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Abstract. Software is central to the functioning of modern computer-based so-
ciety. The OSS (Open Source Software) phenomenon is a novel, widely grow-
ing approach to develop both applications and infrastructure software. In this
research, we studied the community network of the SourceForge.net, especially
the structure and evolution of the community network, to understand the Open
Source Software movement. We applied three different analyses on the network,
including structure analysis, centrality analysis and path analysis. By applying
these analyses, we are able to gain insights of the network development and its
influence to individual developments.

1 Introduction

In recent research, network characteristics have received more and more attention, es-
pecially in evolving networks like the Internet, social networks and communication
networks [22, 24, 18]. Analyzing these characteristics can reveal interesting informa-
tion. In this study, we used network analysis to investigate the network characteristics
in the evolution of the community network in SourceForge.net.

2 Related Work

Topology analysis is a method that can be used to understand the evolving complex
networks [19, 3, 12]. It can also be used to understand the OSS phenomenon. This
study also tried to understand the OSS phenomenon by studying the community as a
collaboration network where every user and project can be a single node in the net-
work.
Gao et al. [14] analyzed the empirical data they collected from SourceForge to

obtain statistics and topological information of the Open Source Software developer
collaboration network. They extracted the parameters and generated a model that de-
picts the evolution of this collaboration network. They also used these parameters to
characterize the empirical data they collected from SourceForge, while other research
tended to look at the network as a single snapshot in its evolution, which means they
all based their observations on network, without respect to time. They were able to
inspect the network with consideration of time, using the empirical data collected over
more than two years.
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Xu, Madey and Gao [25] presented the results of docking [9] a Repast [17] sim-
ulation and a Java/Swarm [16] simulation of four social network models of the Open
Source Software community. The simulations grew “artificial societies” representing
the SourceForge developer/project community. As a byproduct of the docking exper-
iment, they provided observations on the advantages and disadvantages of the two
toolkits for modeling such systems.
These previous analyses studied the OSS community based on the global topology

of the collaboration network. These methods were not capable of revealing behaviors
of a single object such as a user or a project. Our study extended the understanding
of OSS to the study of individual behaviors and introduced a new measure set in the
study of the OSS community.

3 Our Approach

The analysis we used includes structure analysis, centrality analysis and path analysis.
We conducted the analyses in the following manner. First, we conducted the structural
analysis, including the following measures: diameter, clustering coefficient and com-
ponent distribution. Then we conducted the centrality analysis, including the following
measures: average degree, degree distribution, average betweenness and average close-
ness. Finally, we conducted the path analysis on most of the previous measures.

3.1 Structure Analysis

The first analysis is the structure analysis [20, 10]. Structure analysis is used to inspect
the macro-measures of the network structure. The measures inspected in the structure
analysis describe the network structure in a global view. Study of these measures helps
us understanding the influence of network structure to individual nodes in the network.
The diameter of a network is the maximum distance (number of hops or edges)

between any pair of nodes. The diameter can also be defined as the average length of
the shortest paths between any pair of nodes in the network. In our research, we are
more interested in the measures that can describe the efficiency of information propa-
gation. So the average value is more suitable for our purpose, and we used the second
definition in our research. Strictly speaking, the diameter of a disconnected graph (i.e.,
one containing isolated components) is infinite, but it is normally defined as the max-
imum diameter of its sub-clusters or other approximate values. Random graphs and
other complex networks all tend to have small diameters. This is the phenomenon sci-
entists referred to as the “small world phenomenon” [23]. The smaller the diameter of
a network is, the better the network is connected. The diameter is one of the important
attributes in complex network research, especially since the small world phenomenon1
was popularized. We calculated the diameter measures using approximate method,
which can generate fairly accurate results, especially when the network size is huge
(N > 10, 000). More detailed explanation and discussion can be found in [13].
1 “Six degrees of separation” is a famous claim by Ouisa, a popular character in John Guare’s
play (1990)
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The equation we used to calculate the approximate diameterD is

