
Optimizing Service Selection and Load Balancing in
Multi-Cluster Microservice Systems with MCOSS

Daniel Bachar
Dept. of Computer Science
Reichman University, Israel
bachar.daniel@post.runi.ac.il

Anat Bremler-Barr
Dept. of Computer Science
Tel-Aviv University, Israel

anatbr@tauex.tau.ac.il

David Hay
Dept. of Computer Science

The Hebrew University, Israel
dhay@cs.huji.ac.il

Abstract—With the advent of cloud and container technologies,
enterprises develop applications using a microservices archi-
tecture, managed by orchestration systems (e.g. Kubernetes),
that group the microservices into clusters. As the number of
application setups across multiple clusters and different clouds
is increasing, technologies that enable communication and service
discovery between the clusters are emerging (mainly as part of
the Cloud Native ecosystem). In such a multi-cluster setting,
copies of the same microservice may be deployed in different
geo-locations, each with different cost and latency penalties. Yet,
current service selection and load balancing mechanisms do not
take into account these locations and corresponding penalties.
We present MCOSS, a novel solution for optimizing the service
selection, given a certain microservice deployment among clouds
and clusters in the system. Our solution is agnostic to the different
multi-cluster networking layers, cloud vendors, and discovery
mechanisms used by the operators. Our simulations show a
reduction in outbound traffic cost by up to 72% and response
time by up to 64%, compared to the currently-deployed service
selection mechanisms.

Index Terms—Optimization, Kubernetes, Cloud Computing,
Multi-Cloud, Multi-Cluster, Microservices, Load Balancing

I. INTRODUCTION

Microservice architecture, which has become prevalent
nowadays, consists of splitting an application (e.g. from a
monolithic architecture) into a set of smaller, interconnected,
loosely-coupled logical units called microservices (or simply
services). Services are typically deployed in the cloud as a
group of containers (the Kubernetes jargon refers to it as
pods [1]) within clusters in different geographic locations and
clouds. Microservice architecture and specifically, cloud-native
microservice architecture, provides numerous benefits over
monolithic architecture, such as robustness [2], elasticity [3],
security [4], redundancy, and scalability.

Nevertheless, this architecture poses several key challenges
such as how to control and manage the services, how to
route data between the services of the same application, and
how to schedule jobs on services for competing applications.
To address these challenges, orchestration and management
systems, such as Kubernetes [5], have emerged. One of the

Part of this work was done while A. Bremler-Barr was with Reichman
University.

critical challenges, which is the focus of this paper, is how
to manage communication traffic between services which, in
turn, includes service discovery and load balancing. This is
done by cloud native networks (namely, overlay networks
on top of existing networks, e.g. [6], [7]) and service mesh
platforms (such as Istio [8] and Linkerd [9]), which along
with Kubernetes, have become some of the most critical
infrastructure components of the cloud-native stack [10].

Most cloud-native platforms have been designed to work
under a single cluster. Yet, recently, organizations are starting
to shift to multi-cluster deployments, either across geographi-
cal areas, across cloud providers, or hybrid on-premises/public
cloud deployments. Such multi-cluster deployments hold great
promise as they may offer higher availability, conformance to
local privacy laws, better performance, and lower operational
costs. Stoica and Shenker recently coined the term sky com-
puting [11] to refer to deployments across multiple clouds
and argued that, unlike the Internet and telephony, there is
still a way to go before the cloud becomes a commodity.
In this paper, we provide both architectural and algorithmic
building blocks for one of the most important challenges of
multi-cluster deployment: optimized service selection across
multiple clusters.

Specifically, multi-cluster (and multi-cloud) deployments
can be classified into two categories: replica-based and
service-based. Replica-based multi-cluster deployments run
complete copies of all services on different clusters, where
the first requests (namely, by the users of the application)
are directed to one of the clusters and may trigger a chain
of requests within this cluster. On the other hand, service-
based multi-cluster deployments are more flexible and run
some services in some clusters, implying traffic/requests may
be routed across clusters. While in most cases, two services
that tend to communicate frequently will be located in the
same cluster. In some cases, this does not hold either due
to failures or placement considerations (e.g. compliance with
privacy regulations such as GDPR and others). While in a
single-cluster deployment, latencies and communication costs
between services tend to be comparable (and small), sending
a request from some service i to service j at one cluster
or another, may result in completely different latency, and
response time, and billing costs. This implies that multi-
cluster service-based deployments pose a new service selectionISBN 978-3-903176-57-7© 2023 IFIP

question and a new load balancing problem.
Specifically, all solutions to this problem should meet the

following six requirements. (i) Interoperability: The solution
should be implemented seamlessly into current microservice
orchestration systems and cloud-native stacks and avoid chang-
ing the current APIs and implementation details. Furthermore,
it should be agnostic to the cloud provider, implying it can
be used to connect clouds (e.g., as in sky computing); (ii)
Flexibility: Customers should have a sufficiently expressive
interface to specify policies based on performance, load,
capacity, traffic pricing, etc.; (iii) Connection persistence:
Packets of the same connection should always be directed to
the same service at the same cluster [12]; (iv) Resilience:
The system should be resilient to outages both in the control
and data planes and continue to work even with connectivity
issues; (v) Responsiveness: The selection system should re-
spond to changes such as service availability, load, and policy
updates; and, (vi) Scaling: The system should support the
scaling mechanism.

