfEditsByBugReporter 0.0061 0.0029 0.0005 0.0118 4.57 0.0326
numberOfEditsByLastAssignee -0.0025 0.0014 -0.0052 0.0003 3.13 0.0771
NoSgRestriction 0.5972 0.1046 0.3922 0.8022 32.6 <.0001
numberOfTimesAssigned 0.1064 0.006 0.0946 0.1182 311.23 <.0001
bugWasReopened 0.3264 0.0264 0.3781 0.2747 153.14 <.0001
nauth 0.1799 0.021 0.1387 0.2212 73.19 <.0001
patches 0.1217 0.0032 0.1154 0.1281 1410.15 <.0001
attach patch 0.1065 0.0049 0.097 0.116 481.08 <.0001
com com -0.5699 0.0152 -0.5997 -0.54 1400.64 <.0001
comauthrate -0.2283 0.0154 -0.2584 -0.1981 220.65 <.0001
severity 0.0341 0.0131 0.0085 0.0597 6.82 0.009
priority 0.0053 0.0097 -0.0138 0.0244 0.3 0.5848
priorityNotIncreased -0.133 0.0698 -0.2698 0.0039 3.63 0.0568
priorityNotDecreased 0.1907 0.0461 0.1005 0.281 17.15 <.0001
severityNotIncreased -0.321 0.0295 -0.3788 -0.2632 118.44 <.0001
severityNotDecreased -0.4144 0.0403 -0.4934 -0.3354 105.71 <.0001
nfile -0.0068 0.0009 -0.0086 -0.0051 58.35 <.0001
dependson 0.0216 0.0075 0.007 0.0363 8.39 0.0038
blocked 0.0561 0.0037 0.0489 0.0633 232.89 <.0001
NumAttention 1.0415 0.0164 1.0093 1.0737 4018.84 <.0001
version2 1.7 1.325 0.1105 1.1084 1.5416 143.73 <.0001
version2 Trunk -0.4801 0.0285 -0.536 -0.4242 283.24 <.0001
Ltpsassign 0.0822 0.0053 0.0718 0.0926 239.27 <.0001
DuplicatesBeforeLastResolved 0.1741 0.0044 0.1654 0.1828 1531.72 <.0001
UX 0.3312 0.0454 0.2421 0.4202 53.12 <.0001
I/we 0.0537 0.0014 0.0509 0.0565 1383.95 <.0001
os3 NonWin 0.1279 0.0299 0.0693 0.1864 18.31 <.0001
OC 0.1415 0.0278 0.0871 0.196 25.94 <.0001
CO 0.424 0.0361 0.3533 0.4947 138.19 <.0001
OO 0.8045 0.0366 0.7327 0.8763 482.33 <.0001
Scale 1 0 1 1

recieve more votes, either because people vote for their own bugs or because bug
patching in I-mode is associated with the involvement of peripheral members of
the community. The significance of OC, CO, and esspecially of OO — dummy
variables indicating that the bug reporter and the first “patcher” for that bug
stem from periphery and core (in case of OC), core and periphery (CO), or both
from the periphery (OO), respectively — tends to support the view that the
involvement of the periphery in patching a bug would be statistically associated
with more votes, even while controlling by attention, commitment, neglect, and
various other problems affecting bug patching.



Voting for bugs in Firefox 11

Fig. 5. Proportion of bugs that received patches from the periphery only among all
bugs whose first patch was proposed by a member of the periphery (y-axis) against
number of votes as average over a 5-vote range (i.e. 1 = 0 votes, 2 = 1 − 5 votes,
3 = 6− 10 votes etc.) on the x-axis.