D =
log(N/z1)

log(z2/z1)
+ 1 (1)

where N is the number of nodes in the network, z1 is the average degree of nodes in
the network, and z2 is the average number of nodes two steps away from a given node
as defined in [13].
The next measure is clustering coefficient. The neighborhood of a node consists

of the set of nodes to which it is connected. The clustering coefficient of a node is
the ratio of the number of links to the total possible number of links among the nodes
in its neighborhood. The clustering coefficient of a graph is the average of the clus-
tering coefficients of all the nodes. Recent research has found that real complex net-
works typically have a high clustering coefficient, which means that they exhibit a
large degree of clustering [5]. Clustering coefficients of some real networks, such as
the network we studied in SourceForge, can be calculated more easily from related bi-
partite graphs [21] by using the generating function method for bipartite graphs. More
detailed explanation of this method can be found in [13].
Using this method, the clustering coefficients of these kinds of bipartite structures

result in a non-vanishing value,

C =
1

1 +
(µ2−µ1)(ν2−ν1)2

µ1ν1(2ν1−3ν2+ν3)

(2)

where µn =
∑

k k
n
Pd(k) and νn =

∑
k k

n
Pp(k). In the developer-project bipar-

tite network, Pd(k) represents the fraction of developers who joined k projects, while
Pp(k) means the fraction of projects that have k developers.
The last measure in the structure analysis is the component distribution. A compo-

nent of a network is defined as the maximal subset of connected nodes. To formalize
the definition of a component, first we define a path in a network as:

– A path v1e1v2...en−1vn is a sequence of nodes such that from each of its nodes vi

there is an edge ei to the next node vi+1 in the sequence. Normally, the first node v1

is called the start node and the last node vn is called the end node.

Then the componentC of a network can be defined as:
– Component C is a subset of (V,E) of a network. For any pair of nodes vi and vj ,
where vi, vj ∈ C, there exists a path viei...ej−1vj between these two nodes. And
for any any pair of nodes vk and vl, where vk ∈ C and vl /∈ C, there doesn’t exist a
path vkei...ej−1vl between these two nodes.

3.2 Centrality Analysis

The second analysis is the centrality analysis. Centrality analysis is used to inspect the
micro-measures of the network structure or the relative importance of a node within
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a network. Study of these measures helped us understand the influence of individual
nodes to the global network structure.
The first measure is degree. The degree of a node, k, equals the total number of

other nodes to which it is connected, while P (k) is the distribution of the degree k

throughout the network. Degree distribution in real networks was believed to be a
normal distribution (when N → ∞), but recently, Albert and Barabási and others
found it fit a power law distribution in many real networks [7]. The other measure
related to degree is the average degree as

∑
P (k)/N , which is the average of the node

degrees in the network.
The next measure is betweenness. Betweenness is a centrality measure of a node

within a network. Nodes that occur on many shortest paths between other nodes have
higher betweenness than those that do not. For a graph G(V, E) with n nodes, the
betweennessB(v) for node v is

B(v) =
∑

s̸=v ̸=t∈V

σst(v)

σst
(3)

where σst is the number of shortest geodesic paths from s to t, and σst(v) the number
of shortest geodesic paths from s to t that pass through the vertex v. This may be
normalized by dividing through by the number of pairs of vertices not including v,
which is (n − 1)(n − 2).
The last measure is closeness. Closeness is also a centrality measure of a node

within a network. Nodes that are “shallow” to the other nodes (that is, those that tend to
have short geodesic distances to other nodes within the network) have higher closeness.
Closeness is preferred in centrality analysis to mean shortest-path length, as it gives
higher values to more central nodes, and so is usually positively associated with other
measures such as degree.
The closenessC(v) for a vertex v is the reciprocal of the sum of geodesic distances

to all other vertices in the graph:

C(v) =
1∑

t∈V dG(v, t)
. (4)

3.3 Path Analysis

All the previous analyses (structure analysis and centrality analysis) are based on net-
work snapshot topology. They depict the characteristics of a static network at a given
point of time. But these are not the only important analyses in a network, especially an
evolving network. With sequence of network snapshots instead of just single snapshot
of the networks, we are able to inspect not only the measures (diameter, clustering co-
efficient, component, degree, betweenness and closeness) in the previous analysis, but
also the developing trends of these measures.
We conducted the path analysis on the diameter, clustering coefficient, average de-

gree, betweenness and closeness. By inspecting these developing measures, we are
looking forward to understanding more about the life cycle of the network and indi-
vidual nodes in the network.
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4 Results and Discussion