Currently, Kubernetes supplies an API for multi-cluster
deployments and management but has no native support for
service selection and multi-cluster load balancing. The support
is added by solutions like Submariner [6], Linkerd [9], or
Istio [8], but none of them have an optimized solution to a
service selection (and load balancing) that works hierarchi-
cally, completely separating intra- and inter-cluster decisions
(and therefore, can interoperate with any mechanism).

In this paper, we present Multi-Cluster Optimized Service
Selection (MCOSS), which meets all of the above require-
ments. First, MCOSS is focused on the common microser-
vice architecture of Kubernetes, which is hierarchical (See
Fig. 1): A proxy (e.g., kube-proxy) is responsible for
load-balancing between the various pods (containers) within
a single cluster, while an additional service selection process
deals with load-balancing across clusters (the collection of all
pods running the same service at the same cluster is called
a service instance, thus the second service selection is done
between service instances). In contrast, current service mesh
architectures perform load-balancing using a Sidecar that is
attached to each container and consider all Sidecars in a flat
manner.

The data-plane of our architecture enhances the DNS pro-
cess to perform an optimized service selection. As illustrated
in Fig. 1, a pod in a service instance of Type 1 that requests a
service instance of Type 2, sends a DNS request to a DNS
resolver in the cluster, and receives the IP address of the
selected service instance of type 2. By leveraging DNS, our
architecture meets the requirements of connection consistency
and interoperability. MCOSS’s load balancing involves split-
ting outgoing requests (of the same type) from one cluster
across several other clusters. This is done by implementing a
weighted round robin in the DNS resolver, where each weight
w(c → c′, t) corresponds to the fraction of requests for service
type t, originating from cluster c, that should be sent to cluster
c′ (out of all type t requests from cluster c). If cluster c′ is
chosen, then the DNS resolver in cluster c replies to the DNS

request with the specific IP address of the specific service in
cluster c′. The next DNS request for service type t may be
resolved to another cluster, according to the weights.

The control plane of MCOSS is described in Fig. 2. We
implemented MCOSS over Submariner [6], which provides
L3 network connectivity between Kubernetes clusters. The
key component is our optimizer that resides in the Sub-
mariner broker component [13]. The optimizer receives as
input the predicted traffic demand (number of requests to the
next service)1 and the relevant objective metrics (cost, load,
etc.) from all the clusters. Then, it returns the corresponding
weights, to the DNS resolver in each cluster. The optimization
is done one hop at a time, taking into account only the
next service and not the full-service chain (due to several
reasons, which will be explained later). We note that the
solution is scalable since the optimization problem depends
on the number of service instances and not the number of
pods in the system (due to the fact that MCOSS has a
hierarchical load-balancing architecture). To deal with the
flexibility requirement, we define an abstract cost function that
allows operators to define the metrics to optimize the service
selection. In our paper, we show two cost functions; one that
optimizes latency and cost (i.e, monetary prices) and thus
requires linear optimization, and one that optimizes response
time and cost. We show it requires solving a quadratic (yet
convex) optimization problem. Our architecture is resilient
since the data-plane is decentralized and the control-plane is
centralized but enjoys the built-in redundancy of the Broker
as the code is shared between the clusters (if one is failing
we can just choose another). In Section II-D we explain how
MCOSS architecture is responsive by showing how and when
to recalculate the weights.

We note that our work focuses on optimizing the service
selection and assumes the placement of services is given [14],
[15]. Previous works on service selection assume that the full-
service chain (in the level of possible service instances in dif-
ferent clusters) is given to the optimizer [16]–[19]. Yet, relying
on the service chain hinders the solution’s interoperability and
increases its complexity. In addition, the full-service chain (i.e.
the entire possible service instance chains) cannot be retrieved
easily from the Kubernetes framework. Moreover, We argue
that our solution achieves similar (near-optimal) results even
without knowing the service chain, as multiple inter-cluster
services selections within one service chain are very rare in
practice [20].

To conclude, our primary contribution is twofold: first, to
the best of our knowledge, we are the first to formulate and
offer an applicable decentralized data-plane for the microser-
vice load balancing problem in a multi-cluster, multi-cloud
environment. Second, we have designed and implemented a
system, which integrates seamlessly with Kubernetes, supports
different multi-cluster connectivity, and discovery solutions
using plugins. Importantly, our solution is modular in two

1We note that predicting traffic demands is orthogonal to the service
selection problem and is outside the scope of this paper.

Figure 1: Data-plane design. For example, a service of Type 1 in Cluster c1 sends a request to a service of Type 2, whose instances are deployed in Cluster c2 and c3. This is
done by (1) sending a DNS request to a local DNS server in Cluster c1; (2) receiving a DNS response with the IP address of a proxy (e.g., a kube-proxy) in one of the clusters;
(3) sending a request to the proxy; (4) the proxy forwards the request to one of the pods running service Type 2. Inter-cluster load balancing is done by the DNS servers (namely,
choosing different proxies for different DNS requests). Intra-cluster load balancing is done by the proxies.

Figure 2: Control plane design. A logical-centralized broker collects metrics from the different clusters, solves the corresponding optimization problem, and populates the weights
used by the DNS servers. The DNS server at cluster ci, receives weights w(ci → c, t) for each destination cluster c and requests for service type t, indicating the portion of the
requests of type t that should be sent to cluster c.

senses. The optimization problem we solve does not depend
on the data-plane architecture (namely, one can replace our
DNS-based solution with a different one). In addition, the cost
function we used is pluggable and can be changed to reflect
the needs of specific customers. Moreover, it is dynamic and
can be changed on-the-fly, for example, upon a change in cost
model or customer needs.

