

Mapping Linux Security Targets to Existing
Test Suites

C.A. Ardagna1, E. Damiani1, N. El Ioini2, F. Frati1, P. Giovannini2 and R.
Tchokpon3

1 Department of Information Technology - University of Milan
via Bramante, 65 – 26013 Crema (CR) - Italy

{ardagna,damiani,frati}@dti.unimi.it
2 Free University of Bozen-Bolzano

{Pietro.Giovannini,Nabil.ElIoini}@stud-inf.unibz.it
3 Institut de Mathématiques et de Sciences Physiques – Benin

ricotchfr@yahoo.fr

Abstract. The Common Criteria standard provides an infrastructure for evalu-
ating security functions of IT products and for certifying that security policies
claimed by product suppliers are correctly enforced by the security functions
themselves. Certifying Open Source software (OSS) can pave the way to OSS
adoption in a number of security-conscious application environments. Recent
experiences in certifying Linux distributions has pointed out the problem of
finding a mapping between descriptions of OSS security functions and existing
test suites developed independently, such as the Linux Test Project. In this pa-
per, we describe a mechanism, based on matching techniques, which semi-
automatically associates security functions to existing test suite such as the
ones developed by Open Source communities.

1 Introduction

Security software evaluation and certification have become an important technique
for selecting IT products to be deployed in security-conscious environments. The
main goal of software security evaluation is to certify that software products provide
and correctly implement some required security functionalities. This means that a
good evaluation criterion should give an assessment of system security revealing all
the security problems and weaknesses of IT products, which could lead to any unex-
pected behaviour.
The first attempt (carried out in 1985) to create a standard for security certification
was the Trusted Security Evaluation Criteria (TCSEC) by U.S Department of De-
fense, also known as Orange Book. The Orange book has been defined to assist the
design and development of security requirements and to fill the communication gap
between vendors, evaluators, and customers [16]. However, the Orange Book soon
proved too rigid to adapt to the new changes.

30 C.A. Ardagna, E. Damiani, N. El Ioini, F. Frati, P. Giovannini and R. Tchokpon

From 1990, a specific European standard known as Information Technology Security
Evaluation Criteria (ITSEC) has been adopted in Europe [20]. A few years later,
several countries like Germany, United Kingdom, France and Canada have intro-
duced their own national standards for security evaluation. The diversity of certifica-
tions standards, however, made the process of certifying an IT product at an interna-
tional level somewhat difficult and expensive.
More recently, the Common Criteria (CC) certification standard has been defined to
fulfil the needs of an international standard for affordable software security certifica-
tion. Common Criteria is now an ISO standard (ISO 15408); it provides an unified
process and a flexible framework to specify, design, and evaluate the security proper-
ties of IT products [9]. The CC standard is the result of a joint effort of many interna-
tional organizations that have worked for two decades to specify a common structure
for evaluating security properties of IT products [9]. A major goal of the CC evalua-
tion is to certify that the security policies claimed by the developer are correctly en-
forced by the security functions of the product under evaluation.
Today, many development communities and other organizations working on Open
Source software (OSS) recognize that a standard way to obtain the security certifica-
tion of an OSS product can pave the way to its adoption in a number of security-
conscious application environments.
In this paper, we focus on CC certification testing, which is aimed at ensuring that
security functions under evaluation are correctly implemented and work according to
the specification. In this context, one of the main problems to be faced is to find an
easy map between test suites and security functions. This is especially true in OSS
scenario, where security functions developers are often different from test suites de-
velopers. Recent experiences in certifying Linux distributions [18,19] has pointed to
the problem of finding a mapping between descriptions of OSS security functions
and existing test suites developed independently, such as the Linux Test Project.
Semi-automatic mapping allows, using existing test suites, to support certification
and may be the only possibility when tests are developed and made available inde-
pendently with respect to source code. In the fullness of time, our approach will
support a mechanism based on semantics-aware test descriptions for automatically
associating security functions to existing test suites.

Mapping Linux Security Targets to Existing Test Suites 31

Fig. 2.1 The hierarchical structure of the SFRs.

2 Structure of Common Criteria Certification

The CC certification is based on different components that fall in the following cate-
gories [8].

Security functional and assurance requirements.