In this last respect, Figure 5 is the result of an attempt to delve deeper into
the relationship between patching and voting in the context of the relation-
ship between periphery and core. Most of the patches are proposed by people
from the core of the Firefox community. In many cases the first patch that is
proposed is accepted as the solution for a bug. There are however a few cases
in which multiple patches are proposed before a final patch is accepted as the
solution for a bug. Figure 5 focuses on bugs whose first patch was proposed
by a member of the periphery. We compute how many of these bugs do not
receive any subsequent patches by members from the core, relative to bugs that
have received zero votes, one to five votes, six-to-ten votes, and so further, re-
spectively. What Figure 5 shows is that there is a clear increase in the level
of participation of core members of the community when the number of votes
increases. A possible interpretation of this could be that votes are used by the
periphery to attract the attention of the core.

6 Conclusion

When Blake Ross and Dave Hyatt initiated Firefox, they established themselves
as benevolent dictators fulfilling the volonté générale, to borrow from Rousseau,
while emphatically reserving the right to ignore the volonté de tous. However,
and contrary to acounts of voting in open source communities which tend to
present it as a method to arrive at a fair representation of the will of the commu-
nity, they allowed voting as as a channel through which voices from outside the



12 Jean-Michel Dalle and Matthijs den Besten

community could be heard. Consequently, we found that most votes originate
in the outer periphery. Bugs that attract most votes tend to be bugs that are
relatively neglected or bugs where the periphery is heavily involved. Hence one
can surmise that the votes were cast in order to attract the attention from the
core. It would be interesting to see whether there are additional mechanisms
apart from the votes that help the core to focus its attention.

References

1. Alan Cox. Cathedrals, bazaars and the town council. Available at
http://www.linux.org.uk/Papers CathPaper.cs, 1998.

2. Jean-Michel Dalle and Matthijs den Besten. Different bug fixing regimes? A pre-
liminary case for superbugs. In Proceedings of the Third International Conference
on Open Source Systems, Limerick, Ireland, June 2007.

3. Jean-Michel Dalle, Matthijs den Besten, and Héla Masmoudi. Channelling Fire-
fox developers: Mom and dad aren’t happy yet. In Proceedings of the Fourth
International Conference on Open Source Systems, Milan, September 2008.

4. Andre L. Delbecq and Andrew H. Van de Ven. A group process model for prob-
lem identification and program planning. Journal of Applied Behavioral Science,
7(4):466–492, July 1971.

5. Albert O. Hirschman. Exit, voice, and loyalty. Harvard University Press, 1970.
6. Jessica Livingston. Blake Ross; creator, Firefox. In Founders at Work: Stories of

Startups’ Early Days. Apress, 2007.
7. Alan MacCormack, John Rusnak, and Carliss Y. Baldwin. Exploring the structure

of complex software designs: An empirical study of open source and proprietary
code. Management Science, 52(7):1015–1030, July 2006.

8. Héla Masmoudi, Matthijs den Besten, Claude de Loupy, and Jean-Michel Dalle.
Peeling the onion: The words and actions that distinguish core from periphery
in Firefox bug reports, and how they interact together. In Keven Crowston and
Cornelia Boldyreff, editors, Proceedings of the Fifth International Conference on
Open Source Systems, 2009.

9. Juan Mateos Garcia and W. Edward Steinmueller. Applying the open source
development model to knowledge work. INK Open Source Research Working
Paper 2, SPRU - Science and Technolgy Policy Research, University of Sussex,
UK, January 2003.

10. Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case studies of
open source software development: Apache and mozilla. ACM Trans. Softw. Eng.
Methodol., 11(3):309–346, 2002.

11. Siobhán O’Mahony. The governance of open source initiatives: what does it mean
to be community managed? Journal of Management and Governance, 11(2):139–
150, May 2007.

12. Siobhán O’Mahony and Fabrizio Ferraro. The emergence of governance in an open
source community. Academy of Management Journal, 50(5):1079–1106, 2007.

13. Gabriel Ripoche. Sur les traces de Bugzilla. PhD thesis, Université Paris XI, 2006.
14. Diederik W. van Liere. How shallow is a bug? Technical report, Rotmon School

of Management, University of Toronto, November 16 2009.