II. THE MULTI-CLUSTER SERVICE SELECTION
OPTIMIZATION PROBLEM

The multi-cluster service selection problem lies at the heart
of our system. Based on the inputs collected from the different

clusters (namely, the demand), it strives to optimize the
weights sent to the load balancer module, according to which,
the load balancing between clusters and services is performed.

Importantly, our system and the corresponding optimization
problem are working in a hop-by-hop manner, where only the
next-hop destination of each request is considered for service
selection. Moreover, as we look at the entire system together,
we handle the interdependence of services over every sin-
gle hop and accommodate competition between the different
(requesting) services. We will use a simple toy example to
demonstrate our model and its notations. In our example, the
application is built with two services, where the first service

Figure 3: Illustration of our toy example. The service instances of the first (second)
service type are in gray (green). Arrows represent situations where the traffic between
service instances may be strictly greater than zero.

sends requests to the second one. The services are deployed
in four different clusters as described in Fig. 3.

Let C be our cluster set, such that c ∈ C is a single cluster
representing some location in our mesh (i.e. geo-location,
cloud provider, etc.). Let T be the set of all service types
in the system, and let St = {sct |c ∈ C, t ∈ T} be the set of
service instances of type t, where a service instance sct ∈ St

is a logical abstraction of all pods in cluster c performing the
function of type t. Finally, let S =

⋃
t∈T St be the set of all

service instances. In our toy example, C = {c1, c2, c3, c4},
T = {t1, t2}, St1 = {sc1t1 , s

c2
t1 }, and St2 = {sc3t2 , s

c4
t2 }.

Our framework works in epochs of some predefined period
of time. cap(sct) denotes the available capacity of a service
instance sct ; namely, the number of requests that service
instance sct can handle over an epoch. Note that the service
capacity might change over epochs, due to long-lived requests
(that span across epochs or scaling mechanisms in the cloud).
In some cases, a service instance also has a minimal traffic
constraint (e.g., to make sure that a service instance is still
viable). To capture this, we denote by α(sct) the minimum
number of requests that should be sent to service instance sct
over an epoch. The demand is captured by Nc,t, which is the
total number of requests for service type t originating from
cluster c (i.e. the total traffic to be distributed between the
Service Instances of type t) over the epoch.

We strive to optimize some abstract cost function, denoted
by cost(c′, sct), which indicates the performance penalty be-
tween any service instance in cluster c′ ∈ C to some target
service instance sct ∈ S. Cost functions can incorporate the
latency between clusters, the response time, the monetary price
that should be paid between clouds, a combination of several
metrics, or specific metrics that are important to a specific
deployment. If cluster c′ is not connected to cluster c or traffic
cannot be sent between the two, then cost(c′, sct) is set to
infinity (see Sections II-A and II-B for more details). Thus,
the generic optimization problem is formulated as follows:

minimize
∑
s∈S

∑
c∈C

nc,s · cost(c, s)

s.t.
∑
s∈St

nc,s = Nc,t for all c ∈ C, t ∈ T∑
c∈C

nc,s ≤ cap(s) for all s ∈ S∑
c∈C

nc,s ≥ α(s) for all s ∈ S

nc,s ≥ 0 for all c ∈ C, s ∈ S

(1)

where nc,s is the number of requests sent from cluster c to
service instance s (in another cluster).

Once the optimization problem is solved, the weight for
each specific cluster c′ to a service instance sct is calculated
as follows:

w(c′ → c, t) =
nc′,sct

Nc′,t
, (2)

where w(c′ → c, t) = 0 if Nc′,t = 0.
Furthermore, as we use weighted round robin, we allow the

relaxation of the constraints and treat the variable nc,s as a
real number. Note that if w(c→c, t) is the portion of traffic
sent within the cluster; one can strictly prioritize local traffic
by setting cost(c, sct) = 0.

In our toy example, assume the costs are cost(c1, s
c3
t2)=1,

cost(c1, s
c4
t2)=100, cost(c2, s

c3
t2)=10, cost(c2, s

c4
t2)=20, the

capacities of all service instances are 100, and their minimal
traffic constraints are 0. As only service instances of type t1
send requests to service-instance of type t2, the only non-
zero demand values are Nc1,t2 and Nc2,t2 , which are set to 90
and 80, respectively. Solving the optimization problem yields2;

w(c1 → c3, t2) =
n
c1,s

c3
t2

Nc1,t2
== 1, w(c1 → c4, t2) =

n
c1,s

c4
t2

Nc1,t2
=

0, w(c2 → c3, t2) =
n
c2,s

c3
t2

Nc2,t2
= 1/8, w(c2 → c4, t2) =

n
c2,s

c4
t2

Nc2,t2
= 7/8

It is important to note that our optimization problem can
be split into |T | different problems, one for each service
type T , as the capacity constraints are on the target service
instances (and not, for example, the communication links
between clusters).