The CC certification defines two types of security requirements: Security Functional
Requirements (SFRs) and Security Assurance Requirement (SARs). SFRs define the
requirements the security functions of the product under evaluation should satisfy
[8].The CC standard includes a predefined extendable catalogue of security func-
tional requirements “that are known and agreed to be of value by the CC part 2 au-
thors” [6].

32 C.A. Ardagna, E. Damiani, N. El Ioini, F. Frati, P. Giovannini and R. Tchokpon

SFRs are organized in a hierarchical structure, as depicted in Fig. 2.1 [9].
SARs describe practical ways to check the effectiveness of the security functions of
the product under evaluation [18]. The SARs catalogue includes many predefined
requirements focusing on different phases of the product life cycle such as develop-
ment, configuration management, testing and so forth.

Protection Profile and Security Target.

A Protection Profile (PP) is a document produced by consumers groups and commu-
nities that describes its authors' security needs.
A PP is not meant to be referred to a specific product (i.e., the Target of Evaluation
(TOE)), but rather to a product type (i.e., a TOE category). PP defines an implemen-
tation-independent set of IT security requirements for a category of TOEs, to be used
as a starting point for the evaluation of a particular IT product.
Users can create their PP based on their high-level security needs, without looking at
any implementation detail [9]. A Security Target (ST) instead contains the security
requirements of a given IT product, to be achieved by a set of specific security func-
tions.
The ST is a basis for agreement between the developers, evaluators and, where ap-
propriate, users on the TOE security properties and on the scope of the evaluation.
A ST can be derived from a given PP by instantiation; in general, the construction of
a ST corresponds to a particular PP definition. A ST may then claim conformance to
a PP by providing the implementation details concerning the security requirements
defined by that PP [12]. Also, ST may augment the requirements derived from the
PP.
There might be cases where there is no PP that matches the security properties of a
specific product. In this case, the product developer can still create its own ST with-
out claiming conformance to any PP [12].
An important aspect about ST requirements specification is the definition of the
threats and security objectives of the TOE and its environment. In particular, threats
identify situations that could compromise the system assets, while security objectives
contain all the statements about the intents to counter identified threats and/or satisfy
identified organization security policies and assumptions. Based on threats and secu-
rity objectives, the ST defines the security requirements that the TOE security func-
tions need to satisfy to achieve the security objectives.

Evaluation Assurance Levels.

The Common Criteria standard defines seven hierarchical Evaluation Assurance
Levels (EAL), which balance the desired level of security and the cost of deploying
the corresponding degree of assurance [3]. EALs identify different sets of security
assurance requirements, which are shown in Table 2.1. In case the predefined re-
quirements do not match the level of assurance required, the EAL might be aug-
mented by adding additional assurance requirements.

Mapping Linux Security Targets to Existing Test Suites 33

Table 2.1 Evaluation Assurance Levels.

EAL Description
EAL1 Functionally tested (black box testing)
EAL2 Structurally tested
EAL3 Methodologically tested and checked
EAL4 Methodologically designed, tested and reviewed
EAL5 Semiformally designed and tested
EAL6 Semiformally verified design and tested
EAL7 Formally verified design and tested

3 The Linux Security Target

As mentioned earlier, a PP defines a security target template directed to particular
application domains, describing the security needs of consumers. This potentially re-
sults in different PPs listing different requirements for the same type of products. For
instance, two groups of users of the same operating system may have different secu-
rity needs. The first group could require the operating system to provide secure au-
thentication and authorization mechanisms, while the second group could require the
operating system to include a secure data transmission mechanism. These two groups
of consumers would construct or cite two different PPs for the same product type,
based on their expectations.
In this paper, we focus on the certification of Suse Linux Enterprise Server V8 dis-
tribution with service pack 3 (SLES8). The ST adopted for SLES8 claims confor-
mance to the Controlled Access Protection Profile (CAPP), which has been released
by the Information Systems Security Organization (ISSO) as part of its program to
promote security standards for information systems [17]. According to the ISSO
“CAPP-conformant products support access controls that are capable of enforcing
access limitations on individual users and data objects CAPP-conformant products
also provide an audit capability which records the security-relevant events which oc-
cur within the system” [17].
In the following of this section, we discuss the SLES8 ST, describing its main com-
ponents and giving some examples as reported in the SLES8 ST.