Before discussing these analyses and measures, we need to explain the collaboration
network that we studied. From SourceForge.net, we got data on two major entities –
developers and projects [2]. In this data, only one relationship existed – the participa-
tion between developer and project. There were no direct links between developers and
between projects. So, we looked at this network as a bipartite network, where projects
and developers were the two kinds of nodes, and edges could only connect different
kinds of nodes. There are two transformations from this network – the developer net-
work and the project network. In the developer network, there is only one type of node
representing the developer in the collaboration network, and the edge in the network
represents the relationship of collaboration. For every pair of nodes i and j, there is an
edge connecting i and j only if i and j are collaborating on at least one project. We also
generated the project network, where a node represents a project in the collaboration
network and the edge in the network represents the relationship of sharing the same
developer(s). In the following discussion, we will abbreviate these three networks as
P-NET(project network), D-NET(developer network) and C-NET(collaboration net-
work).

4.1 Structure Analysis

The first analysis we applied is the structure analysis, including measures such as di-
ameter, clustering coefficient and component distribution. As discussed in the previous
section, the diameter is approximate on the whole network by the equation 1. The re-
sulting approximate diameters for the D-NET are between 5 and 7, while the number
of developers in the D-NET ranged from 97,705 to 123,968. Thus, the diameter of the
network is quite small with regard to the overall network size (the number of develop-
ers in the network). On the other hand, the approximate diameters for the P-NET are
between 6 and 8, while the number of projects in the P-NET ranged from 70,089 to
91,713. So the diameter is relatively stable compared to the significant increase of the
network size.
The next measure is the clustering coefficient. We also used the approximate clus-

tering coefficient by applying the equation 2. The resulting approximate clustering
coefficients for the D-NET are between 0.85 and 0.95. On the other hand, the approxi-
mate clustering coefficients for the P-NET are between 0.65 and 0.75. High clustering
coefficients reveal the highly clustered property of both the D-NET and the P-NET,
which is similar to the results we got from our previous study conducted in, although
the networks have been expanded significantly.
Both diameter and clustering coefficient are popular and efficient measures to de-

scribe the structure property of a network, especially the cluster property. Highly clus-
tered networks are normally favored in real evolving complex networks like commu-
nication networks or social networks for better information propagation.
From the previous measures, we understand that both D-NET and P-NET are

highly clustered networks. But these measures do not mean the networks are fully
connected. Actually, most of the real networks are not fully connected. There will be
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Fig. 1. Project Network Component Distribution

connected parts in the network, which we called as “component”. The next measure
we inspected is the component distribution. In the SourceForge community, power law
exists in the component distribution of the networks. In Figure 1, the component distri-
bution for the P-NET for June 2006 is shown. There are two figures. In the lower figure,
after applying log transformation on both coordinates, we found that the component
distribution fits a straight line quite well without considering the biggest component
(which will be called the major component in latter discussion). The R

2 [11] of linear
regression with the major component is 0.4023 and the R

2 of linear regression with-
out the major component is 0.9886. Also, in the lower figure, we illustrated the 95%
confident boundary for the linear regression as the dot line. In the upper figure, where
the coordinates are in normal scale, we made another interesting discovery: almost all
the components are quite close to each other, except the two extremes. One extreme
is the major component and the other is the isolated components, which include only
isolated developers.

4.2 Centrality Analysis

The second analysis we conducted is the centrality analysis, which focus on the fol-
lowing measures – degree, betweenness and closeness.
Degree is the simplest measure of the connectivity of a node in the network. We

also used the C-NET, D-NET and P-NET for June 2006 as examples in this section.
There are totally four degrees of developer and project in these three networks:

– Degree of developer in the C-NET is the number of projects in which a developer
participated in the community.
– Degree of developer in the D-NET is the number of developers who have at least
one collaboration with the given developer in the community.
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Fig. 2. Developer Size Distribution

– Degree of project in the C-NET is the number of developers who participated in the
given project in the community.
– Degree of project in the P-NET is the number of projects share by at least one
common developer with the given project in the community.