What customers consider “optimal” can differ: one may
try to balance the load across all available services, while
others may seek to minimize the latency or the billing costs.
Some might want to combine several requirements, such as
improving latency and throughput while keeping the cost as
low as possible. The abstract cost function supports maximum
flexibility and expressiveness for our customers, allowing them
to define their own optimization. Some examples, and their
consequences, are described as follows:

A. Mixing latency and billing costs

Let pc1,c2 be the monetary price (e.g., in USD) that needs
to be paid for sending 1 GB of data from cluster c1 to c2,
and let lc1,c2 be the latency between the clusters. To consider
both metrics simultaneously (after normalization), we define
a linear combination using the following cost function:

cost(c′, sct) =
pc′,c
P

· β +
lc′,c
L

· (1− β), (3)

where β ∈ [0, 1] captures the relative weight between price
and latency (larger β values imply price is more important),
and P = maxc1,c2∈C p(c1, c2) and L = maxc1,c2∈C l(c1, c2)
are the maximum price and latency and are used as nor-
malization factors. In our toy example, assume the latencies

2all other weights are zero, by definition.

Table I: The effect of the value of β on the resulting weights in our toy example.

β 0 0.25 0.5 0.75 1
w(c1 → c3, t2) 1 1 0.778 0 0
w(c1 → c4, t2) 0 0 0.222 1 1
w(c2 → c3, t2) 0.125 0.125 0 0.875 0.875
w(c2 → c4, t2) 0.875 0.875 1 0.125 0.125

are lc1,c3=1, lc1,c4=100, lc2,c3=10, lc2,c4=20, and mone-
tary prices are p(c1, s

c3
t2)=100, p(c1, s

c4
t2)=1, p(c2, s

c3
t2)=20,

p(c2, s
c4
t2)=10. Table I shows how weights are changed with

different values of β.
Note that in this synthetic toy example, latencies are in-

versely proportional to monetary prices. However, in practice,
latencies are often proportional to monetary prices, reducing
the effect of parameter β. See Section IV for more details.
Moreover, this cost function results in a simple linear program,
that can be solved efficiently. Yet, it assumes a constant latency
between clusters that do not depend on the load on the service
instance itself.

B. Considering response times

The response time of a request is the total time the request
is in the system (i.e., from the time the originating service
instance sends the request until it is fully processed). For
a single-hop application, this includes the latency between
the services, queuing when applicable, the processing time in
the target service instance, and the latency required to send
feedback to the originating service. The response times of
multi-hop applications may become more complex to model,
as calls to some services in the service chain may be done
in parallel and some must be executed sequentially. These
scenarios are out of the scope of this paper, as in practice
service chains spanning more than two clusters, with multiple
choices, are rare.

While some may model response time as a queuing system
[21], we have taken a different approach and observed that, up
to a certain threshold, there is a linear correlation between the
response time and the load (namely, the number of requests)
[20]. Beyond this threshold, most services will drop the request
(e.g., by replying with an error message). As our load balancer
strives to avoid such drops, we treat these thresholds as service
instance capacities, and therefore we have the following cost
function to capture the response time:

cost(c′, sct) = l(c′, c) + prc(sct) ·
∑
c′∈C

n(c′, sct), (4)

where l(c′, c) is the latency between the clusters, and prc(sct)
is the slope of the linear relation between the processing
time and load on the service instance, and

∑
c′∈C n(c′, sct) is

the load assigned to the service instance by our optimization
problem. Note that as l(c′, c) is the y-intercept of the linear
function, it can be easily extended to other metrics, such as
monetary cost or a mix between latency and monetary cost, as
was done in (3): pc′,c

P ·β+cost(c′, sct)·
(1−β)

L , where cost(c′, sct)
is the cost function in (4), and L = maxc′∈C,sct∈S(l(c

′, c) +
prc(sct)cap(s

c
t)).

In Section IV we discuss how prc(sct) and cap(sct) are
determined. As the cost function in (4) depends on the actual
load on service instances, the optimization problem, which we
call RESPONSE TIME OPTIMIZATION, is a quadratic program
(QP). The problem can be solved efficiently using a variety
of convex optimization methods. The proof of the convexity
of the problem is omitted for brevity. Recall that our gener-
alized optimization can be split into T smaller, independent
programs (one for each service type). This provides another
boost in performance for our RESPONSE TIME OPTIMIZA-
TION problem and makes it practical to solve in real-life
applications. In our toy example, assume now that the latencies
are lc1,c3=0ms, lc1,c4=1000ms, lc2,c3=1000ms, lc2,c4=0ms,
capacities are 2000rps and demands are N(c1, t2)=1000rps
and N(c2, t2)=100rps. Assuming pcr(sc3t2)=pcr(sc4t2)=1, the
corresponding weights are w(c1 → c3, t2) = 0.8, w(c1 →
c4, t2) = 0.2, w(c2 → c3, t2) = 0, and w(c2 → c4, t2) = 1.
This yields an average response time of 845.45ms. For com-
parison, ignoring processing time, and solving the optimization
program in (3) yields an average response time of 918ms,
while distributing the requests in a round-robin manner yields
an average response time of 1050ms.

