
Coordination Implications of Software Coupling in

Open Source Projects

Chintan Amrit1 and Jos van Hillegersberg1,

1IS&CM Department, University of Twente,

PO Box 217

7500 AE Enschede, The Netherlands

{c.amrit, j.vanhillegersberg}@utwente.nl

Abstract. The effect of software coupling on the quality of software has been

studied quite widely since the seminal paper on software modularity by Parnas

[1]. However, the effect of the increase in software coupling on the

coordination of the developers has not been researched as much. In commercial

software development environments there normally are coordination

mechanisms in place to manage the coordination requirements due to software

dependencies. But, in the case of Open Source software such coordination

mechanisms are harder to implement, as the developers tend to rely solely on

electronic means of communication. Hence, an understanding of the changing

coordination requirements is essential to the management of an Open Source

project. In this paper we study the effect of changes in software coupling on the

coordination requirements in a case study of a popular Open Source project

called JBoss.

Keywords: Software Coupling, Propagation Cost, Clustered Cost, Open

Source, Coordination

1 Introduction

Open Source developers generally rely on electronic means of communication,

coordination in Open Source environments is difficult to achieve when compared to

commercial software development. It is therefore essential for an Open Source project

Manager to understand the changing coordination requirements in Open Source

software in order to ensure successful coordination. While the coordination

implication of software coupling has been suggested by various researchers [2-5],

there has been little research done on the effect of the change in coupling on the

coordination requirements of developers. Such research is especially important in the

Open Source context, where the distributed and generally ad-hoc nature of

development makes coordination of the development challenging.

MacCormack et al. [6] compare the architectures of Linux and Mozilla by

comparing the pattern of distribution of their software coupling. They find that Linux

had a more modular structure than the first version of Mozilla. While after a redesign

the resulting architecture, Mozilla became more modular than the previous versions

and even more modular than Linux. This result is in line with the view that in order to

have a successfully coordinated Open Source project one needs to have a loosely

coupled and modular software [7]. Authors like O’Reilly [8] have claimed that Open

Source software is inherently more modular than commercial software. Other authors

have reasoned that Open Source software needs to be more modular so that the

development process can be coordinated easily [7]. Paulson et al. [9], compare the

coupling of Open Source projects (Apache, Linux and GCC) with three closed source

projects. They do so, by comparing the growing versus the changing rate for software

(as a tighter coupling will require more changes with each additional feature). Their

results indicate that Open Source projects need more changes when new features are

added. Hence, suggesting tighter coupling in Open Source projects than previously

assumed. Parnas [1] described modularisation as a task assignment while Conway[2]

analysed the relation between product architecture and the organizational structure.

Since then, Conway’s law [10] has come to denote the homomorphism between the

product architecture (or software coupling [3]) and the organizational structure (or the

communication between the software developers [3]). As the Open Source project

gets developed, the software code evolves [11], and as a result the coordination

requirements change [3]. As mentioned earlier, there has been little research done on

the effect that the variation of software coupling has on the coordination requirements

of the software developers. In this paper we try and fill this gap by analysing the

effect of the changes in software coupling on the coordination requirements of the

developers. We postulate that, if there is a sudden increase in the coupling of an Open

Source system, then the coordination requirement among the developers’ increases.

Unless this coordination requirement is handled through communication, it could

result in a coordination problem [12]. By conducting a case study of the of the JBoss

application server, we observe the effect of the changes in coupling on the

coordination of the project. The unique contribution of this paper lies in discussing

the coordination implications of an increase in software coupling and then in

demonstrating it through a case study that uses quantitative along with qualitative

methods.

The rest of the paper is structured as follows; section 2 describes the Design

Structure Matrices briefly along with the Clustered and Propagation Cost metrics used

in this paper, section 3 describes the case study of JBoss, section 4 discusses the

findings and finally section 5 concludes the paper.

2 Design Structure Matrix and Cost Metrics

In this section we describe the data structure and the metrics we use to study software

coupling. Dependency Structure Matrices (DSM) have been used in engineering

literature to represent the dependency between tasks, since the concept of the Design

Structure Matrix was first proposed by Steward [13, 14]. A DSM highlights the

inherent structure of a design by examining the dependencies between its component

elements in a square matrix [13, 15]. Morelli et al. [16] describe a method to predict

and measure coordination-type of communication within a product development

organization. They compare predicted and actual communications in order to learn, to

what extent an organizations communication patterns can be anticipated.