In the June 2006 dataset, the average degree of developer in the C-NET is 1.4525;
the average degree of developer in the D-NET is 12.31; the average degree of project
in the C-NET is 1.7572; the average degree of project in the P-NET is 3.8059, while
the sizes of the C-NET, the D-NET and the P-NET are 215,681, 123,968 and 91,713.
The average degree of developer and project in the C-NET is relatively low since the
isolated developer (developerwith single project) and the isolated project (project with
only one developer) are big parts of the community.
Then we investigated the degree distributions of the SourceForge.net community.

Degree distribution is proven to have a normal distribution in the ER model when
N → ∞. This was believed to be a good model for the real complex network before
the power law was reported for many real network systems by Barabási et. al [6]. In the
SourceForge community, we found that the degree distributions (distributions for all
four degrees) also followed power law. Figure 2 and Figure 3 show two of the degree
distributions.
These figures are based on the dataset from SourceForge.net for June 2006. The

left figures are the degree distributions in normal coordinates. To verify the existence
of power law in these distributions, we applied log-log transformations on the data
to generate the right figures, which are the degree distributions on log-log coordinates.
The 95% confident boundaries for the linear regression also are provided on the figures
for all the log-log transformed degree distributions. TheR2 of linear regression for the
developer degree distribution in the C-NET is 0.9577. The R

2 of linear regression for
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Fig. 3. Project Size Distribution

the project degree distribution in the C-NET is 0.9173. Thus, these distributions fit
power law distributions very well.
Betweenness and closeness are also the common measures for centrality analysis.

Betweenness is a measure to describe the importance of the node in the network ac-
cording to shortest path, and closeness is a measure to describe how close the node is
to other nodes. Betweenness is a normalized value in [0, 1]. The higher the measure is,
the more central the node is to the network. Closeness is also bounded by [0, 1], but it
is not normalized. So closeness tends to decrease when the network size is increasing.
Normally, these measures yield very small value in large networks (N > 10, 000), so
comparison of these measures only makes sense when comparing networks of simi-
lar size. Also, using the dataset from SourceForge.net for June 2006, the average be-
tweenness for the P-NET is 0.2669e-003 and the average closeness for the P-NET is
0.4143e-005, which are relatively large for a network this size.

4.3 Path Analysis

All the measures in the previous sections (diameter, clustering coefficient, component,
degree, betweenness and closeness) are about the topology of the networks. They de-
pict the characteristics of a static network at a given point of time. These are not the
only important attributes in a network, especially an evolving network [15, 4]. Since
we had multiple monthly database dumps from SourceForge.net, we were able to in-
vestigate the development patterns of these measures of the networks. By applying the
path analysis, we can study the life cycle and the evolving patterns of the network and
individuals in the network.
The first path analysis is on the average degrees. Average degree < k >, which

gives the average number of links per node, is a good quantitative measurement for
the connectivity of a graph. Two of the developing pattern of the average degrees are
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Fig. 4. Average Developer Degree in the C-NET
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Fig. 5. Average Project Degree in the C-NET

shown in Figure 4, Figure 5. The X coordinate in the figure is the number of months
that passed after February 2005.
For the average degrees, we show the linear regression in the lower figures with a

95% error bar for every data point. The slope of the regression for developer degree
is -0.0009 and the slope of the regression for project degree is -0.0036. The average
degrees are actually decreasing, which means the average project size and average
number of projects a single developer participated in are decreasing.
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Diameter and clustering coefficient is closely related to average degree. We will
conduct path analysis on these two measures next. In this paper, we discuss only the
D-NET, detailed discussion about other networks can be found in [13].
The diameter of the D-NET is a good measure of network communication ability.

A shorter diameter results in fewer average steps needed for one developer to spread
a message to another developer and less time needed for an idea to spread through
the network. The D-NET has a small diameter, which was calculated in a previous
section. Also, we investigated the evolution of the diameter of the D-NET, as shown in
Figure 6.
The figure indicates that D decreases with time, which is different from the previ-

ous research [8] on random networks that reports that diameter increases with network
size. The lower figure shows the linear regression with 95% error bar for the develop-
ing trend of diameter for the D-NET. The slope of the regresion is -0.0072.
Clustering coefficient is another important measures of the topology of real net-

works. So the clustering coefficient, a quantitative measure of clustering, CC, is also
a measure we investigated. The approximate clustering coefficient for the D-NET as a
function of time is shown in Figure 7.
In the figure, we can observe the increasing trend of the clustering coefficient.