C. Allowing service instances to scale out
One of the benefits of deploying services in the cloud is

the ability of service instances to scale out to accommodate
more requests. However, such scaling comes with additional
costs, that should be taken into account in the optimization
problem. One approach to tackle scaling out is to add an
(integer) variable for each service instance, to determine how
much its capacity constraint should be relaxed and how it
affects the overall cost function. In this paper, we take a more
restrictive approach and assume that at any epoch, for each
service type, only a single service instance s can scale out by
a predefined capacity scap(s) at a predefined cost scost(s).
We use the fact that we can solve our generalized optimization
problem (1) for each service type separately. Given a type
t ∈ T we solve the following St + 1 optimization problems
(namely, the program in (1) with slight modifications), for
each s′ ∈ St ∪ {⊥}, where, with a slight abuse of notations
we define cap(⊥) = scap(⊥) = scost(⊥) = 0:

minimize scost(s′) +
∑
s∈St

∑
c∈C

nc,s · cost(s, c)

s.t.
∑
s∈St

nc,s = Nc,t for all c ∈ C∑
c∈C

nc,s ≤ cap(s) for all s ∈ St \ {s′}∑
c∈C

nc,s′ ≤ cap(s′) + scap(s′)∑
c∈C

nc,s ≥ α(s) for all s ∈ St

nc,s ≥ 0 for all c ∈ C, s ∈ St

(5)

The program for s′ = ⊥ represents the solution in which we
do not scale any service instance of type t. After solving these
|St|+ 1 programs we can choose the one that minimizes the
total cost, implying we know which service instance to scale
(if any) and what are the corresponding weights. We repeat this

for any service type, resulting in a total of
∑

t∈T ·(|St| + 1)
programs, and the ability to scale out up to T service instances.
In our toy example, with the parameters of Section II-A and
given scap is 5 for all service instances, the optimal solution
will be to scale out sc3t2 if scost(sc3t2) < 0.5; otherwise, no
service instance will scale out no matter what its scost value
is. In fact, this scale-out process will continue, step by step,
at every invocation of the program until cap(sc3t2) reaches
170rps, thus accommodating all requests for service type t2.
The example of Section II-B will not scale out, as there are
no capacity bottlenecks.

D. When to recalculate the weights?

There are two approaches to determining when weights
should be re-calculated and disseminated throughout the sys-
tem.

The periodic approach recalculates the weights for every
predefined amount of time τ , based on measurements done
before that time interval. In general, as τ is smaller, the
weights are closer to the optimal solution. However, a smaller
τ value implies additional overhead on the system, as well as
more frequent fluctuations in traffic. Additionally, traffic does
not change significantly over time, as such these calculations
may be redundant.

On the other hand, the reactive approach recalculates
the weights, only if the objective function deviates signifi-
cantly from the forecast (after scaling). Specifically, assume
the weights were calculated at some time τ0. Let N =∑

c∈C,t∈T Nc,t according to which the weights were calcu-
lated, and O =

∑
s∈S

∑
c∈C nc,s · cost(c, s) is the resulting

value of the objective function. At some time τ1 > τ0, we cal-
culate N(τ0, τ1) =

∑
c∈C,t∈T Nc,t(τ0, τ1), where Nc,t(τ0, τ1)

is the actual number of requests of type t from cluster c
between time τ0 and τ1. Furthermore, let O′ be the actual
cost (defined by the cost function) of delivering the traffic
over that time interval. Note that calculating O′ does not
involve resolving the optimization problem, as we use existing
weights; yet it requires collecting the metrics used for the
specific cost function (recall Fig. 2). As these metrics are
collected continuously, one can calculate O′ very frequently.
We set a threshold γ > 1, and trigger weight recalculation
when

O′

N(τ0, τ1)
> γ

O

N
.

This implies that weight calculations are done only when
needed, and may be triggered upon a major event (e.g., failures
or unpredictable peaks in traffic). Notice that the larger γ
is, the less sensitive the recalculation process becomes. In
addition, one can set a lower threshold γ′ < 1 to indicate
that the original solution was too pessimistic (namely, when

O′

N(τ0,τ1)
< γ′ O

N). In many cases, this indicates significant
changes in traffic patterns since τ0, implying the recalculation
might yield an even better solution.

Recall our toy example with the parameter and cost function
detailed in Section II-B. Suppose now that at some time,
demand is starting to fluctuate: in each 20 minutes interval, the
first 10 minutes period has a fixed demand of N(c1, t2)=1000
and N(c2, t2)=100, while the second 10 minute period has
a fixed demand of N(c1, t2)=100 and N(c2, t2)=1000. If

Figure 4: Toy example performance under fluctuating demand, without weight updates.

one does not react to these changes in demand, the average
response time will also fluctuate, as shown in Fig. 4. However,
weights recalculation as a reaction to these changes (e.g., with
γ = 1.1 or, in this case, every 10 minutes as demand changes
periodically), will keep the average response time at its optimal
value of 845.45ms. We note that when there are capacity
bottlenecks, failing to promptly adapt to the demand may also
result in request drops.

III. IMPLEMENTATION DETAILS

The system is implemented as a management layer above
Submariner 3. Submariner provides a solution for network
connectivity and service discovery (namely, as in our data
and control planes) but lacks an efficient service selection
mechanism, which MCOSS provides.

Our management layer uses native Kubernetes APIs to
perform several tasks.

First, MCOSS supports weighted round robin at the DNS
level. This is done through Submariner’s CoreDNS plugin,
named Lighthouse. Lighthouse customizes CoreDNS and fa-
cilitates DNS service discovery in multi-cluster connected
environments. We have added weighted round-robin support
to Lighthouse and turned off the CoreDNS caching layer so
that all queries arrive at the plugin. We run 10,000 queries
to the CoreDNS servers with and without the caching layer.
Our testing shows that DNS response time has increased
by 4ms on average, which is negligible compared to the
response time improvement we gained by MCOSS. Moreover,
the Submariner system supports an opt-in mechanism where
you define a specific FQDN that only if used, the request will
be routed to the DNS plugin.