Sosa et al.[4] find a “strong tendency for design interactions and team interactions

to be aligned,” and show instances of misalignment are more likely to occur across

organizational and system boundaries. Sullivan et al. [17] use DSMs to formally

model (and value) the concept of information hiding, the principle proposed by Parnas

to divide designs into modules [1]. Cataldo et al.[3] show how DSMs can be used to

predict coordination in a software development organization and then they compare

the predicted coordination DSM with the actual communication DSM. Sosa [5] builds

on the DSM based method of Cataldo et al. [3] and provides a structured approach to

identify the employees who need to interact and the software product interfaces they

need to interact about. Amrit et al. [12, 18] take a similar approach and use DSMs to

detect coordination problems in a software development environments.

We use the Software Dependency Matrix (the DSM of software dependencies) to

calculate the Propagation Cost and Clustered Cost similar to what MacCormack et al.

[6] do. Our unit of analysis is the source code file and we consider the function call

dependencies among the files.

While the Propagation Cost assumes that the cost of dependencies between two

elements are the same irrespective of where the elements lie (the path length between

them), Clustered Cost assumes that the cost of dependency depends on whether the

elements lie in the same cluster [6]. Together the Propagation and Clustered Cost

measure both the number as well as the pattern of the software dependency [6]. In

order to calculate the Propagation Cost, MacCormack et al. first raise their

dependency matrix to successive powers of n and obtain the direct and indirect

dependencies for successive path lengths [6]. They then obtain a Visibility Matrix by
summing up all the successive powers of the dependency matrix. From the Visibility

Matrix they calculate the “fan-in” and “fan-out” visibilities by summing along the

columns or the rows and dividing the result with the total number of elements. As we

consider undirected dependencies, we find the “fan-in” visibility to equal the “fan-

out” visibility. The Propagation Cost measures the elements in the system that could

be affected when a change is made to one element of the system (i.e. how the change

propagates) [6].

Unlike the Propagation Cost, the Clustered Cost of an element depends on the

location of the element (with respect to other elements). In order to measure the

Clustered Cost, the DSM of the software call graph has to be first clustered. The

clustering algorithm (described in [6]) tries to group all highly connected or

dependent elements into one cluster. The clustering works by attaching a cost to each

element, depending on where the element is located with respect to other elements (in

the same vertical bus or in the same cluster)). The Clustered Cost of the software is

then the summation of the individual Clustered Cost of the elements.

In the next section we describe the case study of the popular open source project

JBoss. In the case study we describe how we apply the two metrics described in this

section and the conclusions we draw from them.

3 Case Study of JBoss

JBoss project was started in 1999 by Marc Fleury who wanted to advance his research

interests in middleware. JBoss Group LLC was incorporated in 2001 and JBoss

became a corporation in 2004. After a few bids from big companies, JBoss was

finally acquired by Red Hat in 2006. The JBoss Application Server is one of the main

products of the JBoss project and is said to have pioneered the professional Open

Source business model. JBoss has 79 listed developers and three project

administrators of which one is the Chief Technical Officer (CTO) of JBoss.

The aim of the case study is to determine if there was a relation between the

changes in the technical dependencies and the communication among the developers.

For the technical dependencies, the JBoss Application Server (JBoss) source code was

analysed over the period starting from May 2002 to December 2006 that covered the

versions 3.0.0 to 4.0.3_sp1. We used a tool called TESNA [12] that uses

DependencyFinder [19] to read the software code and create the DSMs. With the

help of TESNA we could then calculate the Propagation and Clustered Cost based on

the DSMs. The Lines of Code (KLOC) of the different versions of JBoss was also

measured using the same tool.

To determine the communication patterns used by the developers, we analysed the

Mailing List archive of JBoss. The JBoss Mailing List is used to discuss the

development of the system, report bugs, coordinate the bug fixes, as well as discuss

new features before and after the release of each version. An analysis of the different

mediums of coordination in JBoss revealed that the Mailing List was the primary

means of coordination. This is the case, as the usage of private means to communicate

is considered unlikely, given the trend of openness in Open Source projects [20]. In

order to find out the timeline around which developers discussed a particular release,

we needed to first find out the coordination mechanisms used by the developers. We

performed a qualitative analysis of the messages in the Mailing List archive where we

read randomly selected mails (around each release) looking for coordination

mechanisms as described in previous literature. The following post mailed on 28th of

June shows how the management of each release was undertaken by one of the

Project Leaders (Scott Stark in this case).

Its about 36 hours until I'm planning on cutting the 3.0.1 release. Any

changes you want in 3.0.1 should be in by Sat Jun 29 18:00:00 2002 GMT.
xxxxxxxxxxxxxxxxxxxxxxxx

Scott Stark

This post also shows that the planning for a release was done around a month

earlier to the release, as the release date for version 3.0.1 was on 6th August 2002.