Threats, objectives, and security requirements.

The threats part of a ST identifies the threats that could compromise the system as-
sets. In the case of SLES8, the assets to be protected include the information stored,
processed or transmitted by the TOE (SLES8) [11]. The threats are generally divided
in two categories: i) threats to be countered by the TOE, which exploit weaknesses in
the TOE itself, and ii) threats to be countered by the TOE environment, which ex-
ploit the weaknesses of the TOE environment.

34 C.A. Ardagna, E. Damiani, N. El Ioini, F. Frati, P. Giovannini and R. Tchokpon

Examples of threats to be countered by the TOE and by its environment are, respec-
tively [11]:

• an authorized user of the TOE may access information resources without having
permission from the person who owns, or is responsible for the information re-
source for the type of access;

• an attacker with legitimate physical access to the hardware of the TOE may cause
a hardware malfunction with the effect that a user is losing stored data due to this
hardware malfunction.

Security objectives provide statements about the intents to address and counter the
identified threats [9]. Based on the above examples, the following security objectives
for the TOE and TOE environment, respectively, can be defined [11]:

• the TOE security function must control access to resources based on the identity
of users, it must also allow the authorized users to specify which resources may be
accessed by which users;

• those responsible for the TOE must ensure that those parts of the TOE critical to
security policy are protected from physical attack.

Once the threats have been identified and the objectives to counter them have been
set, the ST specifies how those objectives will be achieved by defining the security
requirements. Security requirements section provides all the details concerning each
of the SFRs selected to reach the security objectives. An example of a SFR provided
by the SLES8 ST is: “the TOE security function shall be able to include or exclude
auditable events from the set of audited events based on the following attributes [11]:
i) User identity, ii) System call number, and iii) Directory or file name.”
The SLES8 ST includes seven security functions to be evaluated with respect to
SFRs: identification and authentication, audit, discretionary access control, objec-
tive reuse, security management, security communication, and TOE security function
protection [11].

4 Associating Tests to Target

One of the main responsibilities of CC security evaluation teams is to ensure that the
security functions claimed by developers have been implemented and are being cor-
rectly enforced. To this aim, security development and evaluation teams execute a set
of tests to check each security function of the TOE. However, to be able to carry out
this task successfully, security teams need to know in advance which tests will be
used for which security functions. In other words, a mapping between security func-
tions and test cases is necessary. When products are developed from scratch follow-
ing the CC standard, developers can create a mapping between the security functions

Mapping Linux Security Targets to Existing Test Suites 35

and their test cases during the test phase of the product life cycle. For existing prod-
ucts, however, security development and evaluation teams need to find out which ex-
isting tests match the desired security functions.
This problem is hard in general, as test documentation can be terse or entirely lack-
ing, and is even harder in case of OSS evaluation. OSS development activities are
not tracked, configuration management is skeletal and in many cases developers of
the system functionalities do not write test cases. Therefore, finding the right map-
pings becomes a time-consuming task.
Our approach is aimed at providing a general automatic solution, based on matching
techniques, for associating ST's security functions to tests. In the following, we show
how our solution is used to map SLES8 security functions to Linux Test Project ex-
isting test suites. We relied on an extended set of test suites that has been used for
SLES8 EAL3 certification [11].

4.1 The Linux Test Project

A fundamental aspect of CC certification is represented by extensive testing of the
security functions of the TOE, using tests which cover all the range of security func-
tions under evaluation.
The Linux Test Project (LTP) [15] defines a set of tests for Linux with a huge
amount of security functions-related tests, which simplify the certification of Linux
kernels.
LTP, which started in 2000 with one hundred test programs developed by Silicon
Graphics Inc. (SGI), has been developed to improve the Linux kernel by providing
automated testing of kernel functionalities [10]. LTP represented a “revolution” in
Linux testing and assurance, since no formal testing environment was previously
available to developers. The major advantage provided by the development of LTP
was not the definition of batteries of tests, but the provisioning of a framework for
systematic integration of testing activities. Furthermore, LTP includes an environ-
ment for defining new tests, integrating existing benchmarks and analyzing test re-
sults.
Nowadays, the latest version of LTP contains more than three thousands tests. In ad-
dition to the test suites, LTP also provides test results, a test tools matrix, technical
papers and HowTos on Linux testing, and a code coverage analysis tool [15].
LTP tests cover a wide range of kernel functions, including system calls, networking
and file system functionalities, and their results are restricted to PASS or FAIL. LTP
provides a testing environment simple to install and use, which includes three scripts
for executing three different suites of automatic tests [14]: i) runalltests.sh, ii) net-
work.sh, and iii) diskio.sh. To give a clear understanding of a LTP test suite evalua-
tion, in Table 4.1 we provide the summary report of the evaluation of Linux kernel
2.6 on a 64 bit Intel Itanium architecture (formerly called IA-64)1.