Second, MCOSS collects metrics (such as demands and
latencies) from each cluster. This is done by using Prometheus
, which is an open-source monitoring solution, which queries
Submariner to extract the inter-cluster latency and CoreDNS
to extract the demands.

Third, and at the heart of our solution, there is the opti-
mization module which resides within the logically-centralized
broker (recall Fig. 2). MCOSS polls the different Prometheus
services, as well as cloud providers’ APIs, to receive the
information needed for solving its optimization problem. After
the problem is solved, the optimization module disseminates

3See our implementation code at [22].

Figure 5: Example of a single service (Service 0023 . . . 3ec6 from [25]), whose
response times (in blue) correspond to our MCOSS-QP approximation (in red).

the weights by creating an event to which all clusters listen.
We note that Lighthouse plugins listen to events from the
broker anyway (e.g., to get information about newly-exported
services), and MCOSS just adds additional metadata to these
events. We used Grobi [23] for the QP-Optimization, and PuLP
[24] for the LP-Optimization.

IV. EVALUATION

In this section, we first investigate, under different settings,
the influence of load on the service instance’s average response
time. These results show that a simple offline experiment can
provide good estimates for the values of prc(sct) and cap(sct),
which later can be plugged into our optimization program.
Then, we show how beneficial MCOSS is for reducing the total
cost, compared with round-robin selection, greedy selection,
and other techniques. We also show how MCOSS affects the
response time when response times are not considered directly
in the objective function (i.e., when we use the cost function
of (3), which results in a linear program, instead of the one
of (4), which results in a quadratic program). Finally, we
discuss the convergence time of our optimization problems
and show that it is negligible, even with large deployments
that are unlikely to materialize in the foreseeable future.

A. Response time and load

Alibaba Group has recently analyzed traces of more than
ten billion call traces among nearly 20, 000 microservices in
a 7-day time frame [20]. One of their conclusions is that the
response times of most microservices are stable even when
the call rate (load) varies. This is due to most calls in Alibaba
clusters can be processed immediately without any queuing
delay (The CPU utilization is less than 10%, even for large
loads). This implies that our MCOSS-LP model is the right one
to choose (rather than, the more computing-intensive, but more
accurate, MCOSS-QP model). However, a closer look into the
traces shows that the response time of some services depends
linearly on their load (namely, a linear regression results an
R-value greater than 0.7 and a regression line whose slope is
greater than 0). For these services (see an example taken from
Alibaba’s dataset [25] in Fig. 5), our MCOSS-QP model is a
better approximation.

Table II: Service Instance locations and capacity in RPS

Service / Cluster gcp-1 gcp-2 aws-1 aws-2 aws-3
Rating 70,000 70,000 70,000
Review 70,000 70,000 70,000
Details 70,000 70,000 70,000

Product Page 30,000 30,000 30,000 30,000 30,000

To conclude, both MCOSS-QP and MCOSS-LP are sup-
ported by the industry’s most important criteria, literature, real
trace analysis, and experimentation.

B. MCOSS reduces response time and prices

We have conducted numerous simulations and experiments,
using different applications and different placements of ser-
vice instances.4. First, we focus on one specific application,
Bookinfo [8], which is a common benchmark in literature for
microservice architecture [8], [19], [27]. BookInfo consists of
4 service types, named product-page, review, details, and rat-
ing. The product-page instances, send requests to the instances
of review and details; The review send requests to the rating
instances; while the details instances do not propagate any
further requests.

We have deployed BookInfo in 5 clusters across North and
South America, two in Google Cloud and three in Amazon
Web Services (mentioned in Table II). Pricing and latencies
between these clusters are publicly-available [28]–[31]. We
assume that the latency between clusters (region/zones) is
relatively steady on average (besides edge cases) [14]. Nev-
ertheless, we introduce noise (uniformly around the average
latency) per request for more realistic behavior [32]. The
different services are deployed only in a subset of the clusters,
and their capacities are shown in Table II. We assume traffic
is admissible with 28,000–35,000 RPS [33], [34] for each
instance of the front-end product-page service.

Fig. 6 describes the performance of BookInfo in terms of
response time and cost. For β = 0, our experiments show up to
64% improvement over other load balancing techniques. While
for β = 1, our experiments show a 72.82% improvement, re-
ducing the mean cost from 141.50 USD per 1 million requests
to 38.46 USD per 1 million requests (assuming the average
request size is 50 KB). Importantly, the difference between the
two objective functions of (3) and (4) is negligible, implying
that it may be useful to use the faster and less computationally-
intensive linear program, with almost no performance penalty.

We have also investigated the sensitivity of our solution to
the value of β. Fig. 7 describes the 95th percentile cost using
the different load balance techniques. Similar results regarding
response time are omitted for brevity. Evidently, β values
have minimal effect on performance, as, in real-life, latencies,
response times, and monetary costs are highly correlated.

We repeat these experiments with two additional applica-
tions, deployed alongside BookInfo and share services with
it (namely, their workload competes with BookInfo on these
shared services). This corresponds to the latest reports that, in

4See our simulation code at [26].