While the following post shows another instance of a post reporting a fix for a bug.

Sender: d_jencks

Logged In: YES

user_id=60525

I believe I have fixed this in HEAD. I'd appreciate verification before I

backport it to 3.2, since it is a substantial refactoring of the ejb

deployment/service lifecycle code. I'll close this after backporting to 3.2.

This post shows two important mechanisms; (i) the request for verification

implying the coordination mechanism of code review as was described by Rigby et al.

[21], (ii) the one which d_jenks refers to as “backport”. By “backport” the author

refers to making changes to the previous version well after the release (2002-08-27).

This coordination mechanism coincides with what was observed by Yamauchi et al.

[22], namely, a bias towards action first and coordination later. Given that the

planning for the release and the coordination for the bugs in the release was

conducted around a month before and a month after the release respectively, we

decided to consider the messages related to a release over a three month window.

Hence, the Mailing Lists were analysed from one month before each release to one

month after each release, corresponding to the period of analysis of the JBoss code

(i.e. from April 2002 to January 2007). We decided to consider all the messages in the

three months window, as messages dealing with the coordination of the community

for the following reasons:

1) The threads containing more than one message is naturally a discussion

thread implying coordination between messages

2) Threads containing only one message were mostly announcements such as

“Build Fixed” that warrants no further replies. However, such posts are also

coordination alerts for the community to not worry about the compilation

part of the particular version and to concentrate on other work.

Figure 1 describes the variation of the Propagation Cost of JBoss over the different

versions, while Figure 2 denotes the variation of the Clustered Cost of JBoss over

different versions. In both figures and particularly in Figure 1 we notice a sharp rise in

the Clustered Cost for version 3.2.7. While the increase in the Propagation Cost is

minor, the increase in the Clustered Cost for version 3.2.7 is quite marked. We

calculated the KLOC (Lines of Code in thousands) of each of the versions to see how

much code was actually added. Figure 3 shows the variation of KLOC over the

different versions of JBoss. As can be seen from the figure, the trend is similar to the

variation of coupling seen in Figures 1 and 2. The largest increase in KLOC, as

evident from the slope of the graph in Figure 3, occurs for version 3.2.7. Clearly

showing that for version 3.2.7 not only has the complexity of the code increased (with

the increased coupling), but also the size.

This increase in modularity of the project causes an increase in the coordination

requirement [3] and therefore require an increased amount of coordination to resolve

the extra dependencies and features included for version 3.2.7.

Figure 1: The variation of Propagation

Cost of JBoss over different versions

Figure 2: The variation of Clustered Cost

of JBoss over different version

.

Figure 3: Variation of KLOC with Version

number of JBoss

Figure 4: Variation of the Number of eMail

messages with JBoss Version number

Figure 4 describes the variation in the number of messages over the different

versions of JBoss. We see a large increase in the number of messages for discussing

the features and bugs for version 3.2.7. The increase in the number of messages is

nearly 5000 and twice as much as the average number of messages (2650) discussing

other versions.

4 Discussion and Conclusion

Though one needs to analyse the mails more closely to ascertain if they are indeed

discussing the particular version, one can say with some confidence that this sharp

increase in messages can be explained by the increased need for coordination. This

increased need for coordination arises from the increased number of couplings and

related features of JBoss in the release. Such an increase in the communication of the

developers in the eMail List can indicate how the developers of JBoss satisfy the

changing coordination needs for different versions and as a result remains a

successful Open Source project. Had the coordination not increased to offset the

increase in coupling and complexity of the software, we might have noticed a

coordination problem as described by deSouza [23] and Amrit et. al [12].

In this paper we addressed the implications of coordination of an Open source

project when the software coupling in the project changes. Clearly, the change in

software coupling causes a change in the coordination requirements of the project as

suggested by [2, 3, 6]. Unless this increase in the coordination requirement is

compensated by an increase in communication related to the coordination, (as in the

JBoss case study) one can expect consequences to the software quality of the project.

Hence, this research has implications for the Open Source project manager. As such a

manager has to be aware of the increased coordination requirement arising from

changes in the project’s software coupling.

The contribution of the research in this paper is twofold; (i) a discussion on the

coordination implications of an increase in software coupling and (ii) the case study

demonstrating the coordination implication using appropriate metrics like

Propagation, Clustered Cost, KLOC and number of Mailing List messages. The email

archive of JBoss also reveals two particular coordination mechanisms used to

coordinate the development of JBoss, namely code reviews [21] and post-release

coordination [22]. Future work can look at why the clustered and propagation cost

differed in describing the coordination requirements in this case. Also, future work

could look into different perspectives of comparing the effect of other technical

dependencies on social coordination in Open Source projects. We are also studying

the effect the change of coupling has on the health of the Open Source project.