The lower figure shows the linear regression with 95% error bar for the developing
trend of clustering coefficient for the D-NET. The slope of the regression is 0.0011.
The clustering coefficient for the D-NET tells us how much a node’s co-developers
are willing to collaborate with each other, and it represents the probability that two of
its developers are collaborating on a project. Thus, with the evolution of the D-NET,
more edges (collaboration relations) are formed. This will lead to an increase in the
connectivity of the developer with the neighboring developers. Furthermore, this leads
to the increase in the clustering coefficient.
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Increases on clustering coefficients in D-NET suggest the network is evolving to
improve its cluster property. The higher the clustering coefficient is, the more con-
nected the network is.
Now we will apply the path analysis on average betweenness and average close-

ness. Figure 8 shows the developing trend of average betweenness in the P-NET. In the
upper figure, we can observe the almost flat developing trend of the betweenness, al-
though the overall size of the network has increased significantly during the same time
period. This can suggest that the network is in a stable topology in its own evolution.
In the lower figure, we magnify the Y coordinate to have a close look at the devel-
oping trend of the average betweenness. The average betweenness has a slightly in-
creasing trend. This observation can be explained by the “rich get richer” phenomenon
discovered in other complex networks such as the Internet. Although the network is
constantly expanding, the hub (the node with most links) will keep gaining more con-
nections than the others. Also, alternative hubs or regional hubs will also emerge from
the network, and these hubs will increase the average betweenness of the network.
Average closeness is another measure of centrality. Figure 9 shows the develop-

ing trend of the average closeness in the P-NET. The upper figure is the developing
trend in normal coordinates and the lower figure is the developing trend in magnified
Y coordinates. We can observe the similar developing behavior of the average close-
ness to the average betweenness. But average closeness is more flat than the average
betweenness. This is because closeness for individual node is not normalized like the
betweenness for individual node. Thus, the significant increase in the overall network
size will have more influence on the closeness than on the betweenness. Therefore the
developing trend of the average closeness will be more flat than the developing trend
of the average betweenness.
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By using path analysis, we are able to look at not only the topology of the network
at a given time, but also at the evolution of the network topology, and the mutual
inferences between a single entity in the network and the whole network.
One of the common discoveries in all the path analyses is life-cycle like behaviors.

Most of the measures have sustained a stable level throughout the inspected period of
time in this study and also have increased/decreased from the previous study carried
out in [13]. This phenomenon suggests that we have witnessed the beginning of the
evolution of the SourceForge.net community and possibly the mature (stable) era of
the SourceForge.net community. By closely watching the SourceForge.net community,
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we may have deeper insight into the evolution of the OSS community. Also, similar
analyses can be applied to other evolving complex networks, such as communication
networks or social networks to study the life cycle of those networks.
We also have made another discovery about the network measures. We observed a

strong tie between the networkmeasures and the evolution of the community networks.
This discovery suggests that the network measures can be used not only as a predictor
of the future of an individual entity in the network or the whole network.

5 Conclusion

In this study, we studied multiple networkmeasures of the SourceForge.net community
network and their evolution patterns by applyingmultiple analyses, including structure
analysis, centrality analysis and path analysis. In the structure analysis, we calculated
the diameter, clustering coefficient and component distribution. The two approximate
methods used to calculate the approximate diameter D and approximate clustering
coefficient CC are

D =
log(N/z1)

log(z2/z1)
+ 1

CC =
1

1 +
(µ2−µ1)(ν2−ν1)2

µ1ν1(2ν1−3ν2+ν3)

.

In the centrality analysis, we calculated four different average degrees and four
different degree distributions. Also, we calculated average betweenness and average
closeness. The equations to calculate the betweenness B(v) and closeness C(v) for
individual nodes are

B(v) =
∑

s̸=v ̸=t∈V

σst(v)

σst

C(v) =
1∑

t∈V dG(v, t)
.

In the path analysis, we investigated developments of the multiple measures, in-
cluding average degrees, diameter, clustering coefficient, average betweenness and av-
erage closeness.
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