(a) β = 0, optimizing response time (b) β = 1, optimizing cost.

Figure 6: A CDF presenting the response time in ms (in Fig. 6(a)) and cost in USD (in Fig. 6(b)) of a full path request over all the clusters in the system, from the user perspective
for specific β value. MCOSS-QP is defined in (4), MCOSS-LP is defined in (3), RR denotes the round-robin load balancer, POWER-OF-TWO is defined in [35], and GREEDY
stands for local optimization of MCOSS-LP.

Figure 7: The 95th percentile of cost (in USD), as a function of β (log scale).

the Alibaba clusters, about 5% of the services are used by 90%
of the applications [20]. We have deployed the three applica-
tions in five different global clusters (North America, South
America, Europe, and East Asia). Under this deployment, the
mean monetary cost (with β = 1) has been improved by
72.08% and the response time has been improved by 61.53%,
compared to a round-robin load balancer. In addition, both the
linear and quadratic programs yield almost the same results
and the value of β has minimal effects on performance.

C. MCOSS is performant and adaptive

We have tested our optimization problem solver under an
increasing number of clusters and an increasing number of
service types. Our results show that the number of service
types almost does not affect the convergence time. On the other
hand, when the number of clusters increases, the convergence
time also increases. Our results in Fig. 8 show that up to 200
clusters, which cover all setups we have encountered so far, the
converge time difference of (3) and of (4) is negligible.Note
that MCOSS uses weighted round robin which is highly
efficient, resulting in high routing performance with no further
latency compared to the previous round robin mechanism [36].
Moreover, the data collection, sharing, and weight distribution
are negligible in the size and amount of requests compared
to the average data size and the number of user requests

0 200 400 600 800 1,000

10−1

100

101

102

103

Number of clusters
R

un
ni

ng
tim

e
(s

ec
on

ds
,l

og
sc

al
e)

100 Service Types (LP)
100 Service Types (QP)
500 Service Types (LP)
500 Service Types (QP)
1000 Service Types (LP)
1000 Service Types (QP)

Figure 8: Solver runtime as a function of the clusters and service types (log scale).

that are running within the system. See Fig. 9. Finally, recall
that solving and constructing the minimization problem is
done within the control-plane and does not interfere with the
computing power needed to operate the data plane.

Finally, an interesting experiment can show how the greedy
approach is prone to herd behavior and attacks on the system.
We use the same Bookinfo application as in the previous
experiment, but with a different layout. The two clusters in
the US have a small capacity, and the one in Tokyo has a
high capacity for different services. This caused the greedy
and round-robin approaches to suffer from herd behavior and
server starvation, and send more (less) traffic that can be
handled by the services, while MCOSS, with its global view
on the loads, distributes the load according to the capacity and
avoids herd behavior and under-utilization.

V. CONCLUSION

In this work, we have investigated the service selection
problem in a multi-cluster deployment of micro-service-based
applications. Our solution consists of a data and control planes.
In the data plane, we select services hierarchically: first, the
destination cluster is selected and then the pod within the
cluster is selected (by a component within the destination
cluster). At the heart of the control plane solution is an
optimization problem that strives to minimize a generic cost
function. Solutions of this optimization problem are distributed

5AM 7AM 10AM 2PM 6PM 10PM 2AM
0

200

400

600

800

1,000

1,200

Time of day

A
ve

ra
ge

tr
af

fic
vo

lu
m

e
(i

n
K

B
/s

) inner-cluster
inter-cluster

0

5

10

15

20

25

Pe
rc

en
ta

ge
of

tr
af

fic

inner-overhead
inter-overhead

Figure 9: Data transfer in the system throughout a day per second

back to the data plane as weights, so that load balancing can be
done using a weighted round robin (in our case, using DNS).

This work can be extended in many ways. First, we assume
that the placement of services to a cluster is given. However,
similarly to our dealing with scaling-out scenarios, one may
decide to deploy services in additional clusters to reduce
cost. It will be interesting to explore whether solving the
placement and load balancing problems together may improve
the performance. Second, in this work, we assume that the
demands are known (or can be accurately estimated) to the
optimizer. A promising future research direction is to explore
how sensitive the optimizer is to errors in these estimations
and/or unpredictable fluctuations in both demands and service
instance capacities (e.g., as a result of failures). In addition,
we plan to extend our model to deal, on one hand, with auto-
scaling (implying, in a sense, that capacity constraints can be
relaxed with a certain penalty in the cost function), and on the
other hand, with situations in which requests are dropped.

One last suggestion for improvement can tackle the scale
issue. As deployments are moving towards thousands of
clusters on edge environments, we would like to enable
linear degradation in the performance of the algorithm, as
shown in Fig. 8 the degradation in performance is not linear
and when we pass 1000 clusters it could take minutes for
the algorithm to converge. Lastly, one can better utilize the
autoscale mechanism, where the price delta between different
metrics (including scale-related metrics such as CPU, memory,
etc.) allows better control over the scale and optimizes its
related cost.

Acknowledgements: The work was partly supported by
Red Hat. We would like to thank Ilya Kolchinsky, Mike
Kolesnik, Idan Levi, Louisa Nachshon, Tom Pantelis, Livnat
Peer, Vishal Thapar, and Nir Yechiel of Red Hat for the useful
discussions on MCOSS in general, and the interplay between
MCOSS and Submariner in particular.