References

1. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.

Commun. ACM, Vol. 15, New York, NY, USA (1972) 1053--1058

2. Conway, M.: How do Committees Invent. Datamation, Vol. 14 (1968) 28-31

3. Cataldo, M., Wagstrom, P., Herbsleb, J.D., Carley, K.M.: Identification of

coordination requirements: implications for the Design of collaboration and awareness tools.

Proceedings of the 2006 20th anniversary conference on Computer supported cooperative

work. ACM Press, Banff, Alberta, Canada (2006)

4. Sosa, M.E., Eppinger, S.D., Rowles, C.M.: The Misalignment of Product Architecture

and Organizational Structure in Complex Product Development. J Manage. Sci. 50 (2004)

1674-1689

5. Sosa, M.E.: A structured approach to predicting and managing technical interactions

in software development. Research in Engineering Design 19 (2008) 47-70

6. MacCormack, A., Rusnak, J., Baldwin, C.Y.: Exploring the structure of complex

software designs: An empirical study of open source and proprietary code. Management

Science 52 (2006) 1015-1030

7. Mockus, A., Fielding, R.O.Y.T., Herbsleb, J.D.: Two Case Studies of Open Source

Software Development: Apache and Mozilla. ACM Transactions on Software Engineering and

Methodology 11 (2002) 309-346

8. O'Reilly, T.: Lessons from open-source software development. Commun. ACM 42

(1999) 32-37

9. Paulson, J.W., Succi, G., Eberlein, A.: An Empirical Study of Open-Source and

Closed-Source Software Products. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

(2004) 246-256

10. Herbsleb, J., D., Grinter, R., E. : Architectures, Coordination, and Distance:

Conway's Law and Beyond. IEEE Software, Vol. 16, Los Alamitos, CA, USA (1999a) 63--70

11. Koch, S.: Software evolution in open source projects—a large-scale investigation.

Journal of Software Maintenance and Evolution: Research and Practice 19 (2007) 361-382

12. Amrit, C., van Hillegersberg, J.: Detecting Coordination Problems in Collaborative

Software Development Environments. Information Systems Management 25 (2008) 57 - 70

13. Steward, D.: The design structure system: a method for managing the design of

complex systems. IEEE Transactions on Engineering Management 28 (1981) 71-74

14. Steward, D.V.: Partitioning and tearing systems of equations. SIAM J. Numer. Anal 2

(1965) 345-365

15. Eppinger, S.D., Whitney, D.E., Smith, R.P., Gebala, D.A.: A model-based method for

organizing tasks in product development. Research in Engineering Design 6 (1994) 1-13

16. Morelli, M.D., Eppinger, S.D., Gulati, R.K.: Predicting technical communication in

product development organizations. Engineering Management, IEEE Transactions on 42 (1995)

215-222

17. Sullivan, K., J., Griswold, W., G., Cai, Y., Hallen, B.: The structure and value of

modularity in software design. Proceedings of the 8th European software engineering

conference held jointly with 9th ACM SIGSOFT international symposium on Foundations of

software engineering. ACM Press, Vienna, Austria (2001) 99-108

18. Amrit, C., Van Hillegersberg, J.: Exploring the Impact of Socio-Technical Core-

Periphery Structures in Open Source Software Development. Journal of Information

Technology, forthcoming (2010)

19. Tessier, J.: Dependency Finder. (Retrieved on March 1st 2009)

20. Raymond, E.: The Cathedral and the Bazaar. Knowledge, Technology, and Policy 12

(1999) 23-49

21. Rigby, P.C., German, D.M., Storey, M.A.: Open source software peer review

practices: a case study of the apache server. Proceedings of the 13th international conference on

Software engineering (2008) 541-550

22. Yamauchi, Y., Yokozawa, M., Shinohara, T., Ishida, T.: Collaboration with Lean

Media: how open-source software succeeds. Proceedings of the 2000 ACM conference on

Computer supported cooperative work (2000) 329-338

23. de Souza, C., R. B., Redmiles, D., Cheng, L.-T., Millen, D., Patterson, J.: Sometimes

you need to see through walls: a field study of application programming interfaces. CSCW '04:

Proceedings of the 2004 ACM conference on Computer supported cooperative work, New

York, NY, USA (2004) 63--71