1 The complete evaluation is available at http://surfnet.dl.sourceforge.net/sourceforge/ltp/ltp-full-
20071130_ia64_output.html.

36 C.A. Ardagna, E. Damiani, N. El Ioini, F. Frati, P. Giovannini and R. Tchokpon

Table 4.1 LTP summary report of Linux kernel evaluation.

Test Summary Pan reported some tests FAIL
LTP Version LTP-20071130
Start Time Tue Dec 4 02:11:29 PST 2007
End Time Tue Dec 4 03:11:52 PST 2007
Log Result /root/subrata/ltp/ltp-full-20071130/results
Output/Failed Result /root/subrata/ltp/ltp-full-20071130/output
Total Tests 849
Total Failures 0
Kernel Version 2.6.16.21-0.8-default
Machine Architecture ia64
Hostname elm3b159

In our context, LTP is used to evaluate the security related functionalities of Linux
kernels with respect to CC certification.
As an example, starting from LTP, test suites for the CAPP/EAL3+ certification of
SuSE Linux Enterprise Server 8 has been implemented [11]; test cases have been
written by IBM, SuSE, and atsec, or taken directly from the LTP.
A detailed test plan has been produced to test the functions of SLES8 on each evalu-
ated platform, and such plan includes an analysis of the test coverage, the functional
interfaces tested, and the testing against the high level design.

Mapping Linux Security Targets to Existing Test Suites 37

Fig. 4.1 Mapping between SFRs, security functions and testcases.
LTP has been used to test more than fifty kernel versions, where more than five hun-
dreds vulnerabilities have been found. Nevertheless, LTP lacks of adaptability from a
security certification point of view, that is, it lacks of an effective technique for asso-
ciating batteries of tests to specific security functions to be evaluated. LTP, in fact,
makes available only three pre-configured scripts for a general purpose testing, mak-
ing difficult for developers to intuitively identify the batteries of tests that should be
adopted for testing specific functions. In the remainder of this section, we discuss a
possible solution to this problem.

4.2 Automatic Test Selection for Security Functions

Security functions testing, which is aimed at confirming that the functions operate
according to their specification and satisfy the SFRs, is an important part of Com-
mon Criteria certification.
However, a major problem to be faced in security functions testing is that no frame-
work for automatic linking between test suites and security functions is available.
Developers and evaluators are then forced to associate tests to security functions bas-
ing on their experience only. To the best of our knowledge, in the past, this task has
been done manually by creating two types of mappings. The first mapping connects
each SFR with the security function or set of security functions that implement it.
For instance, considering SLES8 security target, the security function User Identity
Changing (IA.4) contributes to satisfy the SFR User-Subject Binding (FIA_USB.1)
[11]. The second mapping is done between the security functions and available test-
cases. Figure 4.1 depicts the two mappings. Note that, whereas the first mapping is

38 C.A. Ardagna, E. Damiani, N. El Ioini, F. Frati, P. Giovannini and R. Tchokpon

part of the TOE security specification section of the ST, the second one is not part of
the ST [5].
Our solution focuses on the second mapping and consists of a generic framework for
the automatic selection of test suites for the evaluation of security functions. Our
framework, depicted in Figure 4.2, is composed of three main components:

• Certification Test Suites, which represents a hierarchical structure containing the
set of test suites to be used in the certification process. Each node of the structure
is assumed to be labelled using a self-explaining name and enriched of metadata
describing its semantics. Each leaf-node represents a single test;

• Security Functions, which include the functions description of the TOE to be
evaluated;

• Matching Engine, which is the component responsible for associating tests to se-
curity functions.