REFERENCES

[1] “What is a kubernetes service.” [Online]. Available: https://kubernetes.
io/docs/concepts/services-networking/service/

[2] A. Krylovskiy, M. Jahn, and E. Patti, “Designing a smart city internet
of things platform with microservice architecture,” in IEEE FiCloud’15,
2015, pp. 25–30.

[3] M. Villari et al., “Osmotic computing: A new paradigm for edge/cloud
integration,” IEEE Cloud Computing, vol. 3, no. 6, pp. 76–83, 2016.

[4] D. Lu et al., “A secure microservice framework for IoT,” in IEEE
SOSE’17, 2017, pp. 9–18.

[5] “The kubernetes authors. 2017. kubernetes — production-grade
container orchestration.” [Online]. Available: https://kubernetes.io/

[6] “Submariner project official websitey.” [Online]. Available: https:
//submariner.io/

[7] “Cilium load balancing.” [Online]. Available: https://github.com/cilium/
cilium/blob/master/Documentation/cmdref/cilium-agent.md

[8] “What is istio.” [Online]. Available: https://istio.io/docs/concepts/
what-is-istio/

[9] “Linkerd overview.” [Online]. Available: https://linkerd.io/2/overview/
[10] “Cloud native computing foundation landscape.” [Online]. Available:

https://landscape.cncf.io/
[11] I. Stoica and S. Shenker, “From cloud computing to sky computing,” in

HotOS ’21, 2021, p. 26–32.
[12] D. E. Eisenbud et al., “Maglev: A fast and reliable software network

load balancer,” in USENIX NSDI’16, 2016, pp. 523–535.
[13] “Submariner broker.” [Online]. Available: https://submariner.io/

getting-started/architecture/broker
[14] D. Bhamare et al., “Multi-objective scheduling of micro-services for

optimal service function chains,” in IEEE ICC’17, 2017.
[15] C. Guerrero, I. Lera, and C. Juiz, “Resource optimization of container

orchestration: a case study in multi-cloud microservices-based applica-
tions,” The Journal of Supercomputing, vol. 74, no. 7, pp. 2956–2983,
2018.

[16] Y. Niu, F. Liu, and Z. Li, “Load balancing across microservices,” in
IEEE INFOCOM’18, 2018, pp. 198–206.

[17] F. Wan, X. Wu, and Q. Zhang, “Chain-oriented load balancing in
microservice system,” in IEEE WCCCT’20, 2020, pp. 10–14.

[18] R. Yu et al., “Load balancing for interdependent iot microservices,” in
IEEE INFOCOM’19, 2019, pp. 298–306.

[19] Z. Sun, “Latency-aware optimization of the existing service mesh in
edge computing environment,” 2019.

[20] S. Luo et al., “Characterizing microservice dependency and perfor-
mance: Alibaba trace analysis,” in ACM SoCC’21, 2021, pp. 412–426.

[21] C. Ayimba, P. Casari, and V. Mancuso, “Sqlr: Short-term memory q-
learning for elastic provisioning,” IEEE Trans. Netw. Serv. Manag.,
vol. 18, no. 2, pp. 1850–1869, 2021.

[22] D. Bachar, A. Bremler-Barr, and D. Hay, “The MCOSS
POC code.” [Online]. Available: https://github.com/danibachar/
kube-multi-cluster-managment

[23] “Grobi optimization (python framework).” [Online]. Available: https:
//www.gurobi.com/

[24] “Pulp optimization (python framework).” [Online]. Available: https:
//coin-or.github.io/pulp/

[25] “Alibaba cloud treace repository.” [Online]. Available: https://github.
com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2021

[26] D. Bachar, A. Bremler-Barr, and D. Hay, “MCOSS simulator and
graph generator.” [Online]. Available: https://github.com/danibachar/
Kube-Load-Balancing

[27] S. Ashok, P. B. Godfrey, and R. Mittal, “Leveraging service meshes as
a new network layer,” in ACM HotNets ’21, 2021, p. 229–236.

[28] “Google cloud platform VPC pricing estimator.” [Online]. Available:
https://cloud.google.com/vpc/network-pricing

[29] “Cloud platform network tier dependant pricing estimator.” [Online].
Available: https://cloud.google.com/network-tiers/pricing

[30] “AWS VPC pricing estimator.” [Online]. Available: https://aws.amazon.
com/vpc/pricing/

[31] “AWS API gateway pricing estimator.” [Online]. Available: https:
//aws.amazon.com/api-gateway/pricing/

[32] C. Guo et al., “Pingmesh: A large-scale system for data center network
latency measurement and analysis,” in ACM SIGCOMM’15, 2015, pp.
139–152.

[33] K. Takahashi et al., “A portable load balancer for kubernetes cluster,”
in HPC Asia’18, 2018, p. 222–231.

[34] A. C. Beltrão, B. B. N. de França, and G. H. Travassos, “Performance
evaluation of kubernetes as deployment platform for iot devices,” in
Ibero-American Conference on Software Engineering, 2020.

[35] “Beyond round robin: Load balancing for la-
tency.” [Online]. Available: https://linkerd.io/2016/03/16/
beyond-round-robin-load-balancing-for-latency/

[36] W. Wang and G. Casale, “Evaluating weighted round robin load balanc-
ing for cloud web services,” in IEEE SYNASC’14, 2014, pp. 393–400.