Mapping Linux Security Targets to Existing Test Suites 39

Fig. 4.2 Matching engine.
The first step towards the development of a matching engine for automatic test selec-
tion is the introduction of a common vocabulary. A vocabulary can be defined as a
set of keywords {k1,…,kn} to be used in the definition of test suites metadata and
name, and for the description of the security functions to be evaluated.
The vocabulary V allows to define both certification test suites and security func-
tions descriptions based on a common grammar, which simplify the matching engine
process. Our matching engine can be defined as a function f that takes in input the
vocabulary V, the security functions SF and the test suites TS, and returns the asso-
ciation between the security functions SF and the test suites TS. The mapping proc-
ess is composed of three phases: keyword extraction, semantic expansion, and
search/match.
In the first phase, given a security function sf ∈ SF, the matching engine searches in-
side sf all keywords {k1,…,kn} ∈ V extracting a set K ⊆ V of all the keywords used in
sf description. Then, each keyword in ki ∈ K is expanded by means of a suitable the-
saurus, and the expanded set of keywords is searched in the test suites paths and in
each node metadata. All nodes that contain at least one matching, i.e., where at least
one keyword is found, are selected and used by the matching engine as the roots of

40 C.A. Ardagna, E. Damiani, N. El Ioini, F. Frati, P. Giovannini and R. Tchokpon

the subtrees to be considered. Finally, the matching engine returns all the selected
subtrees, which are used to test security function sf.
Although general enough to be adopted in a generic scenario, our solution is used in
the context of the SLES8 Linux distribution. In particular, our framework relies on
an extended version of Linux Test Project, which has been used for SLES8 EAL3
certification [11], and on the security functions specification used for the definition
of the security target of SLES8.
Since no formal metadata describing the test suites for SLES8 EAL3 certification are
available and no agreement between security functions and test suites vocabulary is
in place for this application, we assume that the vocabulary used by our matching
engine is composed by the set of node names used in the hierarchical structure of the
certification test suites, together with some predefined keywords. For instance, the
certification test suites used in SLES8 EAL3 certification contains the node path
network/nsfv4/acl that includes a large set of tests among which: create_users,
test_acl, and many others. All the node names in the path and the test names are used
as keywords for searching inside the security functions description and finding the
association security functions/test suites.
In the following section, we present a worked-out example based on SLES8 test
suites and security target. In particular, after selecting three security functions, we
used our engine to select the set of tests to be used for the certification process.

Fig. 4.3 The automated mapping approach between security functions and testcases.

4.3 Automatic Test Selection Example Based on SLES8 Security Functions

The SLES8-based example is summarized in Fig. 4.3 and the results are provided in
Table 4.2. During the keyword extraction phase, all the security-related vocabulary
keywords are extracted by security functions description (see underlined words in
second column of Table 4.2. In the second phase, keywords are semantically ex-
panded using an ad-hoc security related thesaurus, generating the column tree of Ta-

Mapping Linux Security Targets to Existing Test Suites 41

ble 4.2. Finally, in the search/match phase, the expanded set of keywords is searched
in the LTP testcases directory hierarchy2. If a node matches at least one keyword, it
will be automatically mapped to the security function to which that keyword belongs
(see column four in Table 4.2).
In our approach, the search/match phase relies on the Linux command grep, which is
applied to the extended LTP tree structure.
The grep command, developed within the GNU project, searches one or more input
strings and returns any line containing a match to a specified pattern. Based on grep
command, scripts are generated automatically starting from the keywords retrieved
in the semantic expansion phase. These scripts search the keywords retrieved during
the keyword extraction and semantic expansion phases, inside the directory structure
of extended LTP tree and inside the comments in the testcases. Figure 4.4 presents a
sample script, which is executed to retrieve the set of tests for the SC.1 security func-
tion described in Table 4.23.

Fig. 4.4 Example of search/match script applied to the SC.1 security function. The -l and -i op-
tions allow to print the list of matching files ignoring case distinctions.
Our experimental results prove the suitability of our solution, since our matching en-
gine always returns all the relevant test cases selected manually by developers during
SLES8 certification. Of course, our matching is not entirely precise, and some re-
dundant tests are also selected.
Table 4.2 Automatic test selection results. For sake of conciseness, the table only reports a
significant subpart of each security function and a partial list of tests. A complete description
of the functions can be found in [11].

Security Function Description Semantic Expansion Tests
Access Control
Lists supported by
SLES (DA.3)

SLES provides support for
POSIX type ACLs for the ext3
file system allowing defining a
fine grained access control on a
user basis.

permission, allowed,
entry, discretionary,
DAC, etc.

access04.c,
signal01.c,
fcntl07B.c,
readdir02.c, etc.

Kernel Modules
(TP.3)

SLES supports dynamically load-
able kernel modules that are
loaded automatically on demand.
Kernel modules are actually a
part of the kernel that is not resi-

Kernel mode, load-
able module, mod-
ules, trusted program,
modprobe etc.

create_module01.c,
create_module02.c,
delete_module01.c,
delete_module02.c,
delete_module03.c,

2 Search process considers also the comments inside the testcases files.
3 The complete output produced by the execution of the grep command is summarized in Appendix
A.

42 C.A. Ardagna, E. Damiani, N. El Ioini, F. Frati, P. Giovannini and R. Tchokpon

Security Function Description Semantic Expansion Tests
dent but loaded as part of the
kernel when needed.

modules.conf01,
modules.conf02, etc.

Secure Protocols
(SC.1)

The TOE offers two protocols
that applications can use to se-
curely communicate with another
trusted IT product (…). Those
protocols are the Secure Shell
Protocol Version 2 (SSH v2) and
the Secure Socket Layer Protocol
Version 3 SSL v3).

network, secure chan-
nel, data transmission,
port 22, tunnelling,
cryptographic proto-
col, secure communi-
cation, etc.

ssh01,
ssh02,
ssh03,
ssh04, etc.

5 Conclusions and Outlook

In this paper, we outlined a framework aimed at supporting OSS security certifica-
tions including a matching engine for the automatic association of tests to security
functions. Our solution is a first attempt to provide such an automatic infrastructure,
and much additional work remains to be done. In particular, the proposed methodol-
ogy has the main disadvantage of selecting a redundant set of tests. Our engine in
fact chooses all the subtrees of the nodes whose names and/or description match with
at least one of the keywords contained in the security functions under evaluation.
This results in a situation where unnecessary tests are executed. To overcome this
problem, we plan to provide two major improvements in our future work: i) the defi-
nition of a complete and formal vocabulary, and ii) the definition of a formal ontol-
ogy used to reason about metadata describing the elements to be chosen (i.e., the
nodes of the certification test suites hierarchy) and the correlations among them.
Such an approach will allow us to exploit automatic reasoning techniques. Also, the
combination of a complete vocabulary and a detailed ontology will lead to the devel-
opment of an engine able to select only the suites of tests that effectively match the
specified security functions, thus limiting unnecessary tests executions.
Another important issue is the actual testing environment to be used. It is well known
that the development and running of intensive tests, especially for networking appli-
cations/devices, could affect the overall consistence of the system under evaluation
and of the network that hosts the system. Furthermore, network tests need the par-
ticipation of at least two physical machines, making them more expensive and de-
manding more implementation efforts. Also the risk of compromising the integrity of
the real system becomes considerable. To eliminate the risk and to reduce the efforts
introduced by such an extensive testing, a possible solution consists in setting up a
Virtual Test Environment (VTE) that accurately reproduces the real environment in
which the target application should be evaluated.
Several VTEs have been already provided in literature in different contexts and
aimed at several goals [1,2,4,7]. Among them, we have provided a multi-purpose vir-
tual environments, which supplies Virtual Laboratories for the on-line degree courses
on Information Systems and Network Security of University of Milan [1,2]. This in-

Mapping Linux Security Targets to Existing Test Suites 43

frastructure also allows the use of the virtual systems for general testing and, in par-
ticular, for network functions testing. More in details, the system in [1,2] consists of
a virtual subnet composed of a three hosts acting as a firewall, an external generic
host, and an internal host working under the firewall. In our future work, we plan to
adapt such a virtual network to make it suitable for security testing of applications
that should be evaluated to achieve security certification.

Acknowledgments This work was supported in part by the European Union within the PRIME
Project in the FP6/IST Programme under contract IST-2002-507591, and within the SecureSCM
project in the FP7-ICT Programme under contract n.AOR 213531 and by contract/grant sponsor
FIRB research fund of MIUR, research project TEKNE (contract/grant n.RBNE05FKZ2).

6 References

1. Anisetti M, Bellandi V, Colombo A, Cremonini M, Damiani E, Frati F, Hounsou JT, Rebeccani
D (2007) Learning computer networking on open paravirtual laboratories. IEEE Transactions on
Education, 50(4):302-311

2. Anisetti M, Bellandi V, Damiani E, Frati F, Raimondi U, Rebeccani D (2006) The open source
virtual lab: a case study. In Proc. the Workshop on Free and Open Source Learning Environ-
ments and Tools - FOSLET 2006, Como, Italy

3. Caplan K, Sanders JL (1999) Building an international security standard. IEEE Educational Ac-
tivities Department, 22(3):29-34

4. Gambit Communications. Mimic virtual lab CCNA (2007)
www.gambitcomm.com/site/products/vlab_ccna.shtml. Accessed December 2007.

5. The International Organization for Standardization and the International Electrotechnical Com-
mission (2007) Common Criteria for Information Technology Security Evaluation, Evaluation
methodology

6. The International Organization for Standardization and the International Electrotechnical Com-
mission (2007) Common Criteria for Information Technology Security Evaluation, Part 2: Secu-
rity functional components

7. Grigoriadou M, Kanidis E, Gogoulou A (2006) A web-based educational environment for teach-
ing the computer cache memory. IEEE Transactions on Education, 49(1):147-156

8. R. Harland R (2007) The canadian common criteria scheme. http://strategis.ic.gc.ca/epic/site/ad-
ad.nsf/vwapj/CSE_Harland.ppt

9. Herrmann DS (2002) Using the Common Criteria for IT security evaluation. Auerbach publica-
tions, London

10. Hinds N (2004) Kernel korner: The Linux test project. Linux Journal
11. IBM, SuSE, atsec (2007) SuSE Linux Enterprise Server 8 w/SP3 CAPP/EAL 3+ Certification

Test Suite. http://ltp.sourceforge.net/EAL3.html. Accessed December 2007
12. ISO/IEC. Guide for the production of Protection Pro_les and Security Targets, 2004.
13. Katzke S (2007) The common criteria (cc) paradigm. ieeeia.org/iasw/Katzke-CC.ppt. Accessed

December 2007
14. Larson P (2002) Testing linux with the linux test project. In Proc. of the Ottawa Linux Sympo-

sium, Ottawa, Ontario, Canada
15. Linux Test Project (2007) http://ltp.sourceforge.net. Accessed December 2007
16. Lipner S (1999) Twenty years of evaluation criteria and commercial technology. In Proc. of the

1999 IEEE Symposium on Security and Privacy
17. Information Systems Security Organization (1999). Controlled Access Protection Profile version

1.d

44 C.A. Ardagna, E. Damiani, N. El Ioini, F. Frati, P. Giovannini and R. Tchokpon

18. Shankar KS, Kirch O, Ratliff E (2004) Achieving capp/eal3+ security certification for Linux. In
Proc. of the Linux Symposium, volume 2:18-30

19. Shankar KS, Kurth H (2004) Certifying open source - The linux experience. IEEE Security &
Privacy, 2(6):28-33

20. Shi W, Sun Y (2001) An investigation of cc's contribution to confidence in security. In Proc. of
the 2001 International Conference on Computer Networks and Mobile Computing, 333-338

Appendix A

An example of a grep-based search/match phase

In Fig. A.1 we provide the complete output produced by our matching engine when
mapping between security function SC.1 and testcases is searched. Based on the fol-
lowing grep-based script, where Fig. A.2 shows the set of testcases to be used in the
evaluation of security function SC.1.

Mapping Linux Security Targets to Existing Test Suites 45

 Fig. A.1Grep-based script for keyword matching and set of testcases retrieved for SC.1 secu-
rity function evaluation.